/** * @file trigger_decoder.cpp * * @date Dec 24, 2013 * @author Andrey Belomutskiy, (c) 2012-2014 * * This file is part of rusEfi - see http://rusefi.com * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . */ #include "main.h" #include "obd_error_codes.h" #include "trigger_decoder.h" #include "cyclic_buffer.h" #include "trigger_mazda.h" #include "trigger_chrysler.h" #include "trigger_gm.h" #include "trigger_bmw.h" extern "C" { #include "trigger_structure.h" #include "wave_math.h" } #if EFI_PROD_CODE || EFI_SIMULATOR static Logging logger; #endif static cyclic_buffer errorDetection; /** * @return TRUE is something is wrong with trigger decoding */ int isTriggerDecoderError(void) { return errorDetection.sum(6) > 4; } static inline int isSynchronizationGap(TriggerState const *shaftPositionState, trigger_shape_s const *triggerShape, trigger_config_s const *triggerConfig, const int currentDuration) { if (!triggerConfig->isSynchronizationNeeded) return false; return currentDuration > shaftPositionState->toothed_previous_duration * triggerConfig->syncRatioFrom && currentDuration < shaftPositionState->toothed_previous_duration * triggerConfig->syncRatioTo; } static inline int noSynchronizationResetNeeded(TriggerState *shaftPositionState, trigger_shape_s const *triggerShape, trigger_config_s const*triggerConfig) { if (triggerConfig->isSynchronizationNeeded) return false; if (!shaftPositionState->shaft_is_synchronized) return TRUE; /** * in case of noise the counter could be above the expected number of events */ return shaftPositionState->getCurrentIndex() >= triggerShape->shaftPositionEventCount - 1; } /** * @brief Trigger decoding happends here * This method changes the state of trigger_state_s data structure according to the trigger event */ void TriggerState::decodeTriggerEvent(trigger_shape_s const*triggerShape, trigger_config_s const*triggerConfig, trigger_event_e signal, uint64_t nowUs) { int isLessImportant = (triggerConfig->useRiseEdge && signal != SHAFT_PRIMARY_UP) || (!triggerConfig->useRiseEdge && signal != SHAFT_PRIMARY_DOWN); if (isLessImportant) { /** * For less important events we simply increment the index. */ nextTriggerEvent(); return; } int64_t currentDuration = isFirstEvent ? 0 : nowUs - toothed_previous_time; isFirstEvent = false; efiAssertVoid(currentDuration >= 0, "negative duration?"); // todo: skip a number of signal from the beginning #if EFI_PROD_CODE // scheduleMsg(&logger, "from %f to %f %d %d", triggerConfig->syncRatioFrom, triggerConfig->syncRatioTo, currentDuration, shaftPositionState->toothed_previous_duration); // scheduleMsg(&logger, "ratio %f", 1.0 * currentDuration/ shaftPositionState->toothed_previous_duration); #else if (toothed_previous_duration != 0) { // printf("ratio %f: cur=%d pref=%d\r\n", 1.0 * currentDuration / shaftPositionState->toothed_previous_duration, // currentDuration, shaftPositionState->toothed_previous_duration); } #endif if (noSynchronizationResetNeeded(this, triggerShape, triggerConfig) || isSynchronizationGap(this, triggerShape, triggerConfig, currentDuration)) { /** * We can check if things are fine by comparing the number of events in a cycle with the expected number of event. */ int isDecodingError = getCurrentIndex() != triggerShape->shaftPositionEventCount - 1; errorDetection.add(isDecodingError); if (isTriggerDecoderError()) warning(OBD_PCM_Processor_Fault, "trigger decoding issue"); shaft_is_synchronized = TRUE; nextRevolution(triggerShape->shaftPositionEventCount); } else { nextTriggerEvent(); } toothed_previous_duration = currentDuration; toothed_previous_time = nowUs; } static void initializeSkippedToothTriggerShape(trigger_shape_s *s, int totalTeethCount, int skippedCount, operation_mode_e operationMode) { efiAssertVoid(s != NULL, "trigger_shape_s is NULL"); s->reset(operationMode); float toothWidth = 0.5; for (int i = 0; i < totalTeethCount - skippedCount - 1; i++) { float angleDown = 720.0 / totalTeethCount * (i + toothWidth); float angleUp = 720.0 / totalTeethCount * (i + 1); s->addEvent(angleDown, T_PRIMARY, TV_HIGH); s->addEvent(angleUp, T_PRIMARY, TV_LOW); } float angleDown = 720.0 / totalTeethCount * (totalTeethCount - skippedCount - 1 + toothWidth); s->addEvent(angleDown, T_PRIMARY, TV_HIGH); s->addEvent(720, T_PRIMARY, TV_LOW); } void initializeSkippedToothTriggerShapeExt(engine_configuration2_s *engineConfiguration2, int