/* * @file trigger_central.cpp * * @date Feb 23, 2014 * @author Andrey Belomutskiy, (c) 2012-2016 */ #include "main.h" #if EFI_SHAFT_POSITION_INPUT || defined(__DOXYGEN__) #include "trigger_central.h" #include "trigger_decoder.h" #include "main_trigger_callback.h" #include "engine_configuration.h" #include "listener_array.h" #include "data_buffer.h" #include "histogram.h" #include "pwm_generator_logic.h" #include "efilib2.h" #include "settings.h" #include "rpm_calculator.h" #if EFI_PROD_CODE || defined(__DOXYGEN__) #include "rfiutil.h" #include "pin_repository.h" #endif #if EFI_ENGINE_SNIFFER || defined(__DOXYGEN__) #include "engine_sniffer.h" WaveChart waveChart; #endif /* EFI_ENGINE_SNIFFER */ EXTERN_ENGINE; static histogram_s triggerCallback; // we need this initial to have not_running at first invocation static volatile efitime_t previousShaftEventTimeNt = (efitimems_t) -10 * US2NT(US_PER_SECOND_LL); static Logging *logger; efitime_t getCrankEventCounter(DECLARE_ENGINE_PARAMETER_F) { return engine->triggerCentral.triggerState.getTotalEventCounter(); } efitime_t getStartOfRevolutionIndex(DECLARE_ENGINE_PARAMETER_F) { return engine->triggerCentral.triggerState.getStartOfRevolutionIndex(); } void TriggerCentral::addEventListener(ShaftPositionListener listener, const char *name, Engine *engine) { print("registerCkpListener: %s\r\n", name); triggerListeneres.registerCallback((VoidInt) listener, engine); } /** * @brief Adds a trigger event listener * * Trigger event listener would be invoked on each trigger event. For example, for a 60/2 wheel * that would be 116 events: 58 SHAFT_PRIMARY_UP and 58 SHAFT_PRIMARY_DOWN events. */ void addTriggerEventListener(ShaftPositionListener listener, const char *name, Engine *engine) { engine->triggerCentral.addEventListener(listener, name, engine); } uint32_t triggerHanlderEntryTime; #if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__) EXTERN_ENGINE ; int triggerReentraint = 0; int maxTriggerReentraint = 0; uint32_t triggerDuration; uint32_t triggerMaxDuration = 0; extern bool isInsideTriggerHandler; void hwHandleShaftSignal(trigger_event_e signal) { triggerHanlderEntryTime = GET_TIMESTAMP(); isInsideTriggerHandler = true; if (triggerReentraint > maxTriggerReentraint) maxTriggerReentraint = triggerReentraint; triggerReentraint++; efiAssertVoid(getRemainingStack(chThdSelf()) > 128, "lowstck#8"); engine->triggerCentral.handleShaftSignal(signal PASS_ENGINE_PARAMETER); triggerReentraint--; triggerDuration = GET_TIMESTAMP() - triggerHanlderEntryTime; isInsideTriggerHandler = false; if (triggerDuration > triggerMaxDuration) triggerMaxDuration = triggerDuration; } #endif /* EFI_PROD_CODE */ TriggerCentral::TriggerCentral() { nowNt = 0; memset(hwEventCounters, 0, sizeof(hwEventCounters)); clearCallbacks(&triggerListeneres); triggerState.reset(); } int TriggerCentral::getHwEventCounter(int index) { return hwEventCounters[index]; } void TriggerCentral::resetCounters() { memset(hwEventCounters, 0, sizeof(hwEventCounters)); triggerState.resetRunningCounters(); } static char shaft_signal_msg_index[15]; static bool isUpEvent[6] = { false, true, false, true, false, true }; static const char *eventId[6] = { CRANK1, CRANK1, CRANK2, CRANK2, CRANK3, CRANK3 }; static ALWAYS_INLINE void reportEventToWaveChart(trigger_event_e ckpSignalType, int index DECLARE_ENGINE_PARAMETER_S) { itoa10(&shaft_signal_msg_index[2], index); bool isUp = isUpEvent[(int) ckpSignalType]; shaft_signal_msg_index[0] = isUp ? 