/** * @file trigger_structure.cpp * * @date Jan 20, 2014 * @author Andrey Belomutskiy, (c) 2012-2020 * * This file is part of rusEfi - see http://rusefi.com * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . */ #include "pch.h" #include "os_access.h" #include "trigger_chrysler.h" #include "trigger_gm.h" #include "trigger_nissan.h" #include "trigger_mazda.h" #include "trigger_misc.h" #include "trigger_mitsubishi.h" #include "trigger_subaru.h" #include "trigger_suzuki.h" #include "trigger_structure.h" #include "trigger_toyota.h" #include "trigger_renix.h" #include "trigger_rover.h" #include "trigger_honda.h" #include "trigger_vw.h" #include "trigger_universal.h" #include "trigger_mercedes.h" #if EFI_SENSOR_CHART #include "sensor_chart.h" #endif /* EFI_SENSOR_CHART */ void event_trigger_position_s::setAngle(angle_t angle) { findTriggerPosition(&engine->triggerCentral.triggerShape, &engine->triggerCentral.triggerFormDetails, this, angle); } TriggerWaveform::TriggerWaveform() { initialize(OM_NONE); } void TriggerWaveform::initialize(operation_mode_e operationMode) { isSynchronizationNeeded = true; // that's default value bothFrontsRequired = false; needSecondTriggerInput = false; shapeWithoutTdc = false; memset(expectedDutyCycle, 0, sizeof(expectedDutyCycle)); setTriggerSynchronizationGap(2); for (int gapIndex = 1; gapIndex < GAP_TRACKING_LENGTH ; gapIndex++) { // NaN means do not use this gap ratio setTriggerSynchronizationGap3(gapIndex, NAN, 100000); } gapTrackingLength = 1; tdcPosition = 0; shapeDefinitionError = useOnlyPrimaryForSync = false; useRiseEdge = true; gapBothDirections = false; this->operationMode = operationMode; triggerShapeSynchPointIndex = 0; memset(initialState, 0, sizeof(initialState)); memset(expectedEventCount, 0, sizeof(expectedEventCount)); wave.reset(); wave.waveCount = TRIGGER_CHANNEL_COUNT; wave.phaseCount = 0; previousAngle = 0; memset(isRiseEvent, 0, sizeof(isRiseEvent)); #if EFI_UNIT_TEST memset(&triggerSignalIndeces, 0, sizeof(triggerSignalIndeces)); memset(&triggerSignalStates, 0, sizeof(triggerSignalStates)); #endif } size_t TriggerWaveform::getSize() const { return wave.phaseCount; } int TriggerWaveform::getTriggerWaveformSynchPointIndex() const { return triggerShapeSynchPointIndex; } /** * physical primary trigger duration * @see getEngineCycle * @see getCrankDivider */ angle_t TriggerWaveform::getCycleDuration() const { switch (operationMode) { case FOUR_STROKE_THREE_TIMES_CRANK_SENSOR: return FOUR_STROKE_CYCLE_DURATION / SYMMETRICAL_THREE_TIMES_CRANK_SENSOR_DIVIDER; case FOUR_STROKE_SYMMETRICAL_CRANK_SENSOR: return FOUR_STROKE_CYCLE_DURATION / SYMMETRICAL_CRANK_SENSOR_DIVIDER; case FOUR_STROKE_CRANK_SENSOR: case TWO_STROKE: return TWO_STROKE_CYCLE_DURATION; default: return FOUR_STROKE_CYCLE_DURATION; } } /** * Trigger event count equals engine cycle event count if we have a cam sensor. * Two trigger cycles make one engine cycle in case of a four stroke engine If we only have a cranksensor. * * 'engine->engineCycleEventCount' hold a pre-calculated copy of this value as a performance optimization */ size_t TriggerWaveform::getLength() const { /** * 6 for FOUR_STROKE_THREE_TIMES_CRANK_SENSOR * 4 for FOUR_STROKE_SYMMETRICAL_CRANK_SENSOR * 2 for FOUR_STROKE_CRANK_SENSOR * 1 otherwise */ int multiplier = getEngineCycle(operationMode) / getCycleDuration(); return multiplier * getSize(); } angle_t TriggerWaveform::getAngle(int index) const { /** * FOUR_STROKE_CRANK_SENSOR magic: * We have two crank shaft revolutions for each engine cycle * See also trigger_central.cpp * See also getEngineCycleEventCount() */ efiAssert(CUSTOM_ERR_ASSERT, wave.phaseCount != 0, "shapeSize=0", NAN); int crankCycle = index / wave.phaseCount; int remainder = index % wave.phaseCount; auto cycleStartAngle = getCycleDuration() * crankCycle; auto positionWithinCycle = getSwitchAngle(remainder); return cycleStartAngle + positionWithinCycle; } void TriggerWaveform::addEventClamped(angle_t angle, trigger_wheel_e const channelIndex, trigger_value_e const stateParam, float filterLeft, float filterRight) { if (angle > filterLeft && angle < filterRight) { #if EFI_UNIT_TEST // printf("addEventClamped %f %s\r\n", angle, getTrigger_value_e(stateParam)); #endif /* EFI_UNIT_TEST */ addEvent(angle / getEngineCycle(operationMode), channelIndex, stateParam); } } operation_mode_e TriggerWaveform::getOperationMode() const { return operationMode; } #if EFI_UNIT_TEST extern bool printTriggerDebug; #endif size_t TriggerWaveform::getExpectedEventCount(int channelIndex) const { return expectedEventCount[channelIndex]; } void TriggerWaveform::calculateExpectedEventCounts(bool useOnlyRisingEdgeForTrigger) { if (!useOnlyRisingEdgeForTrigger) { for (size_t i = 0; i < efi::size(expectedEventCount); i++) { if (getExpectedEventCount(i) % 2 != 0) { firmwareError(ERROR_TRIGGER_DRAMA, "Trigger: should be even number of events index=%d count=%d", i, getExpectedEventCount(i)); } } } bool isSingleToothOnPrimaryChannel = useOnlyRisingEdgeForTrigger ? getExpectedEventCount(0) == 1 : getExpectedEventCount(0) == 2; // todo: next step would be to set 'isSynchronizationNeeded' automatically based on the logic we have here if (!shapeWithoutTdc && isSingleToothOnPrimaryChannel != !isSynchronizationNeeded) { firmwareError(ERROR_TRIGGER_DRAMA, "shapeWithoutTdc isSynchronizationNeeded isSingleToothOnPrimaryChannel constraint violation"); } if (isSingleToothOnPrimaryChannel) { useOnlyPrimaryForSync = true; } // todo: move the following logic from below here // if (!useOnlyRisingEdgeForTrigger || stateParam == TV_RISE) { // expectedEventCount[channelIndex]++; // } } /** * Deprecated! many usages should be replaced by addEvent360 */ void TriggerWaveform::addEvent720(angle_t angle, trigger_wheel_e const channelIndex, trigger_value_e const state) { addEvent(angle / FOUR_STROKE_CYCLE_DURATION, channelIndex, state); } void TriggerWaveform::addEvent360(angle_t angle, trigger_wheel_e const channelIndex, trigger_value_e const state) { efiAssertVoid(CUSTOM_OMODE_UNDEF, operationMode == FOUR_STROKE_CAM_SENSOR || operationMode == FOUR_STROKE_CRANK_SENSOR, "Not a mode for 360"); addEvent(CRANK_MODE_MULTIPLIER * angle / FOUR_STROKE_CYCLE_DURATION, channelIndex, state); } void TriggerWaveform::addEventAngle(angle_t angle, trigger_wheel_e const channelIndex, trigger_value_e const state) { addEvent(angle / getCycleDuration(), channelIndex, state); } void TriggerWaveform::addEvent(angle_t angle, trigger_wheel_e const channelIndex, trigger_value_e const state) { efiAssertVoid(CUSTOM_OMODE_UNDEF, operationMode != OM_NONE, "operationMode not set"); if (channelIndex == T_SECONDARY) { needSecondTriggerInput = true; } #if EFI_UNIT_TEST if (printTriggerDebug) { printf("addEvent2 %.2f i=%d r/f=%d\r\n", angle, channelIndex, state); } #endif #if EFI_UNIT_TEST assertIsInBounds(wave.phaseCount, triggerSignalIndeces, "trigger shape overflow"); triggerSignalIndeces[wave.phaseCount] = channelIndex; triggerSignalStates[wave.phaseCount] = state; #endif // EFI_UNIT_TEST // todo: the whole 'useOnlyRisingEdgeForTrigger' parameter and logic should not be here // todo: see