/* * @file trigger_central.cpp * Here we have a bunch of higher-level methods which are not directly related to actual signal decoding * * @date Feb 23, 2014 * @author Andrey Belomutskiy, (c) 2012-2020 */ #include "global.h" #include "os_access.h" #include "trigger_central.h" #include "trigger_decoder.h" #include "main_trigger_callback.h" #include "engine_configuration.h" #include "listener_array.h" #include "pwm_generator_logic.h" #include "tooth_logger.h" #include "hip9011.h" #include "logic_analyzer.h" #include "settings.h" #include "engine_math.h" #include "local_version_holder.h" #include "trigger_simulator.h" #include "trigger_emulator_algo.h" #include "rpm_calculator.h" #include "tooth_logger.h" #include "perf_trace.h" #include "map_averaging.h" #include "main_trigger_callback.h" #if EFI_PROD_CODE #include "pin_repository.h" #endif /* EFI_PROD_CODE */ #if EFI_TUNER_STUDIO #include "tunerstudio.h" #endif /* EFI_TUNER_STUDIO */ #if EFI_ENGINE_SNIFFER #include "engine_sniffer.h" WaveChart waveChart; #endif /* EFI_ENGINE_SNIFFER */ trigger_central_s::trigger_central_s() : hwEventCounters() { } TriggerCentral::TriggerCentral() : trigger_central_s(), vvtPosition(), vvtSyncTimeNt() { triggerState.resetTriggerState(); noiseFilter.resetAccumSignalData(); } void TriggerCentral::init(DECLARE_ENGINE_PARAMETER_SIGNATURE) { INJECT_ENGINE_REFERENCE(&triggerState); for (int bankIndex = 0; bankIndex < BANKS_COUNT; bankIndex++) { for (int camIndex = 0; camIndex < CAMS_PER_BANK; camIndex++) { INJECT_ENGINE_REFERENCE(&vvtState[bankIndex][camIndex]); } } } void TriggerNoiseFilter::resetAccumSignalData() { memset(lastSignalTimes, 0xff, sizeof(lastSignalTimes)); // = -1 memset(accumSignalPeriods, 0, sizeof(accumSignalPeriods)); memset(accumSignalPrevPeriods, 0, sizeof(accumSignalPrevPeriods)); } int TriggerCentral::getHwEventCounter(int index) const { return hwEventCounters[index]; } #if EFI_SHAFT_POSITION_INPUT EXTERN_ENGINE; angle_t TriggerCentral::getVVTPosition(uint8_t bankIndex, uint8_t camIndex) { return vvtPosition[bankIndex][camIndex]; } #define miataNbIndex (0) // todo: should we hard-code the list of 'not real decoder' modes instead of adding to list of 'real decoders'? these days we only add 'real decode' modes static bool vvtWithRealDecoder(vvt_mode_e vvtMode) { return vvtMode == VVT_MIATA_NB2 || vvtMode == VVT_BOSCH_QUICK_START || vvtMode == VVT_FORD_ST170 || vvtMode == VVT_4_1 || vvtMode == VVT_BARRA_3_PLUS_1; } void hwHandleVvtCamSignal(trigger_value_e front, efitick_t nowNt, int index DECLARE_ENGINE_PARAMETER_SUFFIX) { int bankIndex = index / CAMS_PER_BANK; int camIndex = index % CAMS_PER_BANK; TriggerCentral *tc = &engine->triggerCentral; if (front == TV_RISE) { tc->vvtEventRiseCounter++; } else { tc->vvtEventFallCounter++; } extern const char *vvtNames[]; const char *vvtName = vvtNames[index]; #if VR_HW_CHECK_MODE // some boards do not have hardware VR input LEDs which makes such boards harder to validate // from experience we know that assembly mistakes happen and quality control is required extern ioportid_t criticalErrorLedPort; extern ioportmask_t criticalErrorLedPin; for (int i = 0 ; i < 100 ; i++) { // turning pin ON and busy-waiting a bit