/** * @file efi_gpio.cpp * @brief EFI-related GPIO code * * @date Sep 26, 2014 * @author Andrey Belomutskiy, (c) 2012-2020 */ #include "global.h" #include "engine.h" #include "efi_gpio.h" #include "os_access.h" #include "drivers/gpio/gpio_ext.h" #include "perf_trace.h" #include "engine_controller.h" #if EFI_GPIO_HARDWARE #include "pin_repository.h" #include "io_pins.h" #endif /* EFI_GPIO_HARDWARE */ #if EFI_ELECTRONIC_THROTTLE_BODY #include "electronic_throttle.h" #endif /* EFI_ELECTRONIC_THROTTLE_BODY */ EXTERN_ENGINE; #if EFI_ENGINE_SNIFFER #include "engine_sniffer.h" extern WaveChart waveChart; #endif /* EFI_ENGINE_SNIFFER */ // todo: clean this mess, this should become 'static'/private EnginePins enginePins; pin_output_mode_e DEFAULT_OUTPUT = OM_DEFAULT; pin_output_mode_e INVERTED_OUTPUT = OM_INVERTED; static const char *sparkNames[] = { "Coil 1", "Coil 2", "Coil 3", "Coil 4", "Coil 5", "Coil 6", "Coil 7", "Coil 8", "Coil 9", "Coil 10", "Coil 11", "Coil 12"}; const char *vvtNames[] = { PROTOCOL_VVT1_NAME, PROTOCOL_VVT2_NAME, PROTOCOL_VVT3_NAME, PROTOCOL_VVT4_NAME}; // these short names are part of engine sniffer protocol static const char *sparkShortNames[] = { PROTOCOL_COIL1_SHORT_NAME, "c2", "c3", "c4", "c5", "c6", "c7", "c8", "c9", "cA", "cB", "cD"}; static const char *injectorNames[] = { "Injector 1", "Injector 2", "Injector 3", "Injector 4", "Injector 5", "Injector 6", "Injector 7", "Injector 8", "Injector 9", "Injector 10", "Injector 11", "Injector 12"}; static const char *injectorShortNames[] = { PROTOCOL_INJ1_SHORT_NAME, "i2", "i3", "i4", "i5", "i6", "i7", "i8", "j9", "iA", "iB", "iC"}; static const char *auxValveShortNames[] = { "a1", "a2"}; static RegisteredOutputPin * registeredOutputHead = nullptr; RegisteredNamedOutputPin::RegisteredNamedOutputPin(const char *name, short pinOffset, short pinModeOffset) : RegisteredOutputPin(name, pinOffset, pinModeOffset) { } RegisteredOutputPin::RegisteredOutputPin(const char *registrationName, short pinOffset, short pinModeOffset) { this->registrationName = registrationName; this->pinOffset = pinOffset; this->pinModeOffset = pinModeOffset; // adding into head of the list is so easy and since we do not care about order that's what we shall do this->next = registeredOutputHead; registeredOutputHead = this; } bool RegisteredOutputPin::isPinConfigurationChanged() { #if EFI_PROD_CODE brain_pin_e curPin = *(brain_pin_e *) ((void *) (&((char*)&activeConfiguration)[pinOffset])); brain_pin_e newPin = *(brain_pin_e *) ((void *) (&((char*) engineConfiguration)[pinOffset])); pin_output_mode_e curMode = *(pin_output_mode_e *) ((void *) (&((char*)&activeConfiguration)[pinModeOffset])); pin_output_mode_e newMode = *(pin_output_mode_e *) ((void *) (&((char*) engineConfiguration)[pinModeOffset])); return curPin != newPin || curMode != newMode; #else return true; #endif // EFI_PROD_CODE } void RegisteredOutputPin::init(DECLARE_ENGINE_PARAMETER_SIGNATURE) { brain_pin_e newPin = *(brain_pin_e *) ((void *) (&((char*) engineConfiguration)[pinOffset])); pin_output_mode_e *newMode = (pin_output_mode_e *) ((void *) (&((char*) engineConfiguration)[pinModeOffset])); if (isPinConfigurationChanged()) { this->initPin(registrationName, newPin, newMode); } } void RegisteredOutputPin::unregister() { if (isPinConfigurationChanged()) { OutputPin::deInit(); } } #define CONFIG_OFFSET(x) x##_offset // todo: pin and pinMode should be combined into a composite entity // todo: one of the impediments is code generator hints handling (we need custom hints and those are not handled nice for fields of structs?) #define CONFIG_PIN_OFFSETS(x) CONFIG_OFFSET(x##Pin), CONFIG_OFFSET(x##PinMode) EnginePins::EnginePins() : mainRelay("Main Relay", CONFIG_PIN_OFFSETS(mainRelay)), hpfpValve("HPFP Valve", CONFIG_PIN_OFFSETS(hpfpValve)), starterControl("Starter Relay", CONFIG_PIN_OFFSETS(starterControl)), starterRelayDisable("Starter Disable Relay", CONFIG_PIN_OFFSETS(starterRelayDisable)), fanRelay("Fan Relay", CONFIG_PIN_OFFSETS(fan)), fanRelay2("Fan Relay 2", CONFIG_PIN_OFFSETS(fan2)), acRelay("A/C Relay", CONFIG_PIN_OFFSETS(acRelay)), fuelPumpRelay("Fuel pump Relay", CONFIG_PIN_OFFSETS(fuelPump)), boostPin("Boost", CONFIG_PIN_OFFSETS(boostControl)), idleSolenoidPin("Idle Valve", idle_solenoidPin_offset, idle_solenoidPinMode_offset), secondIdleSolenoidPin("Idle Valve#2", CONFIG_OFFSET(secondSolenoidPin), idle_solenoidPinMode_offset), alternatorPin("Alternator control", CONFIG_PIN_OFFSETS(alternatorControl)), checkEnginePin("checkEnginePin", CONFIG_PIN_OFFSETS(malfunctionIndicator)), tachOut("tachOut", CONFIG_PIN_OFFSETS(tachOutput)), triggerDecoderErrorPin("led: trigger debug", CONFIG_PIN_OFFSETS(triggerError)) { tachOut.name = PROTOCOL_TACH_NAME; hpfpValve.name = PROTOCOL_HPFP_NAME; static_assert(efi::size(sparkNames) >= IGNITION_PIN_COUNT, "Too many ignition pins"); for (int i = 0; i < IGNITION_PIN_COUNT;i++) { enginePins.coils[i].name = sparkNames[i]; enginePins.coils[i].shortName = sparkShortNames[i]; } static_assert(efi::size(injectorNames) >= INJECTION_PIN_COUNT, "Too many injection pins"); for (int i = 0; i < INJECTION_PIN_COUNT;i++) { enginePins.injectors[i].injectorIndex = i; enginePins.injectors[i].name = injectorNames[i]; enginePins.injectors[i].shortName = injectorShortNames[i]; } static_assert(efi::size(auxValveShortNames) >= AUX_DIGITAL_VALVE_COUNT, "Too many aux valve pins"); for (int i = 0; i < AUX_DIGITAL_VALVE_COUNT;i++) { enginePins.auxValve[i].name = auxValveShortNames[i]; } } /** * Sets the value of the pin. On this layer the value is assigned as is, without any conversion. */ #if EFI_PROD_CODE #define unregisterOutputIfPinChanged(output, pin) { \ if (isConfigurationChanged(pin)) { \ (output).deInit(); \ } \ } #define unregisterOutputIfPinOrModeChanged(output, pin, mode) { \ if (isPinOrModeChanged(pin, mode)) { \ (output).deInit(); \ } \ } #endif /* EFI_PROD_CODE */ bool EnginePins::stopPins() { bool result = false; for (int i = 0; i < IGNITION_PIN_COUNT; i++) { result |= coils[i].stop(); } for (int i = 0; i < INJECTION_PIN_COUNT; i++) { result |= injectors[i].stop(); } for (int i = 