calculateExpectedEventCounts // related calculation should be done once trigger is initialized outside of trigger shape scope if (!useOnlyRisingEdgeForTriggerTemp || state == TV_RISE) { expectedEventCount[channelIndex]++; } if (angle <= 0 || angle > 1) { firmwareError(CUSTOM_ERR_6599, "angle should be positive not above 1: index=%d angle %f", channelIndex, angle); return; } if (wave.phaseCount > 0) { if (angle <= previousAngle) { warning(CUSTOM_ERR_TRG_ANGLE_ORDER, "invalid angle order %s %s: new=%.2f/%f and prev=%.2f/%f, size=%d", getTrigger_wheel_e(channelIndex), getTrigger_value_e(state), angle, angle * getCycleDuration(), previousAngle, previousAngle * getCycleDuration(), wave.phaseCount); setShapeDefinitionError(true); return; } } previousAngle = angle; if (wave.phaseCount == 0) { wave.phaseCount = 1; for (int i = 0; i < PWM_PHASE_MAX_WAVE_PER_PWM; i++) { wave.setChannelState(i, /* switchIndex */ 0, /* value */ initialState[i]); } isRiseEvent[0] = TV_RISE == state; wave.setSwitchTime(0, angle); wave.setChannelState(channelIndex, /* channelIndex */ 0, /* value */ state); return; } int exactMatch = wave.findAngleMatch(angle); if (exactMatch != (int)EFI_ERROR_CODE) { warning(CUSTOM_ERR_SAME_ANGLE, "same angle: not supported"); setShapeDefinitionError(true); return; } int index = wave.findInsertionAngle(angle); /** * todo: it would be nice to be able to provide trigger angles without sorting them externally * The idea here is to shift existing data - including handling high vs low state of the signals */ // todo: does this logic actually work? I think it does not! due to broken state handling /* for (int i = size - 1; i >= index; i--) { for (int j = 0; j < PWM_PHASE_MAX_WAVE_PER_PWM; j++) { wave.waves[j].pinStates[i + 1] = wave.getChannelState(j, index); } wave.setSwitchTime(i + 1, wave.getSwitchTime(i)); } */ isRiseEvent[index] = TV_RISE == state; if ((unsigned)index != wave.phaseCount) { firmwareError(ERROR_TRIGGER_DRAMA, "are we ever here?"); } wave.phaseCount++; for (int i = 0; i < PWM_PHASE_MAX_WAVE_PER_PWM; i++) { pin_state_t value = wave.getChannelState(/* channelIndex */i, index - 1); wave.setChannelState(i, index, value); } wave.setSwitchTime(index, angle); wave.setChannelState(channelIndex, index, state); } angle_t TriggerWaveform::getSwitchAngle(int index) const { return getCycleDuration() * wave.getSwitchTime(index); } void setToothedWheelConfiguration(TriggerWaveform *s, int total, int skipped, operation_mode_e operationMode) { #if EFI_ENGINE_CONTROL s->useRiseEdge = true; initializeSkippedToothTriggerWaveformExt(s, total, skipped, operationMode); #endif } void TriggerWaveform::setTriggerSynchronizationGap2(float syncRatioFrom, float syncRatioTo) { setTriggerSynchronizationGap3(/*gapIndex*/0, syncRatioFrom, syncRatioTo); } void TriggerWaveform::setTriggerSynchronizationGap3(int gapIndex, float syncRatioFrom, float syncRatioTo) { isSynchronizationNeeded = true; efiAssertVoid(OBD_PCM_Processor_Fault, gapIndex >= 0 && gapIndex < GAP_TRACKING_LENGTH, "gapIndex out of range"); syncronizationRatioFrom[gapIndex] = syncRatioFrom; syncronizationRatioTo[gapIndex] = syncRatioTo; if (gapIndex == 0) { // we have a special case here - only sync with one gap has this feature this->syncRatioAvg = (int)efiRound((syncRatioFrom + syncRatioTo) * 0.5f, 1.0f); } gapTrackingLength = maxI(1 + gapIndex, gapTrackingLength); #if EFI_UNIT_TEST if (printTriggerDebug) { printf("setTriggerSynchronizationGap3 %d %.2f %.2f\r\n", gapIndex, syncRatioFrom, syncRatioTo); } #endif /* EFI_UNIT_TEST */ } uint16_t