palWritePad(criticalErrorLedPort, criticalErrorLedPin, 1); } palWritePad(criticalErrorLedPort, criticalErrorLedPin, 0); #endif // VR_HW_CHECK_MODE if (!CONFIG(displayLogicLevelsInEngineSniffer)) { addEngineSnifferEvent(vvtName, front == TV_RISE ? PROTOCOL_ES_UP : PROTOCOL_ES_DOWN); #if EFI_TOOTH_LOGGER if (front == TV_RISE) { LogTriggerTooth(SHAFT_SECONDARY_RISING, nowNt PASS_ENGINE_PARAMETER_SUFFIX); } else { LogTriggerTooth(SHAFT_SECONDARY_FALLING, nowNt PASS_ENGINE_PARAMETER_SUFFIX); } #endif /* EFI_TOOTH_LOGGER */ } bool isImportantFront = (CONFIG(vvtCamSensorUseRise) ^ (front == TV_FALL)); if (!vvtWithRealDecoder(engineConfiguration->vvtMode[camIndex]) && !isImportantFront) { // todo: there should be a way to always use real trigger code for this logic? return; } if (CONFIG(displayLogicLevelsInEngineSniffer) && isImportantFront) { if (CONFIG(vvtCamSensorUseRise)) { // todo: unify TS composite logger code with console Engine Sniffer // todo: better API to reduce copy/paste? #if EFI_TOOTH_LOGGER LogTriggerTooth(SHAFT_SECONDARY_RISING, nowNt PASS_ENGINE_PARAMETER_SUFFIX); LogTriggerTooth(SHAFT_SECONDARY_FALLING, nowNt PASS_ENGINE_PARAMETER_SUFFIX); #endif /* EFI_TOOTH_LOGGER */ addEngineSnifferEvent(vvtName, PROTOCOL_ES_UP); addEngineSnifferEvent(vvtName, PROTOCOL_ES_DOWN); } else { #if EFI_TOOTH_LOGGER LogTriggerTooth(SHAFT_SECONDARY_FALLING, nowNt PASS_ENGINE_PARAMETER_SUFFIX); LogTriggerTooth(SHAFT_SECONDARY_RISING, nowNt PASS_ENGINE_PARAMETER_SUFFIX); #endif /* EFI_TOOTH_LOGGER */ addEngineSnifferEvent(vvtName, PROTOCOL_ES_DOWN); addEngineSnifferEvent(vvtName, PROTOCOL_ES_UP); } } floatus_t oneDegreeUs = engine->rpmCalculator.oneDegreeUs; if (cisnan(oneDegreeUs)) { // todo: this code branch is slowing NB2 cranking since we require RPM sync for VVT sync! // todo: smarter code // // we are here if we are getting VVT position signals while engine is not running // for example if crank position sensor is broken :) return; } ENGINE(triggerCentral).vvtState[bankIndex][camIndex].decodeTriggerEvent( ENGINE(triggerCentral).vvtShape[camIndex], nullptr, nullptr, engine->vvtTriggerConfiguration[camIndex], front == TV_RISE ? SHAFT_PRIMARY_RISING : SHAFT_PRIMARY_FALLING, nowNt); tc->vvtCamCounter++; float offsetUs = tc->virtualZeroTimer.getElapsedUs(nowNt); angle_t currentPosition = offsetUs / oneDegreeUs; // convert engine cycle angle into trigger cycle angle currentPosition -= tdcPosition(); // https://github.com/rusefi/rusefi/issues/1713 currentPosition could be negative that's expected #if EFI_UNIT_TEST tc->currentVVTEventPosition[bankIndex][camIndex] = currentPosition; #endif // EFI_UNIT_TEST if (engineConfiguration->debugMode == DBG_VVT) { #if EFI_TUNER_STUDIO tsOutputChannels.debugFloatField1 = currentPosition; #endif /* EFI_TUNER_STUDIO */ } switch(engineConfiguration->vvtMode[camIndex]) { case VVT_2JZ: // we do not know if we are in sync or out of sync, so we have to be looking for both possibilities if ((currentPosition < engineConfiguration->fsio_setting[14] || currentPosition > engineConfiguration->fsio_setting[15]) && (currentPosition < engineConfiguration->fsio_setting[14] + 360 || currentPosition > engineConfiguration->fsio_setting[15] + 360)) { // outside of the expected range