0; i < AUX_DIGITAL_VALVE_COUNT; i++) { result |= auxValve[i].stop(); } return result; } void EnginePins::unregisterPins() { stopInjectionPins(); stopIgnitionPins(); stopAuxValves(); #if EFI_ELECTRONIC_THROTTLE_BODY unregisterEtbPins(); #endif /* EFI_ELECTRONIC_THROTTLE_BODY */ #if EFI_PROD_CODE // todo: add pinMode unregisterOutputIfPinChanged(sdCsPin, sdCardCsPin); unregisterOutputIfPinChanged(accelerometerCs, LIS302DLCsPin); for (int i = 0;i < FSIO_COMMAND_COUNT;i++) { unregisterOutputIfPinChanged(fsioOutputs[i], fsioOutputPins[i]); } #endif /* EFI_PROD_CODE */ RegisteredOutputPin * pin = registeredOutputHead; while (pin != nullptr) { pin->unregister(); pin = pin->next; } } void EnginePins::debug() { #if EFI_PROD_CODE RegisteredOutputPin * pin = registeredOutputHead; while (pin != nullptr) { efiPrintf("%s %d", pin->registrationName, pin->currentLogicValue); pin = pin->next; } #endif // EFI_PROD_CODE } void EnginePins::startPins(DECLARE_ENGINE_PARAMETER_SIGNATURE) { #if EFI_ENGINE_CONTROL startInjectionPins(); startIgnitionPins(); startAuxValves(); #endif /* EFI_ENGINE_CONTROL */ RegisteredOutputPin * pin = registeredOutputHead; while (pin != nullptr) { pin->init(PASS_ENGINE_PARAMETER_SIGNATURE); pin = pin->next; } } void EnginePins::reset() { for (int i = 0; i < INJECTION_PIN_COUNT;i++) { injectors[i].reset(); } for (int i = 0; i < IGNITION_PIN_COUNT;i++) { coils[i].reset(); } } void EnginePins::stopIgnitionPins(void) { #if EFI_PROD_CODE for (int i = 0; i < IGNITION_PIN_COUNT; i++) { unregisterOutputIfPinOrModeChanged(enginePins.coils[i], ignitionPins[i], ignitionPinMode); } #endif /* EFI_PROD_CODE */ } void EnginePins::stopInjectionPins(void) { #if EFI_PROD_CODE for (int i = 0; i < INJECTION_PIN_COUNT; i++) { unregisterOutputIfPinOrModeChanged(enginePins.injectors[i], injectionPins[i], injectionPinMode); } #endif /* EFI_PROD_CODE */ } void EnginePins::stopAuxValves(void) { #if EFI_PROD_CODE for (int i = 0; i < AUX_DIGITAL_VALVE_COUNT; i++) { NamedOutputPin *output = &enginePins.auxValve[i]; // todo: do we need auxValveMode and reuse code? if (isConfigurationChanged(auxValves[i])) { (output)->deInit(); } } #endif /* EFI_PROD_CODE */ } void EnginePins::startAuxValves(void) { #if EFI_PROD_CODE for (int i = 0; i < AUX_DIGITAL_VALVE_COUNT; i++) { NamedOutputPin *output = &enginePins.auxValve[i]; // todo: do we need auxValveMode and reuse code? if (isConfigurationChanged(auxValves[i])) { output->initPin(output->name, engineConfiguration->auxValves[i]); } } #endif /* EFI_PROD_CODE */ } void EnginePins::startIgnitionPins(void) { #if EFI_PROD_CODE for (size_t i = 0; i < engineConfiguration->specs.cylindersCount; i++) { NamedOutputPin *output = &enginePins.coils[i]; if (isPinOrModeChanged(ignitionPins[i], ignitionPinMode)) { output->initPin(output->name, CONFIG(ignitionPins)[i], &CONFIG(ignitionPinMode)); } } #endif /* EFI_PROD_CODE */ } void EnginePins::startInjectionPins(void) { #if EFI_PROD_CODE // todo: should we move this code closer to the injection logic? for (size_t i = 0; i < engineConfiguration->specs.cylindersCount; i++) { NamedOutputPin *output = &enginePins.injectors[i]; if (isPinOrModeChanged(injectionPins[i], injectionPinMode)) { output->initPin(output->name, CONFIG(injectionPins)[i], &CONFIG(injectionPinMode)); } } #endif /* EFI_PROD_CODE */ } NamedOutputPin::NamedOutputPin() : OutputPin() { } NamedOutputPin::NamedOutputPin(const char *name) : OutputPin() { this->name = name; } const char *NamedOutputPin::getName() const { return name; } const char *NamedOutputPin::getShortName() const { return shortName == nullptr ? name : shortName; } void NamedOutputPin::setHigh() { #if EFI_DEFAILED_LOGGING // signal->hi_time = hTimeNow(); #endif /* EFI_DEFAILED_LOGGING */ // turn the output level ACTIVE setValue(true); #if EFI_ENGINE_SNIFFER addEngineSnifferEvent(getShortName(), PROTOCOL_ES_UP); #endif /* EFI_ENGINE_SNIFFER */ } void NamedOutputPin::setLow() { // turn off the output setValue(false); #if EFI_ENGINE_SNIFFER addEngineSnifferEvent(getShortName(), PROTOCOL_ES_DOWN); #endif /* EFI_ENGINE_SNIFFER */ } InjectorOutputPin::InjectorOutputPin() : NamedOutputPin() { reset(); injectorIndex = -1; } bool NamedOutputPin::stop() { #if EFI_GPIO_HARDWARE if (isInitialized() && getLogicValue()) { setValue(false); efiPrintf("turning off %s", name); return true; } #endif /* EFI_GPIO_HARDWARE */ return false; } void InjectorOutputPin::reset() { // If this injector was open, close it and reset state if (overlappingCounter != 0) { overlappingCounter = 0; setValue(0); } // todo: this could be refactored by calling some super-reset method currentLogicValue = 0; } IgnitionOutputPin::IgnitionOutputPin() { reset(); } void IgnitionOutputPin::reset() { outOfOrder = false; signalFallSparkId = 0; } OutputPin::OutputPin() { modePtr = &DEFAULT_OUTPUT; } bool OutputPin::isInitialized() { #if EFI_GPIO_HARDWARE && EFI_PROD_CODE #if (BOARD_EXT_GPIOCHIPS > 0) if (ext) return true; #endif /* (BOARD_EXT_GPIOCHIPS > 0) */ return port != NULL; #else /* EFI_GPIO_HARDWARE */ return true; #endif /* EFI_GPIO_HARDWARE */ } void OutputPin::toggle() { setValue(!getLogicValue()); } bool OutputPin::getAndSet(int logicValue) { bool oldValue = getLogicValue(); setValue(logicValue); return oldValue; } // This function is only used on real hardware #if EFI_PROD_CODE void OutputPin::setOnchipValue(int electricalValue) { palWritePad(port, pin, electricalValue); } #endif // EFI_PROD_CODE void OutputPin::setValue(int logicValue) { #if ENABLE_PERF_TRACE // todo: https://github.com/rusefi/rusefi/issues/1638 // ScopePerf perf(PE::OutputPinSetValue); #endif // ENABLE_PERF_TRACE // Always store the current logical value of the pin (so it can be // used internally even if not connected to a real hardware pin) currentLogicValue = logicValue; // Nothing else to do if not configured if (!isBrainPinValid(brainPin)) { return; } efiAssertVoid(CUSTOM_ERR_6621, modePtr!