'u' : 'd'; addWaveChartEvent(eventId[(int )ckpSignalType], (char* ) shaft_signal_msg_index); if (engineConfiguration->useOnlyFrontForTrigger) { // let's add the opposite event right away shaft_signal_msg_index[0] = isUp ? 'd' : 'u'; addWaveChartEvent(eventId[(int )ckpSignalType], (char* ) shaft_signal_msg_index); } } void TriggerCentral::handleShaftSignal(trigger_event_e signal DECLARE_ENGINE_PARAMETER_S) { efiAssertVoid(engine!=NULL, "configuration"); nowNt = getTimeNowNt(); engine->onTriggerEvent(nowNt); #if EFI_HISTOGRAMS && EFI_PROD_CODE int beforeCallback = hal_lld_get_counter_value(); #endif int eventIndex = (int) signal; efiAssertVoid(eventIndex >= 0 && eventIndex < HW_EVENT_TYPES, "signal type"); hwEventCounters[eventIndex]++; if (nowNt - previousShaftEventTimeNt > US2NT(US_PER_SECOND_LL)) { /** * We are here if there is a time gap between now and previous shaft event - that means the engine is not runnig. * That means we have lost synchronization since the engine is not running :) */ triggerState.shaft_is_synchronized = false; } previousShaftEventTimeNt = nowNt; /** * This invocation changes the state of triggerState */ triggerState.decodeTriggerEvent(signal, nowNt PASS_ENGINE_PARAMETER); /** * If we only have a crank position sensor with four stroke, here we are extending crank revolutions with a 360 degree * cycle into a four stroke, 720 degrees cycle. */ int triggerIndexForListeners; if (engineConfiguration->operationMode != FOUR_STROKE_CRANK_SENSOR) { // That's easy - trigger cycle matches engine cycle triggerIndexForListeners = triggerState.getCurrentIndex(); } else { bool isEven = triggerState.getTotalRevolutionCounter() & 1; triggerIndexForListeners = triggerState.getCurrentIndex() + (isEven ? 0 : TRIGGER_SHAPE(size)); } reportEventToWaveChart(signal, triggerIndexForListeners PASS_ENGINE_PARAMETER); if (!triggerState.shaft_is_synchronized) { // we should not propagate event if we do not know where we are return; } if (triggerState.isValidIndex(PASS_ENGINE_PARAMETER_F)) { /** * Here we invoke all the listeners - the main engine control logic is inside these listeners */ for (int i = 0; i < triggerListeneres.currentListenersCount; i++) { ShaftPositionListener listener = (ShaftPositionListener) triggerListeneres.callbacks[i]; (listener)(signal, triggerIndexForListeners PASS_ENGINE_PARAMETER); } } #if EFI_HISTOGRAMS && EFI_PROD_CODE int afterCallback = hal_lld_get_counter_value(); int diff = afterCallback - beforeCallback; // this counter is only 32 bits so it overflows every minute, let's ignore the value in case of the overflow for simplicity if (diff > 0) { hsAdd(&triggerCallback, diff); } #endif /* EFI_HISTOGRAMS */ } void printAllCallbacksHistogram(void) { #if EFI_PROD_CODE printHistogram(logger, &triggerCallback); #endif } EXTERN_ENGINE ; static void triggerShapeInfo(void) { #if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__) TriggerShape *s = &engine->triggerShape; scheduleMsg(logger, "useRise=%s", boolToString(s->useRiseEdge)); scheduleMsg(logger, "gap from %f to %f", s->syncRatioFrom, s->syncRatioTo); for (int i = 0; i < s->getSize(); i++) { scheduleMsg(logger, "event %d %f", i, s->eventAngles[i]); } #endif } #if EFI_UNIT_TEST || defined(__DOXYGEN__) #include #include #define TRIGGERS_FILE_NAME "triggers.txt" /** * This is used to generate trigger info which is later used by TriggerImage java class * to generate images for documentation */ extern bool printTriggerDebug; void