/** * @file trigger_structure.cpp * * @date Jan 20, 2014 * @author Andrey Belomutskiy, (c) 2012-2018 * * This file is part of rusEfi - see http://rusefi.com * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . */ #include "global.h" #include "trigger_structure.h" #include "trigger_decoder.h" #include "engine_math.h" #include "trigger_universal.h" #if EFI_SENSOR_CHART || defined(__DOXYGEN__) #include "sensor_chart.h" #endif /* EFI_SENSOR_CHART */ EXTERN_ENGINE; trigger_shape_helper::trigger_shape_helper() { memset(&pinStates, 0, sizeof(pinStates)); for (int channelIndex = 0; channelIndex < TRIGGER_CHANNEL_COUNT; channelIndex++) { channels[channelIndex].init(pinStates[channelIndex]); } } TriggerShape::TriggerShape() : wave(switchTimesBuffer, NULL) { version = 0; initialize(OM_NONE, false); wave.channels = h.channels; memset(triggerIndexByAngle, 0, sizeof(triggerIndexByAngle)); } void TriggerShape::calculateTriggerSynchPoint(TriggerState *state DECLARE_ENGINE_PARAMETER_SUFFIX) { #if EFI_PROD_CODE || defined(__DOXYGEN__) efiAssertVoid(CUSTOM_ERR_6642, getRemainingStack(chThdGetSelfX()) > 256, "calc s"); #endif trigger_config_s const*triggerConfig = &engineConfiguration->trigger; triggerShapeSynchPointIndex = findTriggerZeroEventIndex(state, this, triggerConfig PASS_ENGINE_PARAMETER_SUFFIX); int length = getLength(); engine->engineCycleEventCount = length; efiAssertVoid(CUSTOM_SHAPE_LEN_ZERO, length > 0, "shapeLength=0"); if (length >= PWM_PHASE_MAX_COUNT) { warning(CUSTOM_ERR_TRIGGER_SHAPE_TOO_LONG, "Count above %d", length); shapeDefinitionError = true; return; } float firstAngle = getAngle(triggerShapeSynchPointIndex); assertAngleRange(triggerShapeSynchPointIndex, "firstAngle", CUSTOM_ERR_6551); int frontOnlyIndex = 0; for (int eventIndex = 0; eventIndex < length; eventIndex++) { if (eventIndex == 0) { // explicit check for zero to avoid issues where logical zero is not exactly zero due to float nature eventAngles[0] = 0; // this value would be used in case of front-only eventAngles[1] = 0; frontOnlyIndexes[0] = 0; } else { assertAngleRange(triggerShapeSynchPointIndex, "triggerShapeSynchPointIndex", CUSTOM_ERR_6552); int triggerDefinitionCoordinate = (triggerShapeSynchPointIndex + eventIndex) % engine->engineCycleEventCount; efiAssertVoid(CUSTOM_ERR_6595, engine->engineCycleEventCount != 0, "zero engineCycleEventCount"); int triggerDefinitionIndex = triggerDefinitionCoordinate >= privateTriggerDefinitionSize ? triggerDefinitionCoordinate - privateTriggerDefinitionSize : triggerDefinitionCoordinate; float angle = getAngle(triggerDefinitionCoordinate) - firstAngle; efiAssertVoid(CUSTOM_ERR_6596, !cisnan(angle), "trgSyncNaN"); fixAngle(angle, "trgSync", CUSTOM_ERR_6559); if (engineConfiguration->useOnlyRisingEdgeForTrigger) { if (isFrontEvent[triggerDefinitionIndex]) { frontOnlyIndex += 2; eventAngles[frontOnlyIndex] = angle; eventAngles[frontOnlyIndex + 1] = angle; } } else { eventAngles[eventIndex] = angle; } frontOnlyIndexes[eventIndex] = frontOnlyIndex; } } } void TriggerShape::initialize(operation_mode_e operationMode, bool needSecondTriggerInput) { isSynchronizationNeeded = true; // that's default value this->needSecondTriggerInput = needSecondTriggerInput; memset(expectedDutyCycle, 0, sizeof(expectedDutyCycle)); memset(eventAngles, 0, sizeof(eventAngles)); // memset(triggerIndexByAngle, 0, sizeof(triggerIndexByAngle)); setTriggerSynchronizationGap(2); for (int gapIndex = 1; gapIndex < GAP_TRACKING_LENGTH ; gapIndex++) { // NaN means do not use this gap ratio setTriggerSynchronizationGap3(gapIndex, NAN, 100000); } tdcPosition = 0; shapeDefinitionError = useOnlyPrimaryForSync = false; useRiseEdge = true; gapBothDirections = false; invertOnAdd = false; this->operationMode = operationMode; privateTriggerDefinitionSize = 0; triggerShapeSynchPointIndex = 0; memset(initialState, 0, sizeof(initialState)); memset(switchTimesBuffer, 0, sizeof(switchTimesBuffer)); memset(expectedEventCount, 0, sizeof(expectedEventCount)); wave.reset(); previousAngle = 0; memset(frontOnlyIndexes, 0, sizeof(frontOnlyIndexes)); memset(isFrontEvent, 0, sizeof(isFrontEvent)); #if EFI_UNIT_TEST || defined(__DOXYGEN__) memset(&triggerSignals, 0, sizeof(triggerSignals)); #endif } int TriggerShape::getSize() const { return privateTriggerDefinitionSize; } int TriggerShape::getTriggerShapeSynchPointIndex() { return triggerShapeSynchPointIndex; } efitime_t TriggerState::getStartOfRevolutionIndex() { return totalEventCountBase; } void TriggerState::resetRunningCounters() { runningRevolutionCounter = 0; runningTriggerErrorCounter = 0; runningOrderingErrorCounter = 0; } void TriggerState::runtimeStatistics(efitime_t nowNt DECLARE_ENGINE_PARAMETER_SUFFIX) { // empty base implementation } TriggerStateWithRunningStatistics::TriggerStateWithRunningStatistics() { instantRpm = 0; prevInstantRpmValue = 0; // avoid ill-defined instant RPM when the data is not gathered yet efitime_t nowNt = getTimeNowNt(); for (int i = 0; i < PWM_PHASE_MAX_COUNT; i++) { timeOfLastEvent[i] = nowNt; } } float TriggerStateWithRunningStatistics::calculateInstantRpm(int *prevIndex, efitime_t nowNt DECLARE_ENGINE_PARAMETER_SUFFIX) { int current_index = currentCycle.current_index; // local copy so that noone changes the value on us /** * Here we calculate RPM based on last 90 degrees */ angle_t currentAngle = TRIGGER_SHAPE(eventAngles[current_index]); // todo: make this '90' depend on cylinder count or trigger shape? angle_t previousAngle = currentAngle - 90; fixAngle(previousAngle, "prevAngle", CUSTOM_ERR_6560); // todo: prevIndex should be pre-calculated *prevIndex = TRIGGER_SHAPE(triggerIndexByAngle[(int)previousAngle]); // now let's get precise angle for that event angle_t prevIndexAngle = TRIGGER_SHAPE(eventAngles[*prevIndex]); uint32_t time = nowNt - timeOfLastEvent[*prevIndex]; angle_t angleDiff = currentAngle - prevIndexAngle; // todo: angle diff should be pre-calculated fixAngle(angleDiff, "angleDiff", CUSTOM_ERR_6561); // just for safety if (time == 0) return prevInstantRpmValue; float instantRpm = (60000000.0 / 360 * US_TO_NT_MULTIPLIER) * angleDiff / time; instantRpmValue[current_index] = instantRpm; timeOfLastEvent[current_index] = nowNt; // This fixes early RPM instability based on incomplete data if (instantRpm < RPM_LOW_THRESHOLD) return prevInstantRpmValue; prevInstantRpmValue = instantRpm; return instantRpm; } void TriggerStateWithRunningStatistics::setLastEventTimeForInstantRpm(efitime_t nowNt DECLARE_ENGINE_PARAMETER_SUFFIX) { timeOfLastEvent[currentCycle.current_index] = nowNt; } void TriggerStateWithRunningStatistics::runtimeStatistics(efitime_t nowNt DECLARE_ENGINE_PARAMETER_SUFFIX) { if (engineConfiguration->debugMode == DBG_INSTANT_RPM) { int prevIndex; instantRpm = calculateInstantRpm(&prevIndex, nowNt PASS_ENGINE_PARAMETER_SUFFIX); } if (ENGINE(sensorChartMode) == SC_RPM_ACCEL || ENGINE(sensorChartMode) == SC_DETAILED_RPM) { int prevIndex; instantRpm = calculateInstantRpm(&prevIndex, nowNt PASS_ENGINE_PARAMETER_SUFFIX); #if EFI_SENSOR_CHART || defined(__DOXYGEN__) angle_t currentAngle = TRIGGER_SHAPE(eventAngles[currentCycle.current_index]); if (boardConfiguration->sensorChartMode == SC_DETAILED_RPM) { scAddData(currentAngle, instantRpm); } else { scAddData(currentAngle, instantRpm / instantRpmValue[prevIndex]); } #endif /* EFI_SENSOR_CHART */ } } efitime_t TriggerState::getTotalEventCounter() { return totalEventCountBase + currentCycle.current_index; } int TriggerState::getTotalRevolutionCounter() { return totalRevolutionCounter; } /** * physical primary trigger duration */ angle_t TriggerShape::getCycleDuration() const { switch (operationMode) { case FOUR_STROKE_SYMMETRICAL_CRANK_SENSOR: return 180; case FOUR_STROKE_CRANK_SENSOR: case TWO_STROKE: return 360; default: return 720; } } /** * Trigger event count equals engine cycle event count if we have a cam sensor. * Two trigger cycles make one engine cycle in case of a four stroke engine If we only have a cranksensor. */ uint32_t TriggerShape::getLength() const { /** * 4 for FOUR_STROKE_SYMMETRICAL_CRANK_SENSOR * 2 for FOUR_STROKE_CRANK_SENSOR * 1 otherwise */ int multiplier = getEngineCycle(operationMode) / getCycleDuration(); return multiplier * getSize(); } angle_t TriggerShape::getAngle(int index) const { // todo: why is this check here? looks like the code below could be used universally if (operationMode == FOUR_STROKE_CAM_SENSOR) { return getSwitchAngle(index); } /** * FOUR_STROKE_CRANK_SENSOR magic: * We have two crank shaft revolutions for each engine cycle * See also trigger_central.cpp * See also getEngineCycleEventCount() */ efiAssert(CUSTOM_ERR_ASSERT, privateTriggerDefinitionSize != 0, "shapeSize=0", NAN); int crankCycle = index / privateTriggerDefinitionSize; int remainder = index % privateTriggerDefinitionSize; return getCycleDuration() * crankCycle + getSwitchAngle(remainder); } void TriggerShape::addEvent3(angle_t angle, trigger_wheel_e const channelIndex, trigger_value_e const stateParam, float filterLeft, float filterRight) { if (angle > filterLeft && angle < filterRight) addEvent(useOnlyRisingEdgeForTriggerTemp, angle / getEngineCycle(operationMode), channelIndex, stateParam); } operation_mode_e TriggerShape::getOperationMode() { return operationMode; } #if EFI_UNIT_TEST || defined(__DOXYGEN__) extern bool printTriggerDebug; #endif void TriggerShape::calculateExpectedEventCounts(bool useOnlyRisingEdgeForTrigger) { // todo: move the following logic from below here // if (!useOnlyRisingEdgeForTrigger || stateParam == TV_RISE) { // expectedEventCount[channelIndex]++; // } } /** * Deprecated - see https://github.com/rusefi/rusefi/issues/635 */ void TriggerShape::addEvent2(angle_t angle, trigger_wheel_e const channelIndex, trigger_value_e const stateParam DECLARE_ENGINE_PARAMETER_SUFFIX) { /** * While '720' value works perfectly it has not much sense for crank sensor-only scenario. */ addEvent(engineConfiguration->useOnlyRisingEdgeForTrigger, angle / getEngineCycle(operationMode), channelIndex, stateParam); } void TriggerShape::addEvent720(angle_t angle, trigger_wheel_e const channelIndex, trigger_value_e const stateParam) { addEvent(useOnlyRisingEdgeForTriggerTemp, angle / 720, channelIndex, stateParam); } // todo: the whole 'useOnlyRisingEdgeForTrigger' parameter and logic should not be here // todo: see calculateExpectedEventCounts // related calculation should be done once trigger is initialized outside of trigger shape scope void TriggerShape::addEvent(bool useOnlyRisingEdgeForTrigger, angle_t angle, trigger_wheel_e const channelIndex, trigger_value_e const stateParam) { efiAssertVoid(CUSTOM_OMODE_UNDEF, operationMode != OM_NONE, "operationMode not set"); efiAssertVoid(CUSTOM_ERR_6598, channelIndex!= T_SECONDARY || needSecondTriggerInput, "secondary needed or not?"); #if EFI_UNIT_TEST || defined(__DOXYGEN__) if (printTriggerDebug) { printf("addEvent2 %.2f i=%d r/f=%d\r\n", angle, channelIndex, stateParam); } #endif trigger_value_e state; if (invertOnAdd) { state = (stateParam == TV_FALL) ? TV_RISE : TV_FALL; } else { state = stateParam; } #if EFI_UNIT_TEST || defined(__DOXYGEN__) int signal = channelIndex * 1000 + stateParam; triggerSignals[privateTriggerDefinitionSize] = signal; #endif if (!useOnlyRisingEdgeForTrigger || stateParam == TV_RISE) { expectedEventCount[channelIndex]++; } efiAssertVoid(CUSTOM_ERR_6599, angle > 0, "angle should be positive"); if (privateTriggerDefinitionSize > 0) { if (angle <= previousAngle) { warning(CUSTOM_ERR_TRG_ANGLE_ORDER, "invalid angle order: new=%.2f and prev=%.2f, size=%d", angle, previousAngle, privateTriggerDefinitionSize); shapeDefinitionError = true; return; } } previousAngle = angle; if (privateTriggerDefinitionSize == 0) { privateTriggerDefinitionSize = 1; for (int i = 0; i < PWM_PHASE_MAX_WAVE_PER_PWM; i++) { SingleWave *wave = &this->wave.channels[i]; if (wave->pinStates == NULL) { warning(CUSTOM_ERR_STATE_NULL, "wave pinStates is NULL"); shapeDefinitionError = true; return; } wave->setState(/* channelIndex */ 0, /* value */ initialState[i]); } isFrontEvent[0] = TV_RISE == stateParam; wave.setSwitchTime(0, angle); wave.channels[channelIndex].setState(/* channelIndex */ 0, /* value */ state); return; } int exactMatch = wave.findAngleMatch(angle, privateTriggerDefinitionSize); if (exactMatch != EFI_ERROR_CODE) { warning(CUSTOM_ERR_SAME_ANGLE, "same angle: not supported"); shapeDefinitionError = true; return; } int index = wave.findInsertionAngle(angle, privateTriggerDefinitionSize); /** * todo: it would be nice to be able to provide trigger angles without sorting them externally * The idea here is to shift existing data - including handling high vs low state of the signals */ // todo: does this logic actually work? I think it does not! due to broken state handling /* for (int i = size - 1; i >= index; i--) { for (int j = 0; j < PWM_PHASE_MAX_WAVE_PER_PWM; j++) { wave.waves[j].pinStates[i + 1] = wave.getChannelState(j, index); } wave.setSwitchTime(i + 1, wave.getSwitchTime(i)); } */ isFrontEvent[index] = TV_RISE == stateParam; if (index != privateTriggerDefinitionSize) { firmwareError(ERROR_TRIGGER_DRAMA, "are we ever here?"); } privateTriggerDefinitionSize++; for (int i = 0; i < PWM_PHASE_MAX_WAVE_PER_PWM; i++) { int value = wave.getChannelState(/* channelIndex */i, index - 1); wave.channels[i].setState(index, value); } wave.setSwitchTime(index, angle); wave.channels[channelIndex].setState(index, state); } angle_t TriggerShape::getSwitchAngle(int index) const { return getCycleDuration() * wave.getSwitchTime(index); } void setToothedWheelConfiguration(TriggerShape *s, int total, int skipped, operation_mode_e operationMode) { #if EFI_ENGINE_CONTROL || defined(__DOXYGEN__) s->useRiseEdge = true; initializeSkippedToothTriggerShapeExt(s, total, skipped, operationMode); #endif } void TriggerShape::setTriggerSynchronizationGap2(float syncRatioFrom, float syncRatioTo) { setTriggerSynchronizationGap3(/*gapIndex*/0, syncRatioFrom, syncRatioTo); } void TriggerShape::setTriggerSynchronizationGap3(int gapIndex, float syncRatioFrom, float syncRatioTo) { isSynchronizationNeeded = true; this->syncronizationRatioFrom[gapIndex] = syncRatioFrom; this->syncronizationRatioTo[gapIndex] = syncRatioTo; if (gapIndex == 0) { // we have a special case here - only sync with one gap has this feature this->syncRatioAvg = (int)efiRound((syncRatioFrom + syncRatioTo) * 0.5f, 1.0f); } #if EFI_UNIT_TEST || defined(__DOXYGEN__) if (printTriggerDebug) { printf("setTriggerSynchronizationGap3 %d %.2f %.2f\r\n", gapIndex, syncRatioFrom, syncRatioTo); } #endif /* EFI_UNIT_TEST */ } /** * this method is only used on initialization */ int TriggerShape::findAngleIndex(float target) { int engineCycleEventCount = getLength(); efiAssert(CUSTOM_ERR_ASSERT, engineCycleEventCount > 0, "engineCycleEventCount", 0); uint32_t left = 0; uint32_t right = engineCycleEventCount - 1; /** * Let's find the last trigger angle which is less or equal to the desired angle * todo: extract binary search as template method? */ while (left <= right) { int middle = (left + right) / 2; angle_t eventAngle = eventAngles[middle]; if (eventAngle < target) { left = middle + 1; } else if (eventAngle > target) { right = middle - 1; } else { // Values are equal return middle; // Key found } } return left - 1; } void TriggerShape::findTriggerPosition(event_trigger_position_s *position, angle_t angleOffset DECLARE_ENGINE_PARAMETER_SUFFIX) { efiAssertVoid(CUSTOM_ERR_6574, !cisnan(angleOffset), "findAngle#1"); assertAngleRange(angleOffset, "findAngle#a1", CUSTOM_ERR_6545); efiAssertVoid(CUSTOM_ERR_6575, !cisnan(TRIGGER_SHAPE(tdcPosition)), "tdcPos#1") assertAngleRange(TRIGGER_SHAPE(tdcPosition), "tdcPos#a1", CUSTOM_ERR_6546); efiAssertVoid(CUSTOM_ERR_6576, !cisnan(CONFIG(globalTriggerAngleOffset)), "tdcPos#2") assertAngleRange(CONFIG(globalTriggerAngleOffset), "tdcPos#a2", CUSTOM_ERR_6547); // convert engine cycle angle into trigger cycle angle angleOffset += tdcPosition(); efiAssertVoid(CUSTOM_ERR_6577, !cisnan(angleOffset), "findAngle#2"); fixAngle(angleOffset, "addFuel#2", CUSTOM_ERR_6555); int index = triggerIndexByAngle[(int)angleOffset]; angle_t eventAngle = eventAngles[index]; if (angleOffset < eventAngle) { warning(CUSTOM_OBD_ANGLE_CONSTRAINT_VIOLATION, "angle constraint violation in findTriggerPosition(): %.2f/%.2f", angleOffset, eventAngle); return; } position->eventIndex = index; position->eventAngle = eventAngle; position->angleOffset = angleOffset - eventAngle; } void TriggerShape::setTriggerSynchronizationGap(float syncRatio) { setTriggerSynchronizationGap3(/*gapIndex*/0, syncRatio * 0.75f, syncRatio * 1.25f); } void TriggerShape::setSecondTriggerSynchronizationGap2(float syncRatioFrom, float syncRatioTo) { setTriggerSynchronizationGap3(/*gapIndex*/1, syncRatioFrom, syncRatioTo); } void TriggerShape::setThirdTriggerSynchronizationGap(float syncRatio) { setTriggerSynchronizationGap3(/*gapIndex*/2, syncRatio * 0.75f, syncRatio * 1.25f); } void TriggerShape::setSecondTriggerSynchronizationGap(float syncRatio) { setTriggerSynchronizationGap3(/*gapIndex*/1, syncRatio * 0.75f, syncRatio * 1.25f); }