/**
* @file trigger_decoder.cpp
*
* @date Dec 24, 2013
* @author Andrey Belomutskiy, (c) 2012-2020
*
*
*
* enable trigger_details
* DBG_TRIGGER_COUNTERS = 5
* set debug_mode 5
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see .
*/
#include "pch.h"
#include "os_access.h"
#include "obd_error_codes.h"
#include "trigger_decoder.h"
#include "cyclic_buffer.h"
#include "trigger_central.h"
#include "trigger_simulator.h"
#if EFI_SENSOR_CHART
#include "sensor_chart.h"
#endif
TriggerDecoderBase::TriggerDecoderBase(const char* name)
: name(name)
{
resetTriggerState();
}
bool TriggerDecoderBase::getShaftSynchronized() {
return shaft_is_synchronized;
}
void TriggerDecoderBase::setShaftSynchronized(bool value) {
if (value) {
if (!shaft_is_synchronized) {
// just got synchronized
mostRecentSyncTime = getTimeNowNt();
}
} else {
// sync loss
mostRecentSyncTime = 0;
}
shaft_is_synchronized = value;
}
void TriggerDecoderBase::resetTriggerState() {
setShaftSynchronized(false);
toothed_previous_time = 0;
memset(toothDurations, 0, sizeof(toothDurations));
totalRevolutionCounter = 0;
totalTriggerErrorCounter = 0;
orderingErrorCounter = 0;
m_timeSinceDecodeError.init();
prevSignal = SHAFT_PRIMARY_FALLING;
startOfCycleNt = 0;
resetCurrentCycleState();
totalEventCountBase = 0;
isFirstEvent = true;
}
void TriggerDecoderBase::setTriggerErrorState() {
m_timeSinceDecodeError.reset();
}
void TriggerDecoderBase::resetCurrentCycleState() {
memset(currentCycle.eventCount, 0, sizeof(currentCycle.eventCount));
currentCycle.current_index = 0;
}
#if EFI_SHAFT_POSITION_INPUT
PrimaryTriggerDecoder::PrimaryTriggerDecoder(const char* name)
: TriggerDecoderBase(name)
//https://en.cppreference.com/w/cpp/language/zero_initialization
, timeOfLastEvent()
, instantRpmValue()
{
}
#if ! EFI_PROD_CODE
bool printTriggerDebug = false;
bool printTriggerTrace = false;
float actualSynchGap;
#endif /* ! EFI_PROD_CODE */
void TriggerWaveform::initializeSyncPoint(TriggerDecoderBase& state,
const TriggerConfiguration& triggerConfiguration) {
triggerShapeSynchPointIndex = state.findTriggerZeroEventIndex(*this, triggerConfiguration);
}
/**
* Calculate 'shape.triggerShapeSynchPointIndex' value using 'TriggerDecoderBase *state'
*/
void calculateTriggerSynchPoint(
TriggerWaveform& shape,
TriggerDecoderBase& state) {
state.resetTriggerState();
#if EFI_PROD_CODE
efiAssertVoid(CUSTOM_TRIGGER_STACK, getCurrentRemainingStack() > EXPECTED_REMAINING_STACK, "calc s");
#endif
engine->triggerErrorDetection.clear();
shape.initializeSyncPoint(state, engine->primaryTriggerConfiguration);
int length = shape.getLength();
engine->engineCycleEventCount = length;
efiAssertVoid(CUSTOM_SHAPE_LEN_ZERO, length > 0, "shapeLength=0");
if (shape.getSize() >= PWM_PHASE_MAX_COUNT) {
// todo: by the time we are here we had already modified a lot of RAM out of bounds!