TriggerWaveform::findAngleIndex(TriggerFormDetails *details, angle_t targetAngle) const { size_t engineCycleEventCount = getLength(); efiAssert(CUSTOM_ERR_ASSERT, engineCycleEventCount != 0 && engineCycleEventCount <= 0xFFFF, "engineCycleEventCount", 0); uint32_t left = 0; uint32_t right = engineCycleEventCount - 1; /** * Let's find the last trigger angle which is less or equal to the desired angle * todo: extract binary search as template method? */ do { uint32_t middle = (left + right) / 2; if (details->eventAngles[middle] <= targetAngle) { left = middle + 1; } else { right = middle - 1; } } while (left <= right); left -= 1; if (useOnlyRisingEdgeForTriggerTemp) { left &= ~1U; } return left; } void TriggerWaveform::setShapeDefinitionError(bool value) { shapeDefinitionError = value; } void findTriggerPosition(TriggerWaveform *triggerShape, TriggerFormDetails *details, event_trigger_position_s *position, angle_t angle) { efiAssertVoid(CUSTOM_ERR_6574, !cisnan(angle), "findAngle#1"); assertAngleRange(angle, "findAngle#a1", CUSTOM_ERR_6545); efiAssertVoid(CUSTOM_ERR_6575, !cisnan(triggerShape->tdcPosition), "tdcPos#1") assertAngleRange(triggerShape->tdcPosition, "tdcPos#a1", CUSTOM_UNEXPECTED_TDC_ANGLE); efiAssertVoid(CUSTOM_ERR_6576, !cisnan(engineConfiguration->globalTriggerAngleOffset), "tdcPos#2") assertAngleRange(engineConfiguration->globalTriggerAngleOffset, "tdcPos#a2", CUSTOM_INVALID_GLOBAL_OFFSET); // convert engine cycle angle into trigger cycle angle angle += triggerShape->tdcPosition + engineConfiguration->globalTriggerAngleOffset; efiAssertVoid(CUSTOM_ERR_6577, !cisnan(angle), "findAngle#2"); wrapAngle2(angle, "addFuel#2", CUSTOM_ERR_6555, getEngineCycle(triggerShape->getOperationMode())); int triggerEventIndex = triggerShape->findAngleIndex(details, angle); angle_t triggerEventAngle = details->eventAngles[triggerEventIndex]; angle_t offsetFromTriggerEvent = angle - triggerEventAngle; // Guarantee that we aren't going to try and schedule an event prior to the tooth if (offsetFromTriggerEvent < 0) { warning(CUSTOM_OBD_ANGLE_CONSTRAINT_VIOLATION, "angle constraint violation in findTriggerPosition(): %.2f/%.2f", angle, triggerEventAngle); return; } { // This must happen under lock so that the tooth and offset don't get partially read and mismatched chibios_rt::CriticalSectionLocker csl; position->triggerEventIndex = triggerEventIndex; position->angleOffsetFromTriggerEvent = offsetFromTriggerEvent; } } void TriggerWaveform::prepareShape(TriggerFormDetails *details) { #if EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT if (shapeDefinitionError) { // Nothing to do here if there's a problem with the trigger shape return; } prepareEventAngles(this, details); #endif } void TriggerWaveform::setTriggerSynchronizationGap(float syncRatio) { setTriggerSynchronizationGap3(/*gapIndex*/0, syncRatio * TRIGGER_GAP_DEVIATION_LOW, syncRatio * TRIGGER_GAP_DEVIATION_HIGH); } void TriggerWaveform::setSecondTriggerSynchronizationGap(float syncRatio) { setTriggerSynchronizationGap3(/*gapIndex*/1, syncRatio * TRIGGER_GAP_DEVIATION_LOW, syncRatio * TRIGGER_GAP_DEVIATION_HIGH); } void TriggerWaveform::setSecondTriggerSynchronizationGap2(float syncRatioFrom, float syncRatioTo) { setTriggerSynchronizationGap3(/*gapIndex*/1, syncRatioFrom, syncRatioTo); } void TriggerWaveform::setThirdTriggerSynchronizationGap(float syncRatio) { setTriggerSynchronizationGap3(/*gapIndex*/2, syncRatio * TRIGGER_GAP_DEVIATION_LOW, syncRatio * TRIGGER_GAP_DEVIATION_HIGH); } /** * External logger is needed because at this point our logger is not yet