/** * @file rpm_calculator.cpp * @brief RPM calculator * * Here we listen to position sensor events in order to figure our if engine is currently running or not. * Actual getRpm() is calculated once per crankshaft revolution, based on the amount of time passed * since the start of previous shaft revolution. * * We also have 'instant RPM' logic separate from this 'cycle RPM' logic. Open question is why do we not use * instant RPM instead of cycle RPM more often. * * @date Jan 1, 2013 * @author Andrey Belomutskiy, (c) 2012-2020 */ #include "pch.h" #include "os_access.h" #include "trigger_central.h" #include "tooth_logger.h" #if EFI_PROD_CODE #include "os_util.h" #endif /* EFI_PROD_CODE */ #if EFI_SENSOR_CHART #include "sensor_chart.h" #endif #if EFI_ENGINE_SNIFFER #include "engine_sniffer.h" extern WaveChart waveChart; #endif /* EFI_ENGINE_SNIFFER */ // See RpmCalculator::checkIfSpinning() #ifndef NO_RPM_EVENTS_TIMEOUT_SECS #define NO_RPM_EVENTS_TIMEOUT_SECS 2 #endif /* NO_RPM_EVENTS_TIMEOUT_SECS */ float RpmCalculator::getRpmAcceleration() const { return rpmRate; } bool RpmCalculator::isStopped() const { // Spinning-up with zero RPM means that the engine is not ready yet, and is treated as 'stopped'. return state == STOPPED || (state == SPINNING_UP && cachedRpmValue == 0); } bool RpmCalculator::isCranking() const { // Spinning-up with non-zero RPM is suitable for all engine math, as good as cranking return state == CRANKING || (state == SPINNING_UP && cachedRpmValue > 0); } bool RpmCalculator::isSpinningUp() const { return state == SPINNING_UP; } uint32_t RpmCalculator::getRevolutionCounterSinceStart(void) const { return revolutionCounterSinceStart; } /** * @return -1 in case of isNoisySignal(), current RPM otherwise * See NOISY_RPM */ float RpmCalculator::getCachedRpm() const { return cachedRpmValue; } #if EFI_SHAFT_POSITION_INPUT RpmCalculator::RpmCalculator() : StoredValueSensor(SensorType::Rpm, 0) { assignRpmValue(0); } /** * @return true if there was a full shaft revolution within the last second */ bool RpmCalculator::isRunning() const { return state == RUNNING; } /** * @return true if engine is spinning (cranking or running) */ bool RpmCalculator::checkIfSpinning(efitick_t nowNt) const { if (engine->limpManager.isEngineStop(nowNt)) { return false; } // Anything below 60 rpm is not running bool noRpmEventsForTooLong = lastTdcTimer.getElapsedSeconds(nowNt) > NO_RPM_EVENTS_TIMEOUT_SECS; /** * Also check if there were no trigger events */ bool noTriggerEventsForTooLong = !engine->triggerCentral.engineMovedRecently(nowNt); if (noRpmEventsForTooLong || noTriggerEventsForTooLong) { return false; } return true; } void RpmCalculator::assignRpmValue(float floatRpmValue) { previousRpmValue = cachedRpmValue; cachedRpmValue = floatRpmValue; setValidValue(floatRpmValue, 0); // 0 for current time since RPM sensor never times out if (cachedRpmValue <= 0) { oneDegreeUs = NAN; } else { // here it's really important to have more precise float RPM value, see #796 oneDegreeUs = getOneDegreeTimeUs(floatRpmValue); if (previousRpmValue == 0) { /** * this would make sure that we have good numbers for first cranking revolution * #275 cranking could be improved */ engine->periodicFastCallback(); } } } void RpmCalculator::setRpmValue(float value) { assignRpmValue(value); spinning_state_e oldState = state; // Change state if (cachedRpmValue == 0) { state = STOPPED; } else if (cachedRpmValue >= engineConfiguration->cranking.rpm) { if (state != RUNNING) { // Store the time the engine started engineStartTimer.reset(); } state = RUNNING; } else if (state == STOPPED || state == SPINNING_UP) { /** * We are here if RPM