return; } break; case VVT_MIATA_NB2: case VVT_BOSCH_QUICK_START: case VVT_BARRA_3_PLUS_1: { if (engine->triggerCentral.vvtState[bankIndex][camIndex].currentCycle.current_index != 0) { // this is not sync tooth - exiting return; } if (engineConfiguration->debugMode == DBG_VVT) { #if EFI_TUNER_STUDIO tsOutputChannels.debugIntField1++; #endif /* EFI_TUNER_STUDIO */ } } default: // else, do nothing break; } tc->vvtSyncTimeNt[bankIndex][camIndex] = nowNt; // we do NOT clamp VVT position into the [0, engineCycle) range - we expect vvtOffset to be configured so that // it's not necessary tc->vvtPosition[bankIndex][camIndex] = engineConfiguration->vvtOffset - currentPosition; if (tc->vvtPosition[bankIndex][camIndex] < -ENGINE(engineCycle) / 2 || tc->vvtPosition[bankIndex][camIndex] > ENGINE(engineCycle) / 2) { warning(CUSTOM_ERR_VVT_OUT_OF_RANGE, "Please adjust vvtOffset since position %f", tc->vvtPosition); } switch (engineConfiguration->vvtMode[camIndex]) { case VVT_FIRST_HALF: { bool isEven = tc->triggerState.isEvenRevolution(); if (!isEven) { /** * we are here if we've detected the cam sensor within the wrong crank phase * let's increase the trigger event counter, that would adjust the state of * virtual crank-based trigger */ tc->triggerState.incrementTotalEventCounter(); if (engineConfiguration->debugMode == DBG_VVT) { #if EFI_TUNER_STUDIO tsOutputChannels.debugIntField1++; #endif /* EFI_TUNER_STUDIO */ } } } break; case VVT_SECOND_HALF: { bool isEven = tc->triggerState.isEvenRevolution(); if (isEven) { // see above comment tc->triggerState.incrementTotalEventCounter(); if (engineConfiguration->debugMode == DBG_VVT) { #if EFI_TUNER_STUDIO tsOutputChannels.debugIntField1++; #endif /* EFI_TUNER_STUDIO */ } } } break; case VVT_MIATA_NB2: /** * NB2 is a symmetrical crank, there are four phases total */ while (tc->triggerState.getTotalRevolutionCounter() % 4 != miataNbIndex) { tc->triggerState.incrementTotalEventCounter(); } break; default: case VVT_INACTIVE: // do nothing break; } } #if EFI_PROD_CODE || EFI_SIMULATOR int triggerReentraint = 0; int maxTriggerReentraint = 0; uint32_t triggerDuration; uint32_t triggerMaxDuration = 0; /** * this method is invoked only by real hardware call-backs */ void hwHandleShaftSignal(trigger_event_e signal, efitick_t timestamp) { #if VR_HW_CHECK_MODE // some boards do not have hardware VR input LEDs which makes such boards harder to validate // from experience we know that assembly mistakes happen and quality control is required extern ioportid_t criticalErrorLedPort; extern ioportmask_t criticalErrorLedPin; #if HW_CHECK_ALWAYS_STIMULATE disableTriggerStimulator(); #endif // HW_CHECK_ALWAYS_STIMULATE for (int i = 0 ; i < 100 ; i++) { // turning pin ON and busy-waiting a bit palWritePad(criticalErrorLedPort, criticalErrorLedPin, 1); } palWritePad(criticalErrorLedPort, criticalErrorLedPin, 0); #endif // VR_HW_CHECK_MODE handleShaftSignal(signal, timestamp); } /** * this method is invoked by both real hardware and self-stimulator */ void handleShaftSignal(trigger_event_e signal, efitick_t timestamp) { ScopePerf perf(PE::HandleShaftSignal); // Don't accept trigger input in case of some problems if (!engine->limpManager.allowTriggerInput()) { return; } #if