printAllTriggers() { FILE * fp = fopen (TRIGGERS_FILE_NAME, "w+"); fprintf(fp, "# Generated by rusEfi\r\n"); printTriggerDebug = true; for (int triggerId = 1; triggerId < TT_UNUSED; triggerId++) { trigger_type_e tt = (trigger_type_e) triggerId; // if (triggerId != 20) // continue; printf("Exporting %s\r\n", getTrigger_type_e(tt)); persistent_config_s pc; Engine e(&pc); Engine *engine = &e; persistent_config_s *config = &pc; engine_configuration_s *engineConfiguration = &pc.engineConfiguration; board_configuration_s *boardConfiguration = &engineConfiguration->bc; engineConfiguration->trigger.type = tt; engineConfiguration->operationMode = FOUR_STROKE_CAM_SENSOR; TriggerShape *s = &engine->triggerShape; s->initializeTriggerShape(NULL PASS_ENGINE_PARAMETER); fprintf(fp, "TRIGGERTYPE %d %d %s\r\n", triggerId, s->getLength(), getTrigger_type_e(tt)); fprintf(fp, "# duty %f %f\r\n", s->dutyCycle[0], s->dutyCycle[1]); for (int i = 0; i < s->getLength(); i++) { int triggerDefinitionCoordinate = (s->getTriggerShapeSynchPointIndex() + i) % s->getSize(); fprintf(fp, "event %d %d %f\r\n", i, s->triggerSignals[triggerDefinitionCoordinate], s->eventAngles[i]); } } fclose(fp); printf("All triggers exported to %s\r\n", TRIGGERS_FILE_NAME); } #endif #if EFI_PROD_CODE || defined(__DOXYGEN__) extern PwmConfig triggerSignal; #endif /* #if EFI_PROD_CODE */ extern uint32_t maxLockTime; extern uint32_t maxEventQueueTime; extern uint32_t hipLastExecutionCount; extern uint32_t hwSetTimerTime; extern int maxHowFarOff; extern uint32_t *cyccnt; void triggerInfo(void) { #if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__) TriggerShape *ts = &engine->triggerShape; scheduleMsg(logger, "Template %s (%d) trigger %s (%d) useRiseEdge=%s onlyFront=%s gapBothDirections=%s useOnlyFirstChannel=%s", getConfigurationName(engineConfiguration->engineType), engineConfiguration->engineType, getTrigger_type_e(engineConfiguration->trigger.type), engineConfiguration->trigger.type, boolToString(TRIGGER_SHAPE(useRiseEdge)), boolToString(engineConfiguration->useOnlyFrontForTrigger), boolToString(TRIGGER_SHAPE(gapBothDirections)), boolToString(engineConfiguration->trigger.useOnlyFirstChannel)); if (engineConfiguration->trigger.type == TT_TOOTHED_WHEEL) { scheduleMsg(logger, "total %d/skipped %d", engineConfiguration->trigger.customTotalToothCount, engineConfiguration->trigger.customSkippedToothCount); } scheduleMsg(logger, "trigger#1 event counters up=%d/down=%d", engine->triggerCentral.getHwEventCounter(0), engine->triggerCentral.getHwEventCounter(1)); if (engine->triggerShape.needSecondTriggerInput) { scheduleMsg(logger, "trigger#2 event counters up=%d/down=%d", engine->triggerCentral.getHwEventCounter(2), engine->triggerCentral.getHwEventCounter(3)); } scheduleMsg(logger, "expected cycle events %d/%d/%d", ts->expectedEventCount[0], engine->triggerShape.expectedEventCount[1], ts->expectedEventCount[2]); scheduleMsg(logger, "trigger type=%d/need2ndChannel=%s", engineConfiguration->trigger.type, boolToString(engine->triggerShape.needSecondTriggerInput)); scheduleMsg(logger, "expected duty #0=%f/#1=%f", ts->dutyCycle[0], ts->dutyCycle[1]); scheduleMsg(logger, "synchronizationNeeded=%s/isError=%s/total errors=%d ord_err=%d/total revolutions=%d/self=%s", boolToString(ts->isSynchronizationNeeded), boolToString(isTriggerDecoderError()), engine->triggerCentral.triggerState.totalTriggerErrorCounter, engine->triggerCentral.triggerState.orderingErrorCounter, engine->triggerCentral.triggerState.getTotalRevolutionCounter(), boolToString(engineConfiguration->directSelfStimulation)); if (ts->isSynchronizationNeeded) { scheduleMsg(logger, "gap from %f to %f", ts->syncRatioFrom, ts->syncRatioTo); } #endif #if EFI_PROD_CODE || defined(__DOXYGEN__) scheduleMsg(logger, "primary trigger input: %s", hwPortname(boardConfiguration->triggerInputPins[0])); scheduleMsg(logger, "primary trigger simulator: %s %s freq=%d", hwPortname(boardConfiguration->triggerSimulatorPins[0]), getPin_output_mode_e(boardConfiguration->triggerSimulatorPinModes[0]), boardConfiguration->triggerSimulatorFrequency); if (engine->triggerShape.needSecondTriggerInput) { scheduleMsg(logger, "secondary trigger input: %s", hwPortname(boardConfiguration->triggerInputPins[1])); #if EFI_EMULATE_POSITION_SENSORS || defined(__DOXYGEN__) scheduleMsg(logger, "secondary trigger simulator: %s %s phase=%d", hwPortname(boardConfiguration->triggerSimulatorPins[1]), getPin_output_mode_e(boardConfiguration->triggerSimulatorPinModes[1]), triggerSignal.safe.phaseIndex); #endif /* EFI_EMULATE_POSITION_SENSORS */ } // scheduleMsg(logger, "3rd trigger simulator: %s %s", hwPortname(boardConfiguration->triggerSimulatorPins[2]), // getPin_output_mode_e(boardConfiguration->triggerSimulatorPinModes[2])); scheduleMsg(logger, "trigger error extra LED: %s %s", hwPortname(boardConfiguration->triggerErrorPin), getPin_output_mode_e(boardConfiguration->triggerErrorPinMode)); scheduleMsg(logger, "primary logic input: %s", hwPortname(boardConfiguration->logicAnalyzerPins[0])); scheduleMsg(logger, "secondary logic input: %s", hwPortname(boardConfiguration->logicAnalyzerPins[1])); scheduleMsg(logger, "zeroTestTime=%d maxHowFarOff=%d", engine->m.zeroTestTime, maxHowFarOff); maxHowFarOff = 0; scheduleMsg(logger, "advanceLookupTime=%d now=%d fuelCalcTime=%d", engine->m.advanceLookupTime, *cyccnt, engine->m.fuelCalcTime); scheduleMsg(logger, "ignitionMathTime=%d ignitionSchTime=%d injectonSchTime=%d", engine->m.ignitionMathTime, engine->m.ignitionSchTime, engine->m.injectonSchTime); scheduleMsg(logger, "mapTime=%d/hipTime=%d/rpmTime=%d/mainTriggerCallbackTime=%d", engine->m.mapAveragingCbTime, engine->m.hipCbTime, engine->m.rpmCbTime, engine->m.mainTriggerCallbackTime); scheduleMsg(logger, "maxLockTime=%d / maxTriggerReentraint=%d", maxLockTime, maxTriggerReentraint); maxLockTime = 0; scheduleMsg(logger, "maxEventQueueTime=%d", maxEventQueueTime); scheduleMsg(logger, "hipLastExecutionCount=%d", hipLastExecutionCount); scheduleMsg(logger, "hwSetTimerTime %d", hwSetTimerTime); scheduleMsg(logger, "totalTriggerHandlerMaxTime=%d", triggerMaxDuration); triggerMaxDuration = 0; #endif /* EFI_PROD_CODE */ } #if ! EFI_UNIT_TEST float getTriggerDutyCycle(int index) { return engine->triggerCentral.triggerState.getTriggerDutyCycle(index); } #endif static void resetRunningTriggerCounters() { #if !EFI_UNIT_TEST engine->triggerCentral.resetCounters(); triggerInfo(); #endif } void initTriggerCentral(Logging *sharedLogger, Engine *engine) { logger = sharedLogger; strcpy((char*) shaft_signal_msg_index, "x_"); #if EFI_ENGINE_SNIFFER initWaveChart(&waveChart); #endif /* EFI_ENGINE_SNIFFER */ #if EFI_PROD_CODE || EFI_SIMULATOR addConsoleAction("triggerinfo", triggerInfo); addConsoleAction("trigger_shape_info", triggerShapeInfo); addConsoleAction("reset_trigger", resetRunningTriggerCounters); #endif #if EFI_HISTOGRAMS initHistogram(&triggerCallback, "all callbacks"); #endif /* EFI_HISTOGRAMS */ } #endif