/** * @author Andrey Belomutskiy, (c) 2012-2018 * * EGO Exhaust Gas Oxygen, also known as AFR Air/Fuel Ratio :) * * todo: rename this class? refactor since there is also CJ125? * * rusEfi has three options for wideband: * 1) integration with external widebands using liner analog signal wire * 2) 8-point interpolation curve to emulate a wide-band with a narrow-band sensor. * 3) CJ125 internal wideband controller is known to work with both 4.2 and 4.9 * */ #include "ego.h" #include "interpolation.h" #include "engine.h" #include "adc_inputs.h" #include "cyclic_buffer.h" #if EFI_CJ125 #include "cj125.h" #endif /* EFI_CJ125 */ EXTERN_ENGINE; #ifdef EFI_NARROW_EGO_AVERAGING // Needed by narrow EGOs (see updateEgoAverage()). // getAfr() is called at ~50Hz, so we