/** * @file trigger_decoder.cpp * * @date Dec 24, 2013 * @author Andrey Belomutskiy, (c) 2012-2020 * * * * enable trigger_details * DBG_TRIGGER_COUNTERS = 5 * set debug_mode 5 * * This file is part of rusEfi - see http://rusefi.com * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . */ #include "pch.h" #include "os_access.h" #include "obd_error_codes.h" #include "trigger_decoder.h" #include "cyclic_buffer.h" #include "trigger_central.h" #include "trigger_simulator.h" #if EFI_SENSOR_CHART #include "sensor_chart.h" #endif TriggerDecoderBase::TriggerDecoderBase(const char* name) : name(name) { resetTriggerState(); } bool TriggerDecoderBase::getShaftSynchronized() { return shaft_is_synchronized; } void TriggerDecoderBase::setShaftSynchronized(bool value) { if (value) { if (!shaft_is_synchronized) { // just got synchronized mostRecentSyncTime = getTimeNowNt(); } } else { // sync loss mostRecentSyncTime = 0; } shaft_is_synchronized = value; } void TriggerDecoderBase::resetTriggerState() { setShaftSynchronized(false); toothed_previous_time = 0; memset(toothDurations, 0, sizeof(toothDurations)); totalRevolutionCounter = 0; totalTriggerErrorCounter = 0; orderingErrorCounter = 0; m_timeSinceDecodeError.init(); prevSignal = SHAFT_PRIMARY_FALLING; startOfCycleNt = 0; resetCurrentCycleState(); totalEventCountBase = 0; isFirstEvent = true; } void TriggerDecoderBase::setTriggerErrorState() { m_timeSinceDecodeError.reset(); } void TriggerDecoderBase::resetCurrentCycleState() { memset(currentCycle.eventCount, 0, sizeof(currentCycle.eventCount)); currentCycle.current_index = 0; } #if EFI_SHAFT_POSITION_INPUT PrimaryTriggerDecoder::PrimaryTriggerDecoder(const char* name) : TriggerDecoderBase(name) //https://en.cppreference.com/w/cpp/language/zero_initialization , timeOfLastEvent() , instantRpmValue() { } #if ! EFI_PROD_CODE bool printTriggerDebug = false; bool printTriggerTrace = false; float actualSynchGap; #endif /* ! EFI_PROD_CODE */ void TriggerWaveform::initializeSyncPoint(TriggerDecoderBase& state, const TriggerConfiguration& triggerConfiguration) { triggerShapeSynchPointIndex = state.findTriggerZeroEventIndex(*this, triggerConfiguration); } /** * Calculate 'shape.triggerShapeSynchPointIndex' value using 'TriggerDecoderBase *state' */ void calculateTriggerSynchPoint( TriggerWaveform& shape, TriggerDecoderBase& state) { state.resetTriggerState(); #if EFI_PROD_CODE efiAssertVoid(CUSTOM_TRIGGER_STACK, getCurrentRemainingStack() > EXPECTED_REMAINING_STACK, "calc s"); #endif engine->triggerErrorDetection.clear(); shape.initializeSyncPoint(state, engine->primaryTriggerConfiguration); int length = shape.getLength(); engine->engineCycleEventCount = length; efiAssertVoid(CUSTOM_SHAPE_LEN_ZERO, length > 0, "shapeLength=0"); if (shape.getSize() >= PWM_PHASE_MAX_COUNT) { // todo: by the time we are here we had already modified a lot of RAM out of bounds! firmwareError(CUSTOM_ERR_TRIGGER_WAVEFORM_TOO_LONG, "Trigger length above maximum: %d", length); shape.setShapeDefinitionError(true); return; } if (shape.getSize() == 0) { firmwareError(CUSTOM_ERR_TRIGGER_ZERO, "triggerShape size is zero"); } } void TriggerFormDetails::prepareEventAngles(TriggerWaveform *shape) { int triggerShapeSynchPointIndex = shape->triggerShapeSynchPointIndex; if (triggerShapeSynchPointIndex == EFI_ERROR_CODE) { return; } angle_t firstAngle = shape->getAngle(triggerShapeSynchPointIndex); assertAngleRange(firstAngle, "firstAngle", CUSTOM_TRIGGER_SYNC_ANGLE); int riseOnlyIndex = 0; size_t length = shape->getLength(); memset(eventAngles, 0, sizeof(eventAngles)); // this may be getSize(); assertAngleRange(shape->triggerShapeSynchPointIndex, "triggerShapeSynchPointIndex", CUSTOM_TRIGGER_SYNC_ANGLE2); efiAssertVoid(CUSTOM_TRIGGER_CYCLE, engine->engineCycleEventCount != 0, "zero engineCycleEventCount"); for (size_t eventIndex = 0; eventIndex < length; eventIndex++) { if (eventIndex == 0) { // explicit check for zero to avoid issues where logical zero is not exactly zero due to float nature eventAngles[0] = 0; // this value would be used in case of front-only eventAngles[1] = 0; } else { // Rotate the trigger around so that the sync point is at position 0 auto wrappedIndex = (shape->triggerShapeSynchPointIndex + eventIndex) % length; // Compute this tooth's position within the trigger definition // (wrap, as the trigger def may be smaller than total trigger length) auto triggerDefinitionIndex = wrappedIndex % triggerShapeLength; // Compute the relative angle of this tooth to the sync point's tooth float angle = shape->getAngle(wrappedIndex) - firstAngle; efiAssertVoid(CUSTOM_TRIGGER_CYCLE, !cisnan(angle), "trgSyncNaN"); // Wrap the angle back in to [0, 720) fixAngle(angle, "trgSync", CUSTOM_TRIGGER_SYNC_ANGLE_RANGE); if (engineConfiguration->useOnlyRisingEdgeForTrigger) { efiAssertVoid(OBD_PCM_Processor_Fault, triggerDefinitionIndex < triggerShapeLength, "trigger shape fail"); assertIsInBounds(triggerDefinitionIndex, shape->isRiseEvent, "isRise"); // In case this is a rising event, replace the following fall event with the rising as well if (shape->isRiseEvent[triggerDefinitionIndex]) { riseOnlyIndex += 2; eventAngles[riseOnlyIndex] = angle; eventAngles[riseOnlyIndex + 1] = angle; } } else { eventAngles[eventIndex] = angle; } } } } int64_t TriggerDecoderBase::getTotalEventCounter() const { return totalEventCountBase + currentCycle.current_index; } int TriggerDecoderBase::getTotalRevolutionCounter() const { return totalRevolutionCounter; } void PrimaryTriggerDecoder::resetTriggerState() { TriggerDecoderBase::resetTriggerState(); memset(timeOfLastEvent, 0, sizeof(timeOfLastEvent)); memset(spinningEvents, 0, sizeof(spinningEvents)); spinningEventIndex = 0; prevInstantRpmValue = 0; m_instantRpm = 0; resetHasFullSync(); } void PrimaryTriggerDecoder::movePreSynchTimestamps() { // here we take timestamps of events which happened prior to synchronization and place them // at appropriate locations auto triggerSize = getTriggerSize(); int eventsToCopy = minI(spinningEventIndex, triggerSize); size_t firstSrc; size_t firstDst; if (eventsToCopy >= triggerSize) { // Only copy one trigger length worth of events, filling the whole buffer firstSrc = spinningEventIndex - triggerSize; firstDst = 0; } else { // There is less than one full cycle, copy to the end of the buffer firstSrc = 0; firstDst = triggerSize - spinningEventIndex; } memcpy(timeOfLastEvent + firstDst, spinningEvents + firstSrc, eventsToCopy * sizeof(timeOfLastEvent[0])); } float PrimaryTriggerDecoder::calculateInstantRpm( TriggerWaveform const & triggerShape, TriggerFormDetails *triggerFormDetails, uint32_t current_index, efitick_t nowNt) { assertIsInBoundsWithResult(current_index, timeOfLastEvent, "calc timeOfLastEvent", 0); // Record the time of this event so we can calculate RPM from it later timeOfLastEvent[current_index] = nowNt; // Determine where we currently are in the revolution angle_t currentAngle = triggerFormDetails->eventAngles[current_index]; if (cisnan(currentAngle)) { return NOISY_RPM; } // Hunt for a tooth ~90 degrees ago to compare to the current time angle_t previousAngle = currentAngle - 90; fixAngle(previousAngle, "prevAngle", CUSTOM_ERR_TRIGGER_ANGLE_RANGE); int prevIndex = triggerShape.findAngleIndex(triggerFormDetails, previousAngle); // now let's get precise angle for that event angle_t prevIndexAngle = triggerFormDetails->eventAngles[prevIndex]; efitick_t time90ago = timeOfLastEvent[prevIndex]; if (time90ago == 0) { return prevInstantRpmValue; } // we are OK to subtract 32 bit value from more precise 64 bit since the result would 32 bit which is // OK for small time differences like this one uint32_t time = nowNt - time90ago; angle_t angleDiff = currentAngle - prevIndexAngle; // Wrap the angle in to the correct range (ie, could be -630 when we want +90) fixAngle(angleDiff, "angleDiff", CUSTOM_ERR_6561); // just for safety if (time == 0) return prevInstantRpmValue; float instantRpm = (60000000.0 / 360 * US_TO_NT_MULTIPLIER) * angleDiff / time; assertIsInBoundsWithResult(current_index, instantRpmValue, "instantRpmValue", 0); instantRpmValue[current_index] = instantRpm; // This fixes early RPM instability based on incomplete data if (instantRpm < RPM_LOW_THRESHOLD) { return prevInstantRpmValue; } prevInstantRpmValue = instantRpm; m_instantRpmRatio = instantRpm / instantRpmValue[prevIndex]; return instantRpm; } void PrimaryTriggerDecoder::setLastEventTimeForInstantRpm(efitick_t nowNt) { if (getShaftSynchronized()) { return; } // here we remember tooth timestamps which happen prior to synchronization if (spinningEventIndex >= PRE_SYNC_EVENTS) { // too many events while trying to find synchronization point // todo: better implementation would be to shift here or use cyclic buffer so that we keep last // 'PRE_SYNC_EVENTS' events return; } spinningEvents[spinningEventIndex++] = nowNt; } void PrimaryTriggerDecoder::updateInstantRpm( TriggerWaveform const & triggerShape, TriggerFormDetails *triggerFormDetails, uint32_t index, efitick_t nowNt) { m_instantRpm = calculateInstantRpm(triggerShape, triggerFormDetails, index, nowNt); #if EFI_SENSOR_CHART if (engine->sensorChartMode == SC_RPM_ACCEL || engine->sensorChartMode == SC_DETAILED_RPM) { angle_t currentAngle = triggerFormDetails->eventAngles[currentCycle.current_index]; if (engineConfiguration->sensorChartMode == SC_DETAILED_RPM) { scAddData(currentAngle, m_instantRpm); } else { scAddData(currentAngle, m_instantRpmRatio); } } #endif /* EFI_SENSOR_CHART */ } bool TriggerDecoderBase::isValidIndex(const TriggerWaveform& triggerShape) const { return currentCycle.current_index < triggerShape.getSize(); } static trigger_wheel_e eventIndex[4] = { T_PRIMARY, T_PRIMARY, T_SECONDARY, T_SECONDARY }; static trigger_value_e eventType[4] = { TV_FALL, TV_RISE, TV_FALL, TV_RISE }; #if EFI_UNIT_TEST #define PRINT_INC_INDEX if (printTriggerTrace) {\ printf("nextTriggerEvent index=%d\r\n", currentCycle.current_index); \ } #else #define PRINT_INC_INDEX {} #endif /* EFI_UNIT_TEST */ #define nextTriggerEvent() \ { \ if (useOnlyRisingEdgeForTrigger) {currentCycle.current_index++;} \ currentCycle.current_index++; \ PRINT_INC_INDEX; \ } #define considerEventForGap() (!triggerShape.useOnlyPrimaryForSync || isPrimary) #define needToSkipFall(type) ((!triggerShape.gapBothDirections) && (( triggerShape.useRiseEdge) && (type != TV_RISE))) #define needToSkipRise(type) ((!triggerShape.gapBothDirections) && ((!triggerShape.useRiseEdge) && (type != TV_FALL))) int TriggerDecoderBase::getCurrentIndex() const { return currentCycle.current_index; } void TriggerCentral::validateCamVvtCounters() { // micro-optimized 'totalRevolutionCounter % 256' int camVvtValidationIndex = triggerState.getTotalRevolutionCounter() & 0xFF; if (camVvtValidationIndex == 0) { vvtCamCounter = 0; } else if (camVvtValidationIndex == 0xFE && vvtCamCounter < 60) { // magic logic: we expect at least 60 CAM/VVT events for each 256 trigger cycles, otherwise throw a code warning(OBD_Camshaft_Position_Sensor_Circuit_Range_Performance, "No Camshaft Position Sensor signals"); } } angle_t PrimaryTriggerDecoder::syncEnginePhase(int divider, int remainder, angle_t engineCycle) { efiAssert(OBD_PCM_Processor_Fault, remainder < divider, "syncEnginePhase", false); angle_t totalShift = 0; while (getTotalRevolutionCounter() % divider != remainder) { /** * we are here if we've detected the cam sensor within the wrong crank phase * let's increase the trigger event counter, that would adjust the state of * virtual crank-based trigger */ incrementTotalEventCounter(); totalShift += engineCycle / divider; } // Allow injection/ignition to happen, we've now fully sync'd the crank based on new cam information m_hasSynchronizedPhase = true; if (totalShift > 0) { vvtSyncCounter++; } return totalShift; } void TriggerDecoderBase::incrementTotalEventCounter() { totalRevolutionCounter++; } void PrimaryTriggerDecoder::onTriggerError() { // On trigger error, we've lost full sync resetHasFullSync(); } bool TriggerDecoderBase::validateEventCounters(const TriggerWaveform& triggerShape) const { // We can check if things are fine by comparing the number of events in a cycle with the expected number of event. bool isDecodingError = false; for (int i = 0;i < PWM_PHASE_MAX_WAVE_PER_PWM;i++) { isDecodingError |= (currentCycle.eventCount[i] != triggerShape.getExpectedEventCount(i)); } #if EFI_UNIT_TEST printf("validateEventCounters: isDecodingError=%d\n", isDecodingError); if (isDecodingError) { for (int i = 0;i < PWM_PHASE_MAX_WAVE_PER_PWM;i++) { printf("count: cur=%d exp=%d\n", currentCycle.eventCount[i], triggerShape.getExpectedEventCount(i)); } } #endif /* EFI_UNIT_TEST */ return isDecodingError; } void TriggerDecoderBase::onShaftSynchronization( bool wasSynchronized, const efitick_t nowNt, const TriggerWaveform& triggerShape) { startOfCycleNt = nowNt; resetCurrentCycleState(); if (wasSynchronized) { incrementTotalEventCounter(); } else { // We have just synchronized, this is the zeroth revolution totalRevolutionCounter = 0; } totalEventCountBase += triggerShape.getSize(); #if EFI_UNIT_TEST if (printTriggerDebug) { printf("onShaftSynchronization index=%d %d\r\n", currentCycle.current_index, totalRevolutionCounter); } #endif /* EFI_UNIT_TEST */ } /** * @brief Trigger decoding happens here * VR falls are filtered out and some VR noise detection happens prior to invoking this method, for * Hall this method is invoked every time we have a fall or rise on one of the trigger sensors. * This method changes the state of trigger_state_s data structure according to the trigger event * @param signal type of event which just happened * @param nowNt current time */ expected TriggerDecoderBase::decodeTriggerEvent( const char *msg, const TriggerWaveform& triggerShape, TriggerStateListener* triggerStateListener, const TriggerConfiguration& triggerConfiguration, const trigger_event_e signal, const efitick_t nowNt) { ScopePerf perf(PE::DecodeTriggerEvent); if (previousEventTimer.getElapsedSecondsAndReset(nowNt) > 1) { /** * We are here if there is a time gap between now and previous shaft event - that means the engine is not running. * That means we have lost synchronization since the engine is not running :) */ setShaftSynchronized(false); if (triggerStateListener) { triggerStateListener->OnTriggerSynchronizationLost(); } } bool useOnlyRisingEdgeForTrigger = triggerConfiguration.UseOnlyRisingEdgeForTrigger; efiAssert(CUSTOM_TRIGGER_UNEXPECTED, signal <= SHAFT_SECONDARY_RISING, "unexpected signal", unexpected); trigger_wheel_e triggerWheel = eventIndex[signal]; trigger_value_e type = eventType[signal]; // Check that we didn't get the same edge twice in a row - that should be impossible if (!useOnlyRisingEdgeForTrigger && prevSignal == signal) { orderingErrorCounter++; } prevSignal = signal; currentCycle.eventCount[triggerWheel]++; if (toothed_previous_time > nowNt) { firmwareError(CUSTOM_OBD_93, "[%s] toothed_previous_time after nowNt prev=%d now=%d", msg, toothed_previous_time, nowNt); } efitick_t currentDurationLong = isFirstEvent ? 0 : nowNt - toothed_previous_time; /** * For performance reasons, we want to work with 32 bit values. If there has been more then * 10 seconds since previous trigger event we do not really care. */ toothDurations[0] = currentDurationLong > 10 * NT_PER_SECOND ? 