/** * @file test_logic_expression.cpp * * https://sourceforge.net/p/rusefi/tickets/102/ * * @date Oct 3, 2014 * @author Andrey Belomutskiy, (c) 2012-2020 */ #include "fsio_impl.h" #include "cli_registry.h" #include "engine_test_helper.h" #include "thermistors.h" #include "allsensors.h" #define TEST_POOL_SIZE 256 FsioResult getEngineValue(le_action_e action DECLARE_ENGINE_PARAMETER_SUFFIX) { switch(action) { case LE_METHOD_FAN: return engine->fsioState.mockFan; case LE_METHOD_COOLANT: return Sensor::get(SensorType::Clt).value_or(0); case LE_METHOD_RPM: return engine->fsioState.mockRpm; case LE_METHOD_CRANKING_RPM: return engine->fsioState.mockCrankingRpm; case LE_METHOD_TIME_SINCE_BOOT: return engine->fsioState.mockTimeSinceBoot; case LE_METHOD_STARTUP_FUEL_PUMP_DURATION: return 2.0f; case LE_METHOD_TIME_SINCE_TRIGGER_EVENT: return engine->fsioState.mockTimeSinceTrigger; case LE_METHOD_VBATT: return 12; case LE_METHOD_AC_TOGGLE: return getAcToggle(PASS_ENGINE_PARAMETER_SIGNATURE); case LE_METHOD_IS_COOLANT_BROKEN: return 0; #include "fsio_getters.def" default: firmwareError(OBD_PCM_Processor_Fault, "FSIO: No mock value for %d", action); return unexpected; } } TEST(fsio, testTokenizer) { char buffer[64]; ASSERT_TRUE(strEqualCaseInsensitive("hello", "HELlo")); ASSERT_FALSE(strEqualCaseInsensitive("hello", "HElo2")); const char *ptr; ptr = getNextToken(" hello ", buffer, sizeof(buffer)); ASSERT_TRUE(strEqual("hello", buffer)); ptr = getNextToken("hello", buffer, sizeof(buffer)); ASSERT_TRUE(strEqual("hello", buffer)); ptr = getNextToken(" hello world ", buffer, sizeof(buffer)); ASSERT_TRUE(strEqual("hello", buffer)); ptr = getNextToken(ptr, buffer, sizeof(buffer)); ASSERT_TRUE(strEqual("world", buffer)); ASSERT_TRUE(isNumeric("123")); ASSERT_FALSE(isNumeric("a123")); } TEST(fsio, testParsing) { LEElement thepool[TEST_POOL_SIZE]; LEElementPool pool(thepool, TEST_POOL_SIZE); LEElement *element = pool.parseExpression("1 3 AND not"); ASSERT_TRUE(element != NULL); ASSERT_EQ(element[0].action, LE_NUMERIC_VALUE); ASSERT_EQ(element[0].fValue, 1.0); ASSERT_EQ(element[1].action, LE_NUMERIC_VALUE); ASSERT_EQ(element[1].fValue, 3.0); ASSERT_EQ(element[2].action, LE_OPERATOR_AND); ASSERT_EQ(element[3].action, LE_OPERATOR_NOT); // last should be a return instruction ASSERT_EQ(element[4].action, LE_METHOD_RETURN); ASSERT_EQ(pool.getSize(), 5); } TEST(fsio, parsingMultiple) { LEElement poolArr[TEST_POOL_SIZE]; LEElementPool pool(poolArr, TEST_POOL_SIZE); LEElement* p1 = pool.parseExpression("2"); ASSERT_EQ(p1[0].action, LE_NUMERIC_VALUE); ASSERT_EQ(p1[0].fValue, 2); ASSERT_EQ(p1[1].action, LE_METHOD_RETURN); LEElement* p2 = pool.parseExpression("4"); ASSERT_EQ(p2[0].action, LE_NUMERIC_VALUE); ASSERT_EQ(p2[0].fValue, 4); ASSERT_EQ(p2[1].action, LE_METHOD_RETURN); // Check that they got allocated sequentially without overlap ASSERT_EQ(p2 - p1, 2); } static void testExpression2(float selfValue, const char *line, float expected, Engine *engine) { LEElement thepool[TEST_POOL_SIZE]; LEElementPool pool(thepool, TEST_POOL_SIZE); LEElement * element = pool.parseExpression(line); print("Parsing [%s]\n", line); ASSERT_TRUE(element != NULL) << "Not NULL expected"; LECalculator