=NULL, "pin mode not initialized"); pin_output_mode_e mode = *modePtr; efiAssertVoid(CUSTOM_ERR_6622, mode <= OM_OPENDRAIN_INVERTED, "invalid pin_output_mode_e"); int electricalValue = getElectricalValue(logicValue, mode); #if EFI_PROD_CODE #if (BOARD_EXT_GPIOCHIPS > 0) if (!this->ext) { setOnchipValue(electricalValue); } else { /* external pin */ gpiochips_writePad(this->brainPin, logicValue); /* TODO: check return value */ } #else setOnchipValue(electricalValue); #endif #else /* EFI_PROD_CODE */ setMockState(brainPin, electricalValue); #endif /* EFI_PROD_CODE */ } bool OutputPin::getLogicValue() const { // Compare against 1 since it could also be INITIAL_PIN_STATE (which means logical 0, but we haven't initialized the pin yet) return currentLogicValue == 1; } void OutputPin::setDefaultPinState(const pin_output_mode_e *outputMode) { pin_output_mode_e mode = *outputMode; /* may be*/UNUSED(mode); assertOMode(mode); this->modePtr = outputMode; setValue(false); // initial state } void initOutputPins(DECLARE_ENGINE_PARAMETER_SIGNATURE) { #if EFI_GPIO_HARDWARE #if HAL_USE_SPI enginePins.sdCsPin.initPin("SD CS", CONFIG(sdCardCsPin)); #endif /* HAL_USE_SPI */ #if EFI_SHAFT_POSITION_INPUT // todo: migrate remaining OutputPin to RegisteredOutputPin in order to get consistent dynamic pin init/deinit enginePins.debugTriggerSync.initPin("debug: sync", CONFIG(debugTriggerSync)); #endif // EFI_SHAFT_POSITION_INPUT enginePins.o2heater.initPin("O2 heater", CONFIG(o2heaterPin)); #endif /* EFI_GPIO_HARDWARE */ } void OutputPin::initPin(const char *msg, brain_pin_e brainPin) { initPin(msg, brainPin, &DEFAULT_OUTPUT); } void OutputPin::initPin(const char *msg, brain_pin_e brainPin, const pin_output_mode_e *outputMode) { if (!isBrainPinValid(brainPin)) { return; } // Enter a critical section so that other threads can't change the pin state out from underneath us chibios_rt::CriticalSectionLocker csl; if (hasFirmwareError()) { // Don't allow initializing more pins if we have a fatal error. // Pins should have just been reset, so we shouldn't try to init more. return; } // Check that this OutputPin isn't already assigned to another pin (reinit is allowed to change mode) // To avoid this error, call deInit() first if (isBrainPinValid(this->brainPin) && this->brainPin != brainPin) { firmwareError(CUSTOM_OBD_PIN_CONFLICT, "outputPin [%s] already assigned, cannot reassign without unregister first", msg); return; } if (*outputMode > OM_OPENDRAIN_INVERTED) { firmwareError(CUSTOM_INVALID_MODE_SETTING, "%s invalid pin_output_mode_e %d %s", msg, *outputMode, hwPortname(brainPin) ); return; } #if EFI_GPIO_HARDWARE && EFI_PROD_CODE iomode_t mode = (*outputMode == OM_DEFAULT || *outputMode == OM_INVERTED) ? PAL_MODE_OUTPUT_PUSHPULL : PAL_MODE_OUTPUT_OPENDRAIN; #if (BOARD_EXT_GPIOCHIPS > 0) this->ext = false; #endif if (brain_pin_is_onchip(brainPin)) { ioportid_t port = getHwPort(msg, brainPin); int pin = getHwPin(msg, brainPin); // Validate port if (port == GPIO_NULL) { firmwareError(OBD_PCM_Processor_Fault, "OutputPin::initPin got invalid port for pin idx %d", static_cast(brainPin)); return; } this->port = port; this->pin = pin; } #if (BOARD_EXT_GPIOCHIPS > 0) else { this->ext = true; } #endif #endif // briefly leave the include guard