firmwareError(CUSTOM_ERR_TRIGGER_WAVEFORM_TOO_LONG, "Trigger length above maximum: %d", length);
shape.setShapeDefinitionError(true);
return;
}
if (shape.getSize() == 0) {
firmwareError(CUSTOM_ERR_TRIGGER_ZERO, "triggerShape size is zero");
}
}
void TriggerFormDetails::prepareEventAngles(TriggerWaveform *shape) {
int triggerShapeSynchPointIndex = shape->triggerShapeSynchPointIndex;
if (triggerShapeSynchPointIndex == EFI_ERROR_CODE) {
return;
}
angle_t firstAngle = shape->getAngle(triggerShapeSynchPointIndex);
assertAngleRange(firstAngle, "firstAngle", CUSTOM_TRIGGER_SYNC_ANGLE);
int riseOnlyIndex = 0;
size_t length = shape->getLength();
memset(eventAngles, 0, sizeof(eventAngles));
// this may be getSize();
assertAngleRange(shape->triggerShapeSynchPointIndex, "triggerShapeSynchPointIndex", CUSTOM_TRIGGER_SYNC_ANGLE2);
efiAssertVoid(CUSTOM_TRIGGER_CYCLE, engine->engineCycleEventCount != 0, "zero engineCycleEventCount");
for (size_t eventIndex = 0; eventIndex < length; eventIndex++) {
if (eventIndex == 0) {
// explicit check for zero to avoid issues where logical zero is not exactly zero due to float nature
eventAngles[0] = 0;
// this value would be used in case of front-only
eventAngles[1] = 0;
} else {
// Rotate the trigger around so that the sync point is at position 0
auto wrappedIndex = (shape->triggerShapeSynchPointIndex + eventIndex) % length;
// Compute this tooth's position within the trigger definition
// (wrap, as the trigger def may be smaller than total trigger length)
auto triggerDefinitionIndex = wrappedIndex % triggerShapeLength;
// Compute the relative angle of this tooth to the sync point's tooth
float angle = shape->getAngle(wrappedIndex) - firstAngle;
efiAssertVoid(CUSTOM_TRIGGER_CYCLE, !cisnan(angle), "trgSyncNaN");
// Wrap the angle back in to [0, 720)
fixAngle(angle, "trgSync", CUSTOM_TRIGGER_SYNC_ANGLE_RANGE);
if (engineConfiguration->useOnlyRisingEdgeForTrigger) {
efiAssertVoid(OBD_PCM_Processor_Fault, triggerDefinitionIndex < triggerShapeLength, "trigger shape fail");
assertIsInBounds(triggerDefinitionIndex, shape->isRiseEvent, "isRise");
// In case this is a rising event, replace the following fall event with the rising as well
if (shape->isRiseEvent[triggerDefinitionIndex]) {
riseOnlyIndex += 2;
eventAngles[riseOnlyIndex] = angle;
eventAngles[riseOnlyIndex + 1] = angle;
}
} else {
eventAngles[eventIndex] = angle;
}
}
}
}
int64_t TriggerDecoderBase::getTotalEventCounter() const {
return totalEventCountBase + currentCycle.current_index;
}
int TriggerDecoderBase::getTotalRevolutionCounter() const {
return totalRevolutionCounter;
}
void PrimaryTriggerDecoder::resetTriggerState() {
TriggerDecoderBase::resetTriggerState();
memset(timeOfLastEvent, 0, sizeof(timeOfLastEvent));
memset(spinningEvents, 0, sizeof(spinningEvents));
spinningEventIndex = 0;
prevInstantRpmValue = 0;
m_instantRpm = 0;
resetHasFullSync();
}
void PrimaryTriggerDecoder::movePreSynchTimestamps() {
// here we take timestamps of events which happened prior to synchronization and place them
// at appropriate locations
auto triggerSize = getTriggerSize();
int eventsToCopy = minI(spinningEventIndex, triggerSize);
size_t firstSrc;
size_t firstDst;
if (eventsToCopy >= triggerSize) {
// Only copy one trigger length worth of events, filling the whole buffer
firstSrc = spinningEventIndex - triggerSize;
firstDst = 0;
} else {
// There is less than one full cycle, copy to the end of the buffer
firstSrc = 0;
firstDst = triggerSize - spinningEventIndex;
}