initialized */ void TriggerWaveform::initializeTriggerWaveform(operation_mode_e ambiguousOperationMode, bool useOnlyRisingEdgeForTrigger, const trigger_config_s *triggerConfig) { #if EFI_PROD_CODE efiAssertVoid(CUSTOM_ERR_6641, getCurrentRemainingStack() > EXPECTED_REMAINING_STACK, "init t"); efiPrintf("initializeTriggerWaveform(%s/%d)", getTrigger_type_e(triggerConfig->type), (int) triggerConfig->type); #endif shapeDefinitionError = false; this->useOnlyRisingEdgeForTriggerTemp = useOnlyRisingEdgeForTrigger; switch (triggerConfig->type) { case TT_TOOTHED_WHEEL: initializeSkippedToothTriggerWaveformExt(this, triggerConfig->customTotalToothCount, triggerConfig->customSkippedToothCount, ambiguousOperationMode); break; case TT_MAZDA_MIATA_NA: initializeMazdaMiataNaShape(this); break; case TT_MAZDA_MIATA_NB1: #if EFI_PROD_CODE // todo: remove this fatal and remove 'TT_MAZDA_MIATA_NB1' in May of 2022 firmwareError(CUSTOM_ERR_TEST_ERROR, "Miata NB1 needs to adjust trigger configuration"); #endif initializeMazdaMiataVVtTestShape(this); break; case TT_MAZDA_MIATA_VVT_TEST: initializeMazdaMiataVVtTestShape(this); break; case TT_SUZUKI_G13B: initializeSuzukiG13B(this); break; case TT_FORD_TFI_PIP: configureFordPip(this); break; case TT_FORD_ST170: configureFordST170(this); break; case TT_VVT_MIATA_NB: initializeMazdaMiataVVtCamShape(this); break; case TT_RENIX_66_2_2_2: initializeRenix66_2_2(this); break; case TT_RENIX_44_2_2: initializeRenix44_2_2(this); break; case TT_MIATA_VVT: initializeMazdaMiataNb2Crank(this); break; case TT_DODGE_NEON_1995: configureNeon1995TriggerWaveform(this); break; case TT_DODGE_NEON_1995_ONLY_CRANK: configureNeon1995TriggerWaveformOnlyCrank(this); break; case TT_DODGE_STRATUS: configureDodgeStratusTriggerWaveform(this); break; case TT_DODGE_NEON_2003_CAM: configureNeon2003TriggerWaveformCam(this); break; case TT_DODGE_NEON_2003_CRANK: configureNeon2003TriggerWaveformCam(this); // configureNeon2003TriggerWaveformCrank(triggerShape); break; case TT_FORD_ASPIRE: configureFordAspireTriggerWaveform(this); break; case TT_VVT_NISSAN_VQ35: initializeNissanVQvvt(this); break; case TT_VVT_MITSUBISHI_3A92: initializeVvt3A92(this); break; case TT_VVT_TOYOTA_4_1: initializeToyota4_1(this); break; case TT_VVT_MITSUBISHI_6G75: case TT_NISSAN_QR25: initializeNissanQR25crank(this); break; case TT_NISSAN_VQ30: initializeNissanVQ30cam(this); break; case TT_NISSAN_VQ35: initializeNissanVQ35crank(this); break; case TT_NISSAN_MR18_CRANK: initializeNissanMR18crank(this); break; case TT_NISSAN_MR18_CAM_VVT: initializeNissanMRvvt(this); break; case TT_KAWA_KX450F: configureKawaKX450F(this); break; case TT_SKODA_FAVORIT: setSkodaFavorit(this); break; case TT_GM_60_2_2_2: configureGm60_2_2_2(this); break; case TT_GM_7X: configureGmTriggerWaveform(this); break; case TT_MAZDA_DOHC_1_4: configureMazdaProtegeLx(this); break; case TT_ONE_PLUS_ONE: configureOnePlusOne(this); break; case TT_3_1_CAM: configure3_1_cam(this); break; case TT_MERCEDES_2_SEGMENT: setMercedesTwoSegment(this); break; case TT_ONE: setToothedWheelConfiguration(this, 1, 0, ambiguousOperationMode); break; case TT_MAZDA_SOHC_4: configureMazdaProtegeSOHC(this); break; case TT_DAIHATSU: configureDaihatsu4(this); break; case TT_VVT_JZ: setToothedWheelConfiguration(this, 3, 0, ambiguousOperationMode); break; case TT_36_2_1_1: initialize36_2_1_1(this); break; case TT_36_2_1: initialize36_2_1(this); break; case TT_TOOTHED_WHEEL_32_2: setToothedWheelConfiguration(this, 32, 2, ambiguousOperationMode); // todo: add this second/third into 