c; EXPAND_Engine; ASSERT_NEAR(expected, c.evaluate(selfValue, element PASS_ENGINE_PARAMETER_SUFFIX), EPS4D) << line; } static void testExpression2(float selfValue, const char *line, float expected, const std::unordered_map& sensorVals = {}) { WITH_ENGINE_TEST_HELPER_SENS(FORD_INLINE_6_1995, sensorVals); testExpression2(selfValue, line, expected, engine); } static void testExpression(const char *line, float expectedValue, const std::unordered_map& sensorVals = {}) { testExpression2(0, line, expectedValue, sensorVals); } TEST(fsio, testHysteresisSelf) { WITH_ENGINE_TEST_HELPER(FORD_INLINE_6_1995); LEElement thepool[TEST_POOL_SIZE]; LEElementPool pool(thepool, TEST_POOL_SIZE); // value ON: 450 // value OFF: 400 // Human formula: (self and (rpm > 400)) | (rpm > 450) LEElement * element = pool.parseExpression("self rpm 400 > and rpm 450 > |"); ASSERT_TRUE(element != NULL) << "Not NULL expected"; LECalculator c; double selfValue = 0; engine->fsioState.mockRpm = 0; selfValue = c.evaluate(selfValue, element PASS_ENGINE_PARAMETER_SUFFIX); ASSERT_EQ(0, selfValue); engine->fsioState.mockRpm = 430; selfValue = c.evaluate(selfValue, element PASS_ENGINE_PARAMETER_SUFFIX); // OFF since not ON yet ASSERT_EQ(0, selfValue); engine->fsioState.mockRpm = 460; selfValue = c.evaluate(selfValue, element PASS_ENGINE_PARAMETER_SUFFIX); ASSERT_EQ(1, selfValue); engine->fsioState.mockRpm = 430; selfValue = c.evaluate(selfValue, element PASS_ENGINE_PARAMETER_SUFFIX); // OFF since was ON yet ASSERT_EQ(1, selfValue); } TEST(fsio, testLiterals) { // Constants - single token testExpression("123", 123.0f); testExpression("true", 1); testExpression("false", 0); } TEST(fsio, mathOperators) { // Test basic operations testExpression("123 456 +", 579); testExpression("123 456 -", -333); testExpression("123 456 *", 56088); testExpression("123 456 /", 0.269737f); } TEST(fsio, comparisonOperators) { // Comparison operators testExpression("123 456 >", 0); testExpression("123 456 >=", 0); testExpression("123 456 <", 1); testExpression("123 456 <=", 1); testExpression("123 456 min", 123); testExpression("123 456 max", 456); } TEST(fsio, booleanOperators) { // Boolean operators testExpression("true true and", 1); testExpression("true false and", 0); testExpression("true false or", 1); testExpression("false false or", 0); // (both ways to write and/or) testExpression("true true &", 1); testExpression("true false &", 0); testExpression("true false |", 1); testExpression("false false |", 0); // not operator testExpression("true not", 0); testExpression("false not", 1); } TEST(fsio, extraOperators) { // Self operator testExpression2(123, "self 1 +", 124); // ternary operator testExpression("1 22 33 if", 22); testExpression("0 22 33 if", 33); } TEST(fsio, invalidFunction) { EXPECT_FATAL_ERROR(testExpression("bogus_function", 0)); EXPECT_FATAL_ERROR(testExpression("1 2 + bogus_expression *", 0)); } TEST(fsio, testLogicExpressions) { /** * fan = (not fan && coolant > 90) OR (fan && coolant > 85) * fan = fan NOT coolant 90 AND more fan coolant 85 more AND OR */ std::unordered_map sensorVals = {{SensorType::Clt, 100}}; testExpression("coolant 1 +", 101, sensorVals); testExpression("fan", 0, sensorVals); testExpression("fan not", 