memcpy(timeOfLastEvent + firstDst, spinningEvents + firstSrc, eventsToCopy * sizeof(timeOfLastEvent[0]));
}
float PrimaryTriggerDecoder::calculateInstantRpm(
TriggerWaveform const & triggerShape, TriggerFormDetails *triggerFormDetails,
uint32_t current_index, efitick_t nowNt) {
assertIsInBoundsWithResult(current_index, timeOfLastEvent, "calc timeOfLastEvent", 0);
// Record the time of this event so we can calculate RPM from it later
timeOfLastEvent[current_index] = nowNt;
// Determine where we currently are in the revolution
angle_t currentAngle = triggerFormDetails->eventAngles[current_index];
if (cisnan(currentAngle)) {
return NOISY_RPM;
}
// Hunt for a tooth ~90 degrees ago to compare to the current time
angle_t previousAngle = currentAngle - 90;
fixAngle(previousAngle, "prevAngle", CUSTOM_ERR_TRIGGER_ANGLE_RANGE);
int prevIndex = triggerShape.findAngleIndex(triggerFormDetails, previousAngle);
// now let's get precise angle for that event
angle_t prevIndexAngle = triggerFormDetails->eventAngles[prevIndex];
efitick_t time90ago = timeOfLastEvent[prevIndex];
if (time90ago == 0) {
return prevInstantRpmValue;
}
// we are OK to subtract 32 bit value from more precise 64 bit since the result would 32 bit which is
// OK for small time differences like this one
uint32_t time = nowNt - time90ago;
angle_t angleDiff = currentAngle - prevIndexAngle;
// Wrap the angle in to the correct range (ie, could be -630 when we want +90)
fixAngle(angleDiff, "angleDiff", CUSTOM_ERR_6561);
// just for safety
if (time == 0)
return prevInstantRpmValue;
float instantRpm = (60000000.0 / 360 * US_TO_NT_MULTIPLIER) * angleDiff / time;
assertIsInBoundsWithResult(current_index, instantRpmValue, "instantRpmValue", 0);
instantRpmValue[current_index] = instantRpm;
// This fixes early RPM instability based on incomplete data
if (instantRpm < RPM_LOW_THRESHOLD) {
return prevInstantRpmValue;
}
prevInstantRpmValue = instantRpm;
m_instantRpmRatio = instantRpm / instantRpmValue[prevIndex];
return instantRpm;
}
void PrimaryTriggerDecoder::setLastEventTimeForInstantRpm(efitick_t nowNt) {
if (getShaftSynchronized()) {
return;
}
// here we remember tooth timestamps which happen prior to synchronization
if (spinningEventIndex >= PRE_SYNC_EVENTS) {
// too many events while trying to find synchronization point
// todo: better implementation would be to shift here or use cyclic buffer so that we keep last
// 'PRE_SYNC_EVENTS' events
return;
}
spinningEvents[spinningEventIndex++] = nowNt;
}
void PrimaryTriggerDecoder::updateInstantRpm(
TriggerWaveform const & triggerShape, TriggerFormDetails *triggerFormDetails,
uint32_t index, efitick_t nowNt) {
m_instantRpm = calculateInstantRpm(triggerShape, triggerFormDetails, index,
nowNt);
#if EFI_SENSOR_CHART
if (engine->sensorChartMode == SC_RPM_ACCEL || engine->sensorChartMode == SC_DETAILED_RPM) {
angle_t currentAngle = triggerFormDetails->eventAngles[currentCycle.current_index];
if (engineConfiguration->sensorChartMode == SC_DETAILED_RPM) {
scAddData(currentAngle, m_instantRpm);
} else {
scAddData(currentAngle, m_instantRpmRatio);
}
}
#endif /* EFI_SENSOR_CHART */
}
bool TriggerDecoderBase::isValidIndex(const TriggerWaveform& triggerShape) const {
return currentCycle.current_index < triggerShape.getSize();
}
static trigger_wheel_e eventIndex[4] = { T_PRIMARY, T_PRIMARY, T_SECONDARY, T_SECONDARY };
static trigger_value_e eventType[4] = { TV_FALL, TV_RISE, TV_FALL, TV_RISE };
#if EFI_UNIT_TEST
#define PRINT_INC_INDEX if (printTriggerTrace) {\
printf("nextTriggerEvent index=%d\r\n", currentCycle.current_index); \
}
#else