'setToothedWheelConfiguration' as long as we have enough tooth? setSecondTriggerSynchronizationGap(1); // this gap is not required to synch on perfect signal but is needed to handle to reject cranking transition noise setThirdTriggerSynchronizationGap(1); break; case TT_TOOTHED_WHEEL_60_2: setToothedWheelConfiguration(this, 60, 2, ambiguousOperationMode); setSecondTriggerSynchronizationGap(1); // this gap is not required to synch on perfect signal but is needed to handle to reject cranking transition noise break; case TT_TOOTHED_WHEEL_36_2: setToothedWheelConfiguration(this, 36, 2, ambiguousOperationMode); setSecondTriggerSynchronizationGap(1); // this gap is not required to synch on perfect signal but is needed to handle to reject cranking transition noise break; case TT_60_2_VW: setVwConfiguration(this); break; case TT_TOOTHED_WHEEL_36_1: setToothedWheelConfiguration(this, 36, 1, ambiguousOperationMode); setSecondTriggerSynchronizationGap(1); // this gap is not required to synch on perfect signal but is needed to handle to reject cranking transition noise break; case TT_VVT_BOSCH_QUICK_START: configureQuickStartSenderWheel(this); break; case TT_VVT_BARRA_3_PLUS_1: configureBarra3plus1cam(this); break; case TT_HONDA_K_4_1: configureHondaK_4_1(this); break; case TT_HONDA_K_12_1: configureHondaK_12_1(this); break; case TT_HONDA_4_24: configureHonda_1_4_24(this, false, true, T_NONE, T_PRIMARY, 0); shapeWithoutTdc = true; break; case TT_HONDA_1_24: configureHonda_1_4_24(this, true, false, T_PRIMARY, T_NONE, 10); break; case TT_HONDA_ACCORD_1_24_SHIFTED: configureHondaAccordShifted(this); break; case TT_HONDA_1_4_24: configureHondaAccordCDDip(this); break; case TT_1_16: configureOnePlus16(this); break; case TT_HONDA_CBR_600: configureHondaCbr600(this); break; case TT_CHRYSLER_NGC_36_2_2: configureChryslerNGC_36_2_2(this); break; case TT_MITSUBISHI: initializeMitsubishi4g18(this); break; case TT_DODGE_RAM: initDodgeRam(this); break; case TT_JEEP_4_CYL: initJeep_XJ_4cyl_2500(this); break; case TT_JEEP_18_2_2_2: initJeep18_2_2_2(this); break; case TT_SUBARU_7_6: initializeSubaru7_6(this); break; case TT_36_2_2_2: initialize36_2_2_2(this); break; case TT_2JZ_3_34: initialize2jzGE3_34_simulation_shape(this); break; case TT_2JZ_1_12: initialize2jzGE1_12(this); break; case TT_NISSAN_SR20VE: initializeNissanSR20VE_4(this); break; case TT_NISSAN_SR20VE_360: initializeNissanSR20VE_4_360(this); break; case TT_ROVER_K: initializeRoverK(this); break; case TT_FIAT_IAW_P8: configureFiatIAQ_P8(this); break; case TT_TRI_TACH: configureTriTach(this); break; case TT_GM_LS_24: initGmLS24(this); break; case TT_SUBARU_7_WITHOUT_6: initializeSubaruOnly7(this); break; case TT_SUBARU_SVX: initializeSubaru_SVX(this); break; case TT_SUBARU_SVX_CRANK_1: initializeSubaru_SVX(this); break; case TT_SUBARU_SVX_CAM_VVT: initializeSubaru_SVX(this); break; default: setShapeDefinitionError(true); warning(CUSTOM_ERR_NO_SHAPE, "initializeTriggerWaveform() not implemented: %d", triggerConfig->type); } /** * Feb 2019 suggestion: it would be an improvement to remove 'expectedEventCount' logic from 'addEvent' * and move it here, after all events were added. */ calculateExpectedEventCounts(useOnlyRisingEdgeForTrigger); version++; if (!shapeDefinitionError) { wave.checkSwitchTimes(getCycleDuration()); } if (bothFrontsRequired && useOnlyRisingEdgeForTrigger) { #if EFI_PROD_CODE || EFI_SIMULATOR firmwareError(CUSTOM_ERR_BOTH_FRONTS_REQUIRED, "trigger: both fronts required"); #else warning(CUSTOM_ERR_BOTH_FRONTS_REQUIRED, "trigger: both fronts required"); #endif } }