EFI_TOOTH_LOGGER // Log to the Tunerstudio tooth logger // We want to do this before anything else as we // actually want to capture any noise/jitter that may be occurring bool logLogicState = CONFIG(displayLogicLevelsInEngineSniffer) && CONFIG(useOnlyRisingEdgeForTrigger); if (!logLogicState) { // we log physical state even if displayLogicLevelsInEngineSniffer if both fronts are used by decoder LogTriggerTooth(signal, timestamp PASS_ENGINE_PARAMETER_SUFFIX); } #endif /* EFI_TOOTH_LOGGER */ // for effective noise filtering, we need both signal edges, // so we pass them to handleShaftSignal() and defer this test if (!CONFIG(useNoiselessTriggerDecoder)) { if (!isUsefulSignal(signal, ENGINE(primaryTriggerConfiguration))) { /** * no need to process VR falls further */ return; } } #if EFI_TOOTH_LOGGER if (logLogicState) { LogTriggerTooth(signal, timestamp PASS_ENGINE_PARAMETER_SUFFIX); if (signal == SHAFT_PRIMARY_RISING) { LogTriggerTooth(SHAFT_PRIMARY_FALLING, timestamp PASS_ENGINE_PARAMETER_SUFFIX); } else { LogTriggerTooth(SHAFT_SECONDARY_FALLING, timestamp PASS_ENGINE_PARAMETER_SUFFIX); } } #endif /* EFI_TOOTH_LOGGER */ uint32_t triggerHandlerEntryTime = getTimeNowLowerNt(); if (triggerReentraint > maxTriggerReentraint) maxTriggerReentraint = triggerReentraint; triggerReentraint++; ENGINE(triggerCentral).handleShaftSignal(signal, timestamp PASS_ENGINE_PARAMETER_SUFFIX); triggerReentraint--; triggerDuration = getTimeNowLowerNt() - triggerHandlerEntryTime; triggerMaxDuration = maxI(triggerMaxDuration, triggerDuration); } #endif /* EFI_PROD_CODE */ void TriggerCentral::resetCounters() { memset(hwEventCounters, 0, sizeof(hwEventCounters)); } static char shaft_signal_msg_index[15]; static const bool isUpEvent[6] = { false, true, false, true, false, true }; static const char *eventId[6] = { PROTOCOL_CRANK1, PROTOCOL_CRANK1, PROTOCOL_CRANK2, PROTOCOL_CRANK2, PROTOCOL_CRANK3, PROTOCOL_CRANK3 }; static void reportEventToWaveChart(trigger_event_e ckpSignalType, int index DECLARE_ENGINE_PARAMETER_SUFFIX) { if (!ENGINE(isEngineChartEnabled)) { // this is here just as a shortcut so that we avoid engine sniffer as soon as possible return; // engineSnifferRpmThreshold is accounted for inside ENGINE(isEngineChartEnabled) } itoa10(&shaft_signal_msg_index[2], index); bool isUp = isUpEvent[(int) ckpSignalType]; shaft_signal_msg_index[0] = isUp ? 'u' : 'd'; addEngineSnifferEvent(eventId[(int )ckpSignalType], (char* ) shaft_signal_msg_index); if (engineConfiguration->useOnlyRisingEdgeForTrigger) { // let's add the opposite event right away shaft_signal_msg_index[0] = isUp ? 'd' : 'u'; addEngineSnifferEvent(eventId[(int )ckpSignalType], (char* ) shaft_signal_msg_index); } } /** * This is used to filter noise spikes (interference) in trigger signal. See * The basic idea is to use not just edges, but the average amount of time the signal stays in '0' or '1'. * So we update 'accumulated periods' to track where the signal is. * And then compare between the current period and previous, with some tolerance (allowing for the wheel speed change). * @return true if the signal is passed through. */ bool TriggerNoiseFilter::noiseFilter(efitick_t nowNt, TriggerState * triggerState, trigger_event_e signal