#define PRINT_INC_INDEX {}
#endif /* EFI_UNIT_TEST */
#define nextTriggerEvent() \
{ \
if (useOnlyRisingEdgeForTrigger) {currentCycle.current_index++;} \
currentCycle.current_index++; \
PRINT_INC_INDEX; \
}
#define considerEventForGap() (!triggerShape.useOnlyPrimaryForSync || isPrimary)
#define needToSkipFall(type) ((!triggerShape.gapBothDirections) && (( triggerShape.useRiseEdge) && (type != TV_RISE)))
#define needToSkipRise(type) ((!triggerShape.gapBothDirections) && ((!triggerShape.useRiseEdge) && (type != TV_FALL)))
int TriggerDecoderBase::getCurrentIndex() const {
return currentCycle.current_index;
}
void TriggerCentral::validateCamVvtCounters() {
// micro-optimized 'totalRevolutionCounter % 256'
int camVvtValidationIndex = triggerState.getTotalRevolutionCounter() & 0xFF;
if (camVvtValidationIndex == 0) {
vvtCamCounter = 0;
} else if (camVvtValidationIndex == 0xFE && vvtCamCounter < 60) {
// magic logic: we expect at least 60 CAM/VVT events for each 256 trigger cycles, otherwise throw a code
warning(OBD_Camshaft_Position_Sensor_Circuit_Range_Performance, "No Camshaft Position Sensor signals");
}
}
angle_t PrimaryTriggerDecoder::syncEnginePhase(int divider, int remainder, angle_t engineCycle) {
efiAssert(OBD_PCM_Processor_Fault, remainder < divider, "syncEnginePhase", false);
angle_t totalShift = 0;
while (getTotalRevolutionCounter() % divider != remainder) {
/**
* we are here if we've detected the cam sensor within the wrong crank phase
* let's increase the trigger event counter, that would adjust the state of
* virtual crank-based trigger
*/
incrementTotalEventCounter();
totalShift += engineCycle / divider;
}
// Allow injection/ignition to happen, we've now fully sync'd the crank based on new cam information
m_hasSynchronizedPhase = true;
if (totalShift > 0) {
vvtSyncCounter++;
}
return totalShift;
}
void TriggerDecoderBase::incrementTotalEventCounter() {
totalRevolutionCounter++;
}
void PrimaryTriggerDecoder::onTriggerError() {
// On trigger error, we've lost full sync
resetHasFullSync();
}
bool TriggerDecoderBase::validateEventCounters(const TriggerWaveform& triggerShape) const {
// We can check if things are fine by comparing the number of events in a cycle with the expected number of event.
bool isDecodingError = false;
for (int i = 0;i < PWM_PHASE_MAX_WAVE_PER_PWM;i++) {
isDecodingError |= (currentCycle.eventCount[i] != triggerShape.getExpectedEventCount(i));
}
#if EFI_UNIT_TEST
printf("validateEventCounters: isDecodingError=%d\n", isDecodingError);
if (isDecodingError) {
for (int i = 0;i < PWM_PHASE_MAX_WAVE_PER_PWM;i++) {
printf("count: cur=%d exp=%d\n", currentCycle.eventCount[i], triggerShape.getExpectedEventCount(i));
}
}
#endif /* EFI_UNIT_TEST */
return isDecodingError;
}
void TriggerDecoderBase::onShaftSynchronization(
bool wasSynchronized,
const efitick_t nowNt,
const TriggerWaveform& triggerShape) {
startOfCycleNt = nowNt;
resetCurrentCycleState();
if (wasSynchronized) {
incrementTotalEventCounter();
} else {
// We have just synchronized, this is the zeroth revolution
totalRevolutionCounter = 0;
}
totalEventCountBase += triggerShape.getSize();
#if EFI_UNIT_TEST
if (printTriggerDebug) {
printf("onShaftSynchronization index=%d %d\r\n",
currentCycle.current_index,
totalRevolutionCounter);
}
#endif /* EFI_UNIT_TEST */
}
/**
* @brief Trigger decoding happens here
* VR falls are filtered out and some VR noise detection happens prior to invoking this method, for
* Hall this method is invoked every time we have a fall or rise on one of the trigger sensors.