is above zero but we have not seen running RPM yet. * This gives us cranking hysteresis - a drop of RPM during running is still running, not cranking. */ state = CRANKING; } #if EFI_ENGINE_CONTROL // This presumably fixes injection mode change for cranking-to-running transition. // 'isSimultanious' flag should be updated for events if injection modes differ for cranking and running. if (state != oldState && engineConfiguration->crankingInjectionMode != engineConfiguration->injectionMode) { // Reset the state of all injectors: when we change fueling modes, we could // immediately reschedule an injection that's currently underway. That will cause // the injector's overlappingCounter to get out of sync with reality. As the fix, // every injector's state is forcibly reset just before we could cause that to happen. engine->injectionEvents.resetOverlapping(); // reschedule all injection events now that we've reset them engine->injectionEvents.addFuelEvents(); } #endif } spinning_state_e RpmCalculator::getState() const { return state; } void RpmCalculator::onNewEngineCycle() { revolutionCounterSinceBoot++; revolutionCounterSinceStart++; } uint32_t RpmCalculator::getRevolutionCounterM(void) const { return revolutionCounterSinceBoot; } void RpmCalculator::onSlowCallback() { /** * Update engine RPM state if needed (check timeouts). */ if (!checkIfSpinning(getTimeNowNt())) { engine->rpmCalculator.setStopSpinning(); } } void RpmCalculator::setStopped() { revolutionCounterSinceStart = 0; rpmRate = 0; if (cachedRpmValue != 0) { assignRpmValue(0); // needed by 'useNoiselessTriggerDecoder' engine->triggerCentral.noiseFilter.resetAccumSignalData(); efiPrintf("engine stopped"); } state = STOPPED; } void RpmCalculator::setStopSpinning() { isSpinning = false; setStopped(); } void RpmCalculator::setSpinningUp(efitick_t nowNt) { if (!engineConfiguration->isFasterEngineSpinUpEnabled) return; // Only a completely stopped and non-spinning engine can enter the spinning-up state. if (isStopped() && !isSpinning) { state = SPINNING_UP; engine->triggerCentral.triggerState.spinningEventIndex = 0; isSpinning = true; } // update variables needed by early instant RPM calc. if (isSpinningUp()) { engine->triggerCentral.triggerState.setLastEventTimeForInstantRpm(nowNt); } /** * Update ignition pin indices if needed. Here we potentially switch to wasted spark temporarily. */ prepareIgnitionPinIndices(getCurrentIgnitionMode()); } /** * @brief Shaft position callback used by RPM calculation logic. * * This callback should always be the first of trigger callbacks because other callbacks depend of values * updated here. * This callback is invoked on interrupt thread. */ void rpmShaftPositionCallback(trigger_event_e ckpSignalType, uint32_t index, efitick_t nowNt) { bool alwaysInstantRpm = engineConfiguration->alwaysInstantRpm; RpmCalculator *rpmState = &engine->rpmCalculator; if (index == 0) { bool hadRpmRecently = rpmState->checkIfSpinning(nowNt); float periodSeconds = engine->rpmCalculator.lastTdcTimer.getElapsedSecondsAndReset(nowNt); if (hadRpmRecently) { /** * Four stroke cycle is two crankshaft revolutions * * We always do '* 2' because the event signal is already adjusted to 'per engine cycle' * and each revolution of crankshaft consists of two engine cycles revolutions * */ if (!alwaysInstantRpm) { if (periodSeconds == 0) { rpmState->setRpmValue(NOISY_RPM); rpmState->rpmRate = 0; } else { int mult = (int)getEngineCycle(engine->getOperationMode()) / 360; float rpm = 60 * mult / periodSeconds; auto rpmDelta = rpm - rpmState->previousRpmValue; rpmState->rpmRate = rpmDelta / (mult * periodSeconds); rpmState->setRpmValue(rpm > UNREALISTIC_RPM ? NOISY_RPM : rpm); } } } else { // we are here only once trigger is synchronized for the first time // while transitioning from 'spinning' to 'running' engine->triggerCentral.triggerState.movePreSynchTimestamps(); } rpmState->onNewEngineCycle(); } #if EFI_SENSOR_CHART // this 'index==0' case is here so that it happens after cycle callback so // it goes into sniffer report into the first position if (engine->sensorChartMode == SC_TRIGGER) { angle_t crankAngle = engine->triggerCentral.getCurrentEnginePhase(nowNt).value_or(0); int signal = 1000 * ckpSignalType + index; scAddData(crankAngle, signal); } #endif /* EFI_SENSOR_CHART */ // Always update instant RPM even when not spinning up engine->triggerCentral.triggerState.updateInstantRpm( engine->triggerCentral.triggerShape, &engine->triggerCentral.triggerFormDetails, index, nowNt); float instantRpm = engine->triggerCentral.triggerState.getInstantRpm(); if (alwaysInstantRpm) { rpmState->setRpmValue(instantRpm); } else if (rpmState->isSpinningUp()) { rpmState->assignRpmValue(instantRpm); #if 0 efiPrintf("** RPM: idx=%d sig=%d iRPM=%d", index, ckpSignalType, instantRpm); #endif } } float RpmCalculator::getTimeSinceEngineStart(efitick_t nowNt) const { return engineStartTimer.getElapsedSeconds(nowNt); } static char rpmBuffer[_MAX_FILLER]; /** * This callback has nothing to do with actual engine control, it just sends a Top Dead Center mark to the rusEfi console * digital sniffer. */ static void onTdcCallback(void *) { #if EFI_UNIT_TEST if (!engine->needTdcCallback) { return; } #endif /* EFI_UNIT_TEST */ itoa10(rpmBuffer, Sensor::getOrZero(SensorType::Rpm)); #if EFI_ENGINE_SNIFFER waveChart.startDataCollection(); #endif addEngineSnifferEvent(TOP_DEAD_CENTER_MESSAGE, (char* ) rpmBuffer); #if EFI_TOOTH_LOGGER LogTriggerTopDeadCenter(getTimeNowNt()); #endif /* EFI_TOOTH_LOGGER */ } /** * This trigger callback schedules the actual physical TDC callback in relation to trigger synchronization point. */ void tdcMarkCallback( uint32_t index0, efitick_t edgeTimestamp) { bool isTriggerSynchronizationPoint = index0 == 0; if (isTriggerSynchronizationPoint && engine->isEngineChartEnabled && engine->tdcMarkEnabled) { // two instances of scheduling_s are needed to properly handle event overlap int revIndex2 = getRevolutionCounter() % 2; int rpm = Sensor::getOrZero(SensorType::Rpm); // todo: use tooth event-based scheduling, not just time-based scheduling if (isValidRpm(rpm)) { angle_t tdcPosition = tdcPosition(); // we need a positive angle offset here fixAngle(tdcPosition, "tdcPosition", CUSTOM_ERR_6553); scheduleByAngle(&engine->tdcScheduler[revIndex2], edgeTimestamp, tdcPosition, onTdcCallback); } } } void initRpmCalculator() { #if ! HW_CHECK_MODE if (hasFirmwareError()) { return; } #endif // HW_CHECK_MODE // Only register if not configured to read RPM over OBD2 if (!engineConfiguration->consumeObdSensors) { engine->rpmCalculator.Register(); } } /** * Schedules a callback 'angle' degree of crankshaft from now. * The callback would be executed once after the duration of time which * it takes the crankshaft to rotate to the specified angle. */ efitick_t scheduleByAngle(scheduling_s *timer, efitick_t edgeTimestamp, angle_t angle, action_s action) { float delayUs = engine->rpmCalculator.oneDegreeUs * angle; // 'delayNt' is below 10 seconds here so we use 32 bit type for performance reasons int32_t delayNt = USF2NT(delayUs); efitime_t delayedTime = edgeTimestamp + delayNt; engine->executor.scheduleByTimestampNt("angle", timer, delayedTime, action); return delayedTime; } #else RpmCalculator::RpmCalculator() { } #endif /* EFI_SHAFT_POSITION_INPUT */