1, sensorVals); testExpression("coolant 90 >", 1, sensorVals); testExpression("fan not coolant 90 > and", 1, sensorVals); testExpression("fan NOT coolant 90 > AND fan coolant 85 > AND OR", 1, sensorVals); { WITH_ENGINE_TEST_HELPER_SENS(FORD_INLINE_6_1995, sensorVals); LEElement thepool[TEST_POOL_SIZE]; LEElementPool pool(thepool, TEST_POOL_SIZE); LEElement * element = pool.parseExpression("fan NOT coolant 90 > AND fan coolant 85 > AND OR"); ASSERT_TRUE(element != NULL) << "Not NULL expected"; LECalculator c; ASSERT_EQ( 1, c.evaluate(0, element PASS_ENGINE_PARAMETER_SUFFIX)) << "that expression"; ASSERT_EQ(12, c.currentCalculationLogPosition); ASSERT_EQ(102, c.calcLogAction[0]); ASSERT_EQ(0, c.calcLogValue[0]); } { WITH_ENGINE_TEST_HELPER_SENS(FORD_INLINE_6_1995, sensorVals); engineConfiguration->fanOnTemperature = 0; engineConfiguration->fanOffTemperature = 0; testExpression2(0, "cfg_fanOffTemperature", 0, engine); testExpression2(0, FAN_CONTROL_LOGIC, 1, engine); testExpression2(0, "coolant cfg_fanOffTemperature >", 1, engine); } { WITH_ENGINE_TEST_HELPER_SENS(FORD_INLINE_6_1995, sensorVals); engine->fsioState.mockRpm = 900; engine->fsioState.mockCrankingRpm = 200; testExpression2(0, "rpm", 900, engine); testExpression2(0, "cranking_rpm", 200, engine); testExpression2(0, STARTER_RELAY_LOGIC, 0, engine); testExpression2(0, "rpm cranking_rpm > ", 1, engine); } } TEST(fsio, fuelPump) { // this will init fuel pump fsio logic WITH_ENGINE_TEST_HELPER(TEST_ENGINE); // Mock a fuel pump pin CONFIG(fuelPumpPin) = GPIOA_0; // Re-init so it picks up the new config enginePins.fuelPumpRelay.init(PASS_ENGINE_PARAMETER_SIGNATURE); // ECU just started, haven't seen trigger yet engine->fsioState.mockTimeSinceBoot = 0.5f; engine->fsioState.mockTimeSinceTrigger = 100; runFsio(PASS_ENGINE_PARAMETER_SIGNATURE); // Pump should be on! EXPECT_TRUE(efiReadPin(GPIOA_0)); // Long time since ecu start, haven't seen trigger yet engine->fsioState.mockTimeSinceBoot = 60; engine->fsioState.mockTimeSinceTrigger = 100; runFsio(PASS_ENGINE_PARAMETER_SIGNATURE); // Pump should be off! EXPECT_FALSE(efiReadPin(GPIOA_0)); // Long time since ecu start, just saw a trigger! engine->fsioState.mockTimeSinceBoot = 60; engine->fsioState.mockTimeSinceTrigger = 0.1f; runFsio(PASS_ENGINE_PARAMETER_SIGNATURE); // Pump should be on! EXPECT_TRUE(efiReadPin(GPIOA_0)); // ECU just started, and we just saw a trigger! engine->fsioState.mockTimeSinceBoot = 0.5f; engine->fsioState.mockTimeSinceTrigger = 0.1f; runFsio(PASS_ENGINE_PARAMETER_SIGNATURE); // Pump should be on! EXPECT_TRUE(efiReadPin(GPIOA_0)); } TEST(fsio, fsioValueFloat) { FsioValue floatVal(3.5f); EXPECT_TRUE(floatVal.isFloat()); EXPECT_FALSE(floatVal.isBool()); EXPECT_FLOAT_EQ(floatVal.asFloat(), 3.5f); } TEST(fsio, fsioValueFloatZero) { FsioValue floatVal(0.0f); EXPECT_TRUE(floatVal.isFloat()); EXPECT_FALSE(floatVal.isBool()); EXPECT_FLOAT_EQ(floatVal.asFloat(), 0); } TEST(fsio, fsioValueBoolTrue) { FsioValue boolVal(true); EXPECT_TRUE(boolVal.isBool()); EXPECT_FALSE(boolVal.isFloat()); EXPECT_TRUE(boolVal.asBool()); } TEST(fsio, fsioValueBoolFalse) { FsioValue boolVal(false); EXPECT_TRUE(boolVal.isBool()); EXPECT_FALSE(boolVal.isFloat()); EXPECT_FALSE(boolVal.asBool()); }