* This method changes the state of trigger_state_s data structure according to the trigger event
* @param signal type of event which just happened
* @param nowNt current time
*/
expected TriggerDecoderBase::decodeTriggerEvent(
const char *msg,
const TriggerWaveform& triggerShape,
TriggerStateListener* triggerStateListener,
const TriggerConfiguration& triggerConfiguration,
const trigger_event_e signal,
const efitick_t nowNt) {
ScopePerf perf(PE::DecodeTriggerEvent);
if (previousEventTimer.getElapsedSecondsAndReset(nowNt) > 1) {
/**
* We are here if there is a time gap between now and previous shaft event - that means the engine is not running.
* That means we have lost synchronization since the engine is not running :)
*/
setShaftSynchronized(false);
if (triggerStateListener) {
triggerStateListener->OnTriggerSynchronizationLost();
}
}
bool useOnlyRisingEdgeForTrigger = triggerConfiguration.UseOnlyRisingEdgeForTrigger;
efiAssert(CUSTOM_TRIGGER_UNEXPECTED, signal <= SHAFT_SECONDARY_RISING, "unexpected signal", unexpected);
trigger_wheel_e triggerWheel = eventIndex[signal];
trigger_value_e type = eventType[signal];
// Check that we didn't get the same edge twice in a row - that should be impossible
if (!useOnlyRisingEdgeForTrigger && prevSignal == signal) {
orderingErrorCounter++;
}
prevSignal = signal;
currentCycle.eventCount[triggerWheel]++;
if (toothed_previous_time > nowNt) {
firmwareError(CUSTOM_OBD_93, "[%s] toothed_previous_time after nowNt prev=%d now=%d", msg, toothed_previous_time, nowNt);
}
efitick_t currentDurationLong = isFirstEvent ? 0 : nowNt - toothed_previous_time;
/**
* For performance reasons, we want to work with 32 bit values. If there has been more then
* 10 seconds since previous trigger event we do not really care.
*/
toothDurations[0] =
currentDurationLong > 10 * NT_PER_SECOND ? 10 * NT_PER_SECOND : currentDurationLong;
bool isPrimary = triggerWheel == T_PRIMARY;
if (needToSkipFall(type) || needToSkipRise(type) || (!considerEventForGap())) {
#if EFI_UNIT_TEST
if (printTriggerTrace) {
printf("%s isLessImportant %s now=%d index=%d\r\n",
getTrigger_type_e(triggerConfiguration.TriggerType.type),
getTrigger_event_e(signal),
(int)nowNt,
currentCycle.current_index);
}
#endif /* EFI_UNIT_TEST */
/**
* For less important events we simply increment the index.