10 * NT_PER_SECOND : currentDurationLong; bool isPrimary = triggerWheel == T_PRIMARY; if (needToSkipFall(type) || needToSkipRise(type) || (!considerEventForGap())) { #if EFI_UNIT_TEST if (printTriggerTrace) { printf("%s isLessImportant %s now=%d index=%d\r\n", getTrigger_type_e(triggerConfiguration.TriggerType.type), getTrigger_event_e(signal), (int)nowNt, currentCycle.current_index); } #endif /* EFI_UNIT_TEST */ /** * For less important events we simply increment the index. */ nextTriggerEvent() ; } else { #if !EFI_PROD_CODE if (printTriggerTrace) { printf("%s event %s %d\r\n", getTrigger_type_e(triggerConfiguration.TriggerType.type), getTrigger_event_e(signal), nowNt); printf("decodeTriggerEvent ratio %.2f: current=%d previous=%d\r\n", 1.0 * toothDurations[0] / toothDurations[1], toothDurations[0], toothDurations[1]); } #endif isFirstEvent = false; bool isSynchronizationPoint; bool wasSynchronized = getShaftSynchronized(); if (triggerShape.isSynchronizationNeeded) { triggerSyncGapRatio = (float)toothDurations[0] / toothDurations[1]; isSynchronizationPoint = isSyncPoint(triggerShape, triggerConfiguration.TriggerType.type); if (isSynchronizationPoint) { enginePins.debugTriggerSync.toggle(); } /** * todo: technically we can afford detailed logging even with 60/2 as long as low RPM * todo: figure out exact threshold as a function of RPM and tooth count? * Open question what is 'triggerShape.getSize()' for 60/2 is it 58 or 58*2 or 58*4? */ bool silentTriggerError = triggerShape.getSize() > 40 && engineConfiguration->silentTriggerError; #if EFI_UNIT_TEST actualSynchGap = triggerSyncGapRatio; #endif /* EFI_UNIT_TEST */ #if EFI_PROD_CODE || EFI_SIMULATOR if (triggerConfiguration.VerboseTriggerSynchDetails || (someSortOfTriggerError() && !silentTriggerError)) { int rpm = Sensor::getOrZero(SensorType::Rpm); floatms_t engineCycleDuration = getEngineCycleDuration(rpm); for (int i = 0;i= endOfCycleIndex); #if EFI_UNIT_TEST if (printTriggerTrace) { printf("decodeTriggerEvent sync=%d isSynchronizationPoint=%d index=%d size=%d\r\n", getShaftSynchronized(), isSynchronizationPoint, currentCycle.current_index, triggerShape.getSize()); } #endif /* EFI_UNIT_TEST */ } #if EFI_UNIT_TEST if (printTriggerTrace) { printf("decodeTriggerEvent %s isSynchronizationPoint=%d index=%d %s\r\n", getTrigger_type_e(triggerConfiguration.TriggerType.type), isSynchronizationPoint, currentCycle.current_index, getTrigger_event_e(signal)); } #endif /* EFI_UNIT_TEST */ if (isSynchronizationPoint) { bool isDecodingError = validateEventCounters(triggerShape); if (triggerStateListener) { triggerStateListener->OnTriggerSyncronization(wasSynchronized, isDecodingError); } // If we got a sync point, but the wrong number of events since the last sync point // One of two things has happened: // - We missed a tooth, and this is the real sync point // - Due to some mistake in timing, we found what looks like a sync point but actually isn't // In either case, we should wait for another sync point before doing anything to try and run an engine, // so we clear the synchronized flag. if (wasSynchronized && isDecodingError) { setTriggerErrorState(); totalTriggerErrorCounter++; // Something wrong, no longer synchronized setShaftSynchronized(false); // This is a decoding error onTriggerError(); } else { // If this was the first sync point OR no decode error, we're synchronized! setShaftSynchronized(true); } // this call would update duty cycle values nextTriggerEvent() ; onShaftSynchronization(wasSynchronized, nowNt, triggerShape); } else { /* if (!isSynchronizationPoint) */ nextTriggerEvent() ; } for (int i = triggerShape.gapTrackingLength; i > 0; i--) { toothDurations[i] = toothDurations[i - 1]; } toothed_previous_time = nowNt; } if (getShaftSynchronized() && !isValidIndex(triggerShape)) { // We've had too many events since the last sync point, we should have seen a sync point by now. // This is a trigger error. // let's not show a warning if we are just starting to spin if (Sensor::getOrZero(SensorType::Rpm) != 0) { warning(CUSTOM_SYNC_ERROR, "sync error for %s: index #%d above total size %d", name, currentCycle.current_index, triggerShape.getSize()); setTriggerErrorState(); // TODO: should we increment totalTriggerErrorCounter here too? } onTriggerError(); setShaftSynchronized(false); return unexpected; } // Needed for early instant-RPM detection if (triggerStateListener) { triggerStateListener->OnTriggerStateProperState(nowNt); } triggerStateIndex = currentCycle.current_index; if (getShaftSynchronized()) { return TriggerDecodeResult{ currentCycle.current_index }; } else { return unexpected; } } bool TriggerDecoderBase::isSyncPoint(const TriggerWaveform& triggerShape, trigger_type_e triggerType) const { // Miata NB needs a special decoder. // The problem is that the crank wheel only has 4 teeth, also symmetrical, so the pattern // is long-short-long-short for one crank rotation. // A quick acceleration can result in two successive "short gaps", so we see // long-short-short-short-long instead of the correct long-short-long-short-long // This logic expands the lower bound on a "long" tooth, then compares the last // tooth to the current one. // Instead of detecting short/long, this logic first checks for "maybe short" and "maybe long", // then simply tests longer vs. shorter instead of absolute value. if (triggerType == TT_MIATA_VVT) { auto secondGap = (float)toothDurations[1] / toothDurations[2]; bool currentGapOk = isInRange(triggerShape.syncronizationRatioFrom[0], (float)triggerSyncGapRatio, triggerShape.syncronizationRatioTo[0]); bool secondGapOk = isInRange(triggerShape.syncronizationRatioFrom[1], secondGap, triggerShape.syncronizationRatioTo[1]); // One or both teeth was impossible range, this is not the sync point if (!currentGapOk || !secondGapOk) { return false; } // If both teeth are in the range of possibility, return whether this gap is // shorter than the last or not. If it is, this is the sync point. return triggerSyncGapRatio < secondGap; } for (int i = 0; i < triggerShape.gapTrackingLength; i++) { auto from = triggerShape.syncronizationRatioFrom[i]; auto to = triggerShape.syncronizationRatioTo[i]; if (cisnan(from)) { // don't check this gap, skip it continue; } // This is transformed to avoid a division and use a cheaper multiply instead // toothDurations[i] / toothDurations[i+1] > from // is an equivalent comparison to // toothDurations[i] > toothDurations[i+1] * from bool isGapCondition = (toothDurations[i] > toothDurations[i + 1] * from && toothDurations[i] < toothDurations[i + 1] * to); if (!isGapCondition) { return false; } } return true; } /** * Trigger shape is defined in a way which is convenient for trigger shape definition * On the other hand, trigger decoder indexing begins from synchronization event. * * This function finds the index of synchronization event within TriggerWaveform */ uint32_t TriggerDecoderBase::findTriggerZeroEventIndex( TriggerWaveform& shape, const TriggerConfiguration& triggerConfiguration) { #if EFI_PROD_CODE efiAssert(CUSTOM_ERR_ASSERT, getCurrentRemainingStack() > 128, "findPos", -1); #endif resetTriggerState(); if (shape.shapeDefinitionError) { return 0; } TriggerStimulatorHelper helper; uint32_t syncIndex = helper.findTriggerSyncPoint(shape, triggerConfiguration, *this); if (syncIndex == EFI_ERROR_CODE) { return syncIndex; } // Assert that we found the sync point on the very first revolution efiAssert(CUSTOM_ERR_ASSERT, getTotalRevolutionCounter() == 0, "findZero_revCounter", EFI_ERROR_CODE); #if EFI_UNIT_TEST if (printTriggerDebug) { printf("findTriggerZeroEventIndex: syncIndex located %d!\r\n", syncIndex); } #endif /* EFI_UNIT_TEST */ helper.assertSyncPosition(triggerConfiguration, syncIndex, *this, shape); return syncIndex % shape.getSize(); } #endif /* EFI_SHAFT_POSITION_INPUT */