DECLARE_ENGINE_PARAMETER_SUFFIX) { // todo: find a better place for these defs static const trigger_event_e opposite[6] = { SHAFT_PRIMARY_RISING, SHAFT_PRIMARY_FALLING, SHAFT_SECONDARY_RISING, SHAFT_SECONDARY_FALLING, SHAFT_3RD_RISING, SHAFT_3RD_FALLING }; static const trigger_wheel_e triggerIdx[6] = { T_PRIMARY, T_PRIMARY, T_SECONDARY, T_SECONDARY, T_CHANNEL_3, T_CHANNEL_3 }; // we process all trigger channels independently trigger_wheel_e ti = triggerIdx[signal]; // falling is opposite to rising, and vise versa trigger_event_e os = opposite[signal]; // todo: currently only primary channel is filtered, because there are some weird trigger types on other channels if (ti != T_PRIMARY) return true; // update period accumulator: for rising signal, we update '0' accumulator, and for falling - '1' if (lastSignalTimes[signal] != -1) accumSignalPeriods[signal] += nowNt - lastSignalTimes[signal]; // save current time for this trigger channel lastSignalTimes[signal] = nowNt; // now we want to compare current accumulated period to the stored one efitick_t currentPeriod = accumSignalPeriods[signal]; // the trick is to compare between different efitick_t allowedPeriod = accumSignalPrevPeriods[os]; // but first check if we're expecting a gap bool isGapExpected = TRIGGER_WAVEFORM(isSynchronizationNeeded) && triggerState->shaft_is_synchronized && (triggerState->currentCycle.eventCount[ti] + 1) == TRIGGER_WAVEFORM(expectedEventCount[ti]); if (isGapExpected) { // usually we need to extend the period for gaps, based on the trigger info allowedPeriod *= TRIGGER_WAVEFORM(syncRatioAvg); } // also we need some margin for rapidly changing trigger-wheel speed, // that's why we expect the period to be no less than 2/3 of the previous period (this is just an empirical 'magic' coef.) efitick_t minAllowedPeriod = 2 * allowedPeriod / 3; // but no longer than 5/4 of the previous 'normal' period efitick_t maxAllowedPeriod = 5 * allowedPeriod / 4; // above all, check if the signal comes not too early if (currentPeriod >= minAllowedPeriod) { // now we store this period as a reference for the next time, // BUT we store only 'normal' periods, and ignore too long periods (i.e. gaps) if (!isGapExpected && (maxAllowedPeriod == 0 || currentPeriod <= maxAllowedPeriod)) { accumSignalPrevPeriods[signal] = currentPeriod; } // reset accumulator accumSignalPeriods[signal] = 0; return true; } // all premature or extra-long events are ignored - treated as interference return false; } /** * This method is NOT invoked for VR falls. */ void TriggerCentral::handleShaftSignal(trigger_event_e signal, efitick_t timestamp DECLARE_ENGINE_PARAMETER_SUFFIX) { if (triggerShape.shapeDefinitionError) { // trigger is broken, we cannot do anything here warning(CUSTOM_ERR_UNEXPECTED_SHAFT_EVENT, "Shaft event while trigger is mis-configured"); // magic value to indicate a problem hwEventCounters[0] = 155; return; } // This code gathers some statistics on signals and compares accumulated periods to filter interference if (CONFIG(useNoiselessTriggerDecoder)) { if (!noiseFilter.noiseFilter(timestamp, &triggerState, signal PASS_ENGINE_PARAMETER_SUFFIX)) { return; } if (!isUsefulSignal(signal, ENGINE(primaryTriggerConfiguration))) { return; } } engine->onTriggerSignalEvent(); m_lastEventTimer.reset(timestamp); int eventIndex = (int) signal; efiAssertVoid(CUSTOM_TRIGGER_EVENT_TYPE, eventIndex >= 0 && eventIndex < HW_EVENT_TYPES, "signal type"); hwEventCounters[eventIndex]++; /** * This invocation changes the state of triggerState */ triggerState.decodeTriggerEvent(triggerShape, nullptr, engine, engine->primaryTriggerConfiguration, signal, timestamp); /** * If we only have a crank position sensor with four stroke, here we are extending crank revolutions with a 360 degree * cycle into a four stroke, 720 degrees cycle. */ int triggerIndexForListeners; operation_mode_e operationMode = engine->getOperationMode(PASS_ENGINE_PARAMETER_SIGNATURE); if (operationMode == FOUR_STROKE_CAM_SENSOR || operationMode == TWO_STROKE) { // That's easy - trigger cycle matches engine cycle triggerIndexForListeners = triggerState.getCurrentIndex(); } else { int crankDivider = operationMode == FOUR_STROKE_CRANK_SENSOR ? 2 : SYMMETRICAL_CRANK_SENSOR_DIVIDER; int crankInternalIndex = triggerState.getTotalRevolutionCounter() % crankDivider; triggerIndexForListeners = triggerState.getCurrentIndex() + (crankInternalIndex * getTriggerSize()); } if (triggerIndexForListeners == 0) { virtualZeroTimer.reset(timestamp); } reportEventToWaveChart(signal, triggerIndexForListeners PASS_ENGINE_PARAMETER_SUFFIX); if (!triggerState.shaft_is_synchronized) { // we should not propagate event if we do not know where we are return; } if (triggerState.isValidIndex(ENGINE(triggerCentral.triggerShape))) { ScopePerf perf(PE::ShaftPositionListeners); #if TRIGGER_EXTREME_LOGGING efiPrintf("trigger %d %d %d", triggerIndexForListeners, getRevolutionCounter(), (int)getTimeNowUs()); #endif /* TRIGGER_EXTREME_LOGGING */ rpmShaftPositionCallback(signal, triggerIndexForListeners, timestamp PASS_ENGINE_PARAMETER_SUFFIX); #if !EFI_UNIT_TEST tdcMarkCallback(triggerIndexForListeners, timestamp PASS_ENGINE_PARAMETER_SUFFIX); #endif #if !EFI_UNIT_TEST #if EFI_MAP_AVERAGING mapAveragingTriggerCallback(triggerIndexForListeners, timestamp PASS_ENGINE_PARAMETER_SUFFIX); #endif /* EFI_MAP_AVERAGING */ #endif /* EFI_UNIT_TEST */ #if EFI_LOGIC_ANALYZER waTriggerEventListener(signal, triggerIndexForListeners, timestamp PASS_ENGINE_PARAMETER_SUFFIX); #endif mainTriggerCallback(triggerIndexForListeners, timestamp PASS_ENGINE_PARAMETER_SUFFIX); } } EXTERN_ENGINE; static void triggerShapeInfo(void) { #if EFI_PROD_CODE || EFI_SIMULATOR TriggerWaveform *shape = &engine->triggerCentral.triggerShape; TriggerFormDetails *triggerFormDetails = &engine->triggerCentral.triggerFormDetails; efiPrintf("useRise=%s", boolToString(TRIGGER_WAVEFORM(useRiseEdge))); efiPrintf("gap from %.2f to %.2f", TRIGGER_WAVEFORM(syncronizationRatioFrom[0]), TRIGGER_WAVEFORM(syncronizationRatioTo[0])); for (size_t i = 0; i < shape->getSize(); i++) { efiPrintf("event %d %.2f", i, triggerFormDetails->eventAngles[i]); } #endif } #if EFI_PROD_CODE extern PwmConfig triggerSignal; #endif /* #if EFI_PROD_CODE */ #if HAL_USE_ICU == TRUE extern int icuRisingCallbackCounter; extern int icuFallingCallbackCounter; #endif /* HAL_USE_ICU */ void triggerInfo(void) { #if EFI_PROD_CODE || EFI_SIMULATOR TriggerWaveform *ts = &engine->triggerCentral.triggerShape; #if (HAL_TRIGGER_USE_PAL == TRUE) && (PAL_USE_CALLBACKS == TRUE) efiPrintf("trigger PAL mode %d", engine->hwTriggerInputEnabled); #else #if HAL_USE_ICU == TRUE efiPrintf("trigger ICU hw: %d %d %d", icuRisingCallbackCounter, icuFallingCallbackCounter, engine->hwTriggerInputEnabled); #endif /* HAL_USE_ICU */ #endif /* HAL_TRIGGER_USE_PAL */ efiPrintf("Template %s (%d) trigger %s (%d) useRiseEdge=%s onlyFront=%s useOnlyFirstChannel=%s tdcOffset=%.2f", getConfigurationName(engineConfiguration->engineType), engineConfiguration->engineType, getTrigger_type_e(engineConfiguration->trigger.type), engineConfiguration->trigger.type, boolToString(TRIGGER_WAVEFORM(useRiseEdge)), boolToString(engineConfiguration->useOnlyRisingEdgeForTrigger), boolToString(engineConfiguration->trigger.useOnlyFirstChannel), TRIGGER_WAVEFORM(tdcPosition)); if (engineConfiguration->trigger.type == TT_TOOTHED_WHEEL) { efiPrintf("total %d/skipped %d", engineConfiguration->trigger.customTotalToothCount, engineConfiguration->trigger.customSkippedToothCount); } efiPrintf("trigger#1 event counters up=%d/down=%d", engine->triggerCentral.getHwEventCounter(0), engine->triggerCentral.getHwEventCounter(1)); if (ts->needSecondTriggerInput) { efiPrintf("trigger#2 event counters up=%d/down=%d", engine->triggerCentral.getHwEventCounter(2), engine->triggerCentral.getHwEventCounter(3)); } efiPrintf("expected cycle events %d/%d/%d", TRIGGER_WAVEFORM(expectedEventCount[0]), TRIGGER_WAVEFORM(expectedEventCount[1]), TRIGGER_WAVEFORM(expectedEventCount[2])); efiPrintf("trigger type=%d/need2ndChannel=%s", engineConfiguration->trigger.type, boolToString(TRIGGER_WAVEFORM(needSecondTriggerInput))); efiPrintf("expected duty #0=%.2f/#1=%.2f", TRIGGER_WAVEFORM(expectedDutyCycle[0]), TRIGGER_WAVEFORM(expectedDutyCycle[1])); efiPrintf("synchronizationNeeded=%s/isError=%s/total errors=%d ord_err=%d/total revolutions=%d/self=%s", boolToString(ts->isSynchronizationNeeded), boolToString(isTriggerDecoderError()), engine->triggerCentral.triggerState.totalTriggerErrorCounter, engine->triggerCentral.triggerState.orderingErrorCounter, engine->triggerCentral.triggerState.getTotalRevolutionCounter(), boolToString(engine->directSelfStimulation)); if (TRIGGER_WAVEFORM(isSynchronizationNeeded)) { efiPrintf("gap from %.2f to %.2f", TRIGGER_WAVEFORM(syncronizationRatioFrom[0]), TRIGGER_WAVEFORM(syncronizationRatioTo[0])); } #endif /* EFI_PROD_CODE || EFI_SIMULATOR */ #if EFI_PROD_CODE if (HAVE_CAM_INPUT()) { efiPrintf("VVT input: %s mode %s", hwPortname(engineConfiguration->camInputs[0]), getVvt_mode_e(engineConfiguration->vvtMode[0])); efiPrintf("VVT event counters: %d/%d", engine->triggerCentral.vvtEventRiseCounter, engine->triggerCentral.vvtEventFallCounter); } efiPrintf("primary trigger input: %s", hwPortname(CONFIG(triggerInputPins)[0])); efiPrintf("primary trigger simulator: %s %s freq=%d", hwPortname(CONFIG(triggerSimulatorPins)[0]), getPin_output_mode_e(CONFIG(triggerSimulatorPinModes)[0]), CONFIG(triggerSimulatorFrequency)); if (ts->needSecondTriggerInput) { efiPrintf("secondary trigger input: %s", hwPortname(CONFIG(triggerInputPins)[1])); #if EFI_EMULATE_POSITION_SENSORS efiPrintf("secondary trigger simulator: %s %s phase=%d", hwPortname(CONFIG(triggerSimulatorPins)[1]), getPin_output_mode_e(CONFIG(triggerSimulatorPinModes)[1]), triggerSignal.safe.phaseIndex); #endif /* EFI_EMULATE_POSITION_SENSORS */ } // efiPrintf("3rd trigger simulator: %s %s", hwPortname(CONFIG(triggerSimulatorPins)[2]), // getPin_output_mode_e(CONFIG(triggerSimulatorPinModes)[2])); efiPrintf("trigger error extra LED: %s %s", hwPortname(CONFIG(triggerErrorPin)), getPin_output_mode_e(CONFIG(triggerErrorPinMode))); efiPrintf("primary logic input: %s", hwPortname(CONFIG(logicAnalyzerPins)[0])); efiPrintf("secondary logic input: %s", hwPortname(CONFIG(logicAnalyzerPins)[1])); efiPrintf("totalTriggerHandlerMaxTime=%d", triggerMaxDuration); #endif /* EFI_PROD_CODE */ } static void resetRunningTriggerCounters() { #if !EFI_UNIT_TEST engine->triggerCentral.resetCounters(); triggerInfo(); #endif } void onConfigurationChangeTriggerCallback(DECLARE_ENGINE_PARAMETER_SIGNATURE) { bool changed = false; for (int i = 0; i < CAM_INPUTS_COUNT; i++) { changed |= isConfigurationChanged(camInputs[i]); } changed |= isConfigurationChanged(trigger.type) || isConfigurationChanged(ambiguousOperationMode) || isConfigurationChanged(useOnlyRisingEdgeForTrigger) || isConfigurationChanged(globalTriggerAngleOffset) || isConfigurationChanged(trigger.customTotalToothCount) || isConfigurationChanged(trigger.customSkippedToothCount) || isConfigurationChanged(triggerInputPins[0]) || isConfigurationChanged(triggerInputPins[1]) || isConfigurationChanged(triggerInputPins[2]) || isConfigurationChanged(vvtMode) || isConfigurationChanged(vvtCamSensorUseRise) || isConfigurationChanged(vvtOffset); if (changed) { assertEngineReference(); #if EFI_ENGINE_CONTROL ENGINE(initializeTriggerWaveform(PASS_ENGINE_PARAMETER_SIGNATURE)); engine->triggerCentral.noiseFilter.resetAccumSignalData(); #endif } #if EFI_DEFAILED_LOGGING efiPrintf("isTriggerConfigChanged=%d", engine->isTriggerConfigChanged); #endif /* EFI_DEFAILED_LOGGING */ // we do not want to miss two updates in a row engine->isTriggerConfigChanged = engine->isTriggerConfigChanged || changed; } /** * @returns true if configuration just changed, and if that change has affected trigger */ bool checkIfTriggerConfigChanged(DECLARE_ENGINE_PARAMETER_SIGNATURE) { bool result = engine->triggerVersion.isOld(engine->getGlobalConfigurationVersion()) && engine->isTriggerConfigChanged; engine->isTriggerConfigChanged = false; // whoever has called the method is supposed to react to changes return result; } bool isTriggerConfigChanged(DECLARE_ENGINE_PARAMETER_SIGNATURE) { return engine->isTriggerConfigChanged; } void initTriggerCentral() { strcpy((char*) shaft_signal_msg_index, "x_"); #if EFI_ENGINE_SNIFFER initWaveChart(&waveChart); #endif /* EFI_ENGINE_SNIFFER */ #if EFI_PROD_CODE || EFI_SIMULATOR addConsoleAction(CMD_TRIGGERINFO, triggerInfo); addConsoleAction("trigger_shape_info", triggerShapeInfo); addConsoleAction("reset_trigger", resetRunningTriggerCounters); #endif // EFI_PROD_CODE || EFI_SIMULATOR } /** * @return TRUE is something is wrong with trigger decoding */ bool isTriggerDecoderError(DECLARE_ENGINE_PARAMETER_SIGNATURE) { return engine->triggerErrorDetection.sum(6) > 4; } #endif // EFI_SHAFT_POSITION_INPUT