*/
nextTriggerEvent()
;
} else {
#if !EFI_PROD_CODE
if (printTriggerTrace) {
printf("%s event %s %d\r\n",
getTrigger_type_e(triggerConfiguration.TriggerType.type),
getTrigger_event_e(signal),
nowNt);
printf("decodeTriggerEvent ratio %.2f: current=%d previous=%d\r\n", 1.0 * toothDurations[0] / toothDurations[1],
toothDurations[0], toothDurations[1]);
}
#endif
isFirstEvent = false;
bool isSynchronizationPoint;
bool wasSynchronized = getShaftSynchronized();
if (triggerShape.isSynchronizationNeeded) {
triggerSyncGapRatio = (float)toothDurations[0] / toothDurations[1];
isSynchronizationPoint = isSyncPoint(triggerShape, triggerConfiguration.TriggerType.type);
if (isSynchronizationPoint) {
enginePins.debugTriggerSync.toggle();
}
/**
* todo: technically we can afford detailed logging even with 60/2 as long as low RPM
* todo: figure out exact threshold as a function of RPM and tooth count?
* Open question what is 'triggerShape.getSize()' for 60/2 is it 58 or 58*2 or 58*4?
*/
bool silentTriggerError = triggerShape.getSize() > 40 && engineConfiguration->silentTriggerError;
#if EFI_UNIT_TEST
actualSynchGap = triggerSyncGapRatio;
#endif /* EFI_UNIT_TEST */
#if EFI_PROD_CODE || EFI_SIMULATOR
if (triggerConfiguration.VerboseTriggerSynchDetails || (someSortOfTriggerError() && !silentTriggerError)) {
int rpm = Sensor::getOrZero(SensorType::Rpm);
floatms_t engineCycleDuration = getEngineCycleDuration(rpm);
for (int i = 0;i= endOfCycleIndex);
#if EFI_UNIT_TEST
if (printTriggerTrace) {
printf("decodeTriggerEvent sync=%d isSynchronizationPoint=%d index=%d size=%d\r\n",
getShaftSynchronized(),
isSynchronizationPoint,
currentCycle.current_index,
triggerShape.getSize());
}
#endif /* EFI_UNIT_TEST */
}
#if EFI_UNIT_TEST
if (printTriggerTrace) {
printf("decodeTriggerEvent %s isSynchronizationPoint=%d index=%d %s\r\n",
getTrigger_type_e(triggerConfiguration.TriggerType.type),
isSynchronizationPoint, currentCycle.current_index,
getTrigger_event_e(signal));
}
#endif /* EFI_UNIT_TEST */
if (isSynchronizationPoint) {
bool isDecodingError = validateEventCounters(triggerShape);
if (triggerStateListener) {
triggerStateListener->OnTriggerSyncronization(wasSynchronized, isDecodingError);
}
// If we got a sync point, but the wrong number of events since the last sync point
// One of two things has happened:
// - We missed a tooth, and this is the real sync point
// - Due to some mistake in timing, we found what looks like a sync point but actually isn't
// In either case, we should wait for another sync point before doing anything to try and run an engine,
// so we clear the synchronized flag.
if (wasSynchronized && isDecodingError) {
setTriggerErrorState();
totalTriggerErrorCounter++;
// Something wrong, no longer synchronized
setShaftSynchronized(false);
// This is a decoding error
onTriggerError();
} else {
// If this was the first sync point OR no decode error, we're synchronized!
setShaftSynchronized(true);
}
// this call would update duty cycle values
nextTriggerEvent()
;
onShaftSynchronization(wasSynchronized, nowNt, triggerShape);
} else { /* if (!isSynchronizationPoint) */
nextTriggerEvent()
;
}
for (int i = triggerShape.gapTrackingLength; i > 0; i--) {
toothDurations[i] = toothDurations[i - 1];
}
toothed_previous_time = nowNt;
}
if (getShaftSynchronized() && !isValidIndex(triggerShape)) {
// We've had too many events since the last sync point, we should have seen a sync point by now.
// This is a trigger error.
// let's not show a warning if we are just starting to spin
if (Sensor::getOrZero(SensorType::Rpm) != 0) {
warning(CUSTOM_SYNC_ERROR, "sync error for %s: index #%d above total size %d", name, currentCycle.current_index, triggerShape.getSize());
setTriggerErrorState();
// TODO: should we increment totalTriggerErrorCounter here too?
}
onTriggerError();
setShaftSynchronized(false);
return unexpected;
}
// Needed for early instant-RPM detection
if (triggerStateListener) {
triggerStateListener->OnTriggerStateProperState(nowNt);
}
triggerStateIndex = currentCycle.current_index;
if (getShaftSynchronized()) {
return TriggerDecodeResult{ currentCycle.current_index };
} else {
return unexpected;
}
}
bool TriggerDecoderBase::isSyncPoint(const TriggerWaveform& triggerShape, trigger_type_e triggerType) const {
// Miata NB needs a special decoder.
// The problem is that the crank wheel only has 4 teeth, also symmetrical, so the pattern
// is long-short-long-short for one crank rotation.
// A quick acceleration can result in two successive "short gaps", so we see
// long-short-short-short-long instead of the correct long-short-long-short-long
// This logic expands the lower bound on a "long" tooth, then compares the last
// tooth to the current one.
// Instead of detecting short/long, this logic first checks for "maybe short" and "maybe long",
// then simply tests longer vs. shorter instead of absolute value.
if (triggerType == TT_MIATA_VVT) {
auto secondGap = (float)toothDurations[1] / toothDurations[2];
bool currentGapOk = isInRange(triggerShape.syncronizationRatioFrom[0], (float)triggerSyncGapRatio, triggerShape.syncronizationRatioTo[0]);
bool secondGapOk = isInRange(triggerShape.syncronizationRatioFrom[1], secondGap, triggerShape.syncronizationRatioTo[1]);
// One or both teeth was impossible range, this is not the sync point
if (!currentGapOk || !secondGapOk) {
return false;
}
// If both teeth are in the range of possibility, return whether this gap is
// shorter than the last or not. If it is, this is the sync point.
return triggerSyncGapRatio < secondGap;
}
for (int i = 0; i < triggerShape.gapTrackingLength; i++) {
auto from = triggerShape.syncronizationRatioFrom[i];
auto to = triggerShape.syncronizationRatioTo[i];
if (cisnan(from)) {
// don't check this gap, skip it
continue;
}
// This is transformed to avoid a division and use a cheaper multiply instead
// toothDurations[i] / toothDurations[i+1] > from
// is an equivalent comparison to
// toothDurations[i] > toothDurations[i+1] * from
bool isGapCondition =
(toothDurations[i] > toothDurations[i + 1] * from
&& toothDurations[i] < toothDurations[i + 1] * to);
if (!isGapCondition) {
return false;
}
}
return true;
}
/**
* Trigger shape is defined in a way which is convenient for trigger shape definition
* On the other hand, trigger decoder indexing begins from synchronization event.
*
* This function finds the index of synchronization event within TriggerWaveform
*/
uint32_t TriggerDecoderBase::findTriggerZeroEventIndex(
TriggerWaveform& shape,
const TriggerConfiguration& triggerConfiguration) {
#if EFI_PROD_CODE
efiAssert(CUSTOM_ERR_ASSERT, getCurrentRemainingStack() > 128, "findPos", -1);
#endif
resetTriggerState();
if (shape.shapeDefinitionError) {
return 0;
}
TriggerStimulatorHelper helper;
uint32_t syncIndex = helper.findTriggerSyncPoint(shape,
triggerConfiguration,
*this);
if (syncIndex == EFI_ERROR_CODE) {
return syncIndex;
}
// Assert that we found the sync point on the very first revolution
efiAssert(CUSTOM_ERR_ASSERT, getTotalRevolutionCounter() == 0, "findZero_revCounter", EFI_ERROR_CODE);
#if EFI_UNIT_TEST
if (printTriggerDebug) {
printf("findTriggerZeroEventIndex: syncIndex located %d!\r\n", syncIndex);
}
#endif /* EFI_UNIT_TEST */
helper.assertSyncPosition(triggerConfiguration,
syncIndex, *this, shape);
return syncIndex % shape.getSize();
}
#endif /* EFI_SHAFT_POSITION_INPUT */