because we need to set default state in tests this->brainPin = brainPin; // The order of the next two calls may look strange, which is a good observation. // We call them in this order so that the pin is set to a known state BEFORE // it's enabled. Enabling the pin then setting it could result in a (brief) // mystery state being driven on the pin (potentially dangerous). setDefaultPinState(outputMode); #if EFI_GPIO_HARDWARE && EFI_PROD_CODE efiSetPadMode(msg, brainPin, mode); if (brain_pin_is_onchip(brainPin)) { int actualValue = palReadPad(port, pin); // we had enough drama with pin configuration in board.h and else that we shall self-check // todo: handle OM_OPENDRAIN and OM_OPENDRAIN_INVERTED as well if (*outputMode == OM_DEFAULT || *outputMode == OM_INVERTED) { const int logicalValue = (*outputMode == OM_INVERTED) ? !actualValue : actualValue; // if the pin was set to logical 1, then set an error and disable the pin so that things don't catch fire if (logicalValue) { firmwareError(OBD_PCM_Processor_Fault, "%s: startup pin state %s actual value=%d logical value=%d mode=%s", msg, hwPortname(brainPin), actualValue, logicalValue, getPin_output_mode_e(*outputMode)); OutputPin::deInit(); } } } #endif /* EFI_GPIO_HARDWARE */ } void OutputPin::deInit() { // Unregister under lock - we don't want other threads mucking with the pin while we're trying to turn it off chibios_rt::CriticalSectionLocker csl; // nothing to do if not registered in the first place if (!isBrainPinValid(brainPin)) { return; } #if (BOARD_EXT_GPIOCHIPS > 0) ext = false; #endif // (BOARD_EXT_GPIOCHIPS > 0) efiPrintf("unregistering %s", hwPortname(brainPin)); #if EFI_GPIO_HARDWARE && EFI_PROD_CODE efiSetPadUnused(brainPin); #endif /* EFI_GPIO_HARDWARE */ // Clear the pin so that it won't get set any more brainPin = GPIO_UNASSIGNED; } #if EFI_GPIO_HARDWARE // questionable trick: we avoid using 'getHwPort' and 'getHwPin' in case of errors in order to increase the changes of turning the LED // by reducing stack requirement ioportid_t criticalErrorLedPort; ioportmask_t criticalErrorLedPin; uint8_t criticalErrorLedState; #ifndef LED_ERROR_BRAIN_PIN_MODE #define LED_ERROR_BRAIN_PIN_MODE DEFAULT_OUTPUT #endif /* LED_ERROR_BRAIN_PIN_MODE */ void initPrimaryPins() { #if EFI_PROD_CODE enginePins.errorLedPin.initPin("led: CRITICAL status", LED_CRITICAL_ERROR_BRAIN_PIN, &(LED_ERROR_BRAIN_PIN_MODE)); criticalErrorLedPort = getHwPort("CRITICAL", LED_CRITICAL_ERROR_BRAIN_PIN); criticalErrorLedPin = getHwPin("CRITICAL", LED_CRITICAL_ERROR_BRAIN_PIN); criticalErrorLedState = (LED_ERROR_BRAIN_PIN_MODE == INVERTED_OUTPUT) ? 0 : 1; addConsoleAction("gpio_pins", EnginePins::debug); #endif /* EFI_PROD_CODE */ } /** * This method is part of fatal error handling. * The whole method is pretty naive, but that's at least something. */ void turnAllPinsOff(void) { for (int i = 0; i < INJECTION_PIN_COUNT; i++) { enginePins.injectors[i].setValue(false); } for (int i = 0; i < IGNITION_PIN_COUNT; i++) { enginePins.coils[i].setValue(false); } } #endif /* EFI_GPIO_HARDWARE */