totalTeethCount, int skippedCount, operation_mode_e operationMode) { efiAssertVoid(totalTeethCount > 0, "totalTeethCount is zero"); trigger_shape_s *s = &engineConfiguration2->triggerShape; initializeSkippedToothTriggerShape(s, totalTeethCount, skippedCount, operationMode); s->shaftPositionEventCount = ((totalTeethCount - skippedCount) * 2); s->wave.checkSwitchTimes(s->getSize()); } static void configureFordAspireTriggerShape(trigger_config_s *triggerConfig, trigger_shape_s * s) { s->reset(FOUR_STROKE_CAM_SENSOR); s->shaftPositionEventCount = 10; s->addEvent(53.747, T_SECONDARY, TV_HIGH); s->addEvent(121.90, T_SECONDARY, TV_LOW); // delta = 68.153 s->addEvent(232.76, T_SECONDARY, TV_HIGH); // delta = 110.86 s->addEvent(300.54, T_SECONDARY, TV_LOW); // delta = 67.78 s->addEvent(360, T_PRIMARY, TV_HIGH); s->addEvent(409.8412, T_SECONDARY, TV_HIGH); // delta = 49.8412 s->addEvent(478.6505, T_SECONDARY, TV_LOW); // delta = 68.8093 s->addEvent(588.045, T_SECONDARY, TV_HIGH); // delta = 109.3945 s->addEvent(657.03, T_SECONDARY, TV_LOW); s->addEvent(720, T_PRIMARY, TV_LOW); } /** * External logger is needed because at this point our logger is not yet initialized */ void initializeTriggerShape(Logging *logger, engine_configuration_s *engineConfiguration, engine_configuration2_s *engineConfiguration2) { #if EFI_PROD_CODE printMsg(logger, "initializeTriggerShape()"); #endif trigger_config_s *triggerConfig = &engineConfiguration->triggerConfig; trigger_shape_s *triggerShape = &engineConfiguration2->triggerShape; switch (triggerConfig->triggerType) { case TT_TOOTHED_WHEEL: initializeSkippedToothTriggerShapeExt(engineConfiguration2, triggerConfig->totalToothCount, triggerConfig->skippedToothCount, getOperationMode(engineConfiguration)); return; case TT_MAZDA_MIATA_NB: initializeMazdaMiataNbShape(triggerConfig, triggerShape); return; case TT_DODGE_NEON: configureNeonTriggerShape(triggerConfig, triggerShape); return; case TT_FORD_ASPIRE: configureFordAspireTriggerShape(triggerConfig, triggerShape); return; case TT_GM_7X: configureGmTriggerShape(triggerConfig, triggerShape); return; case TT_FORD_ESCORT_GT: configureMazdaProtegeLx(triggerConfig, triggerShape); return; case TT_MINI_COOPER_R50: configureMiniCooperTriggerShape(triggerConfig, triggerShape); return; default: firmwareError("initializeTriggerShape() not implemented: %d", triggerConfig->triggerType); ; } if (engineConfiguration2->triggerShape.shaftPositionEventCount != engineConfiguration2->triggerShape.getSize()) firmwareError("trigger size or shaftPositionEventCount?"); } TriggerStimulatorHelper::TriggerStimulatorHelper() { primaryWheelState = false; secondaryWheelState = false; } void TriggerStimulatorHelper::nextStep(TriggerState *state, trigger_shape_s * shape, int i, trigger_config_s const*triggerConfig) { int stateIndex = i % shape->getSize(); int loopIndex = i / shape->getSize(); int time = (int) (10000 * (loopIndex + shape->wave.getSwitchTime(stateIndex))); bool newPrimaryWheelState = shape->wave.getChannelState(0, stateIndex); bool newSecondaryWheelState = shape->wave.getChannelState(1, stateIndex); if (primaryWheelState != newPrimaryWheelState) { primaryWheelState = newPrimaryWheelState; trigger_event_e s = primaryWheelState ? SHAFT_PRIMARY_UP : SHAFT_PRIMARY_DOWN; state->decodeTriggerEvent(shape, triggerConfig, s, time); } if (secondaryWheelState != newSecondaryWheelState) { secondaryWheelState = newSecondaryWheelState; trigger_event_e s = secondaryWheelState ? SHAFT_SECONDARY_UP : SHAFT_SECONDARY_DOWN; state->decodeTriggerEvent(shape, triggerConfig, s, time); } } /** * Trigger shape is defined in a way which is convenient for trigger shape definition * On the other hand, trigger decoder indexing begins from synchronization event. * * This function finds the index of synchronization event within trigger_shape_s */ int findTriggerZeroEventIndex(trigger_shape_s * shape, trigger_config_s const*triggerConfig) { TriggerState state; errorDetection.clear(); TriggerStimulatorHelper helper; for (int i = 0; i < 4 * PWM_PHASE_MAX_COUNT; i++) { helper.nextStep(&state, shape, i, triggerConfig); if (state.shaft_is_synchronized) return i % shape->getSize();; } firmwareError("findTriggerZeroEventIndex() failed"); return -1; } void initTriggerDecoder(void) { #if EFI_PROD_CODE || EFI_SIMULATOR initLogging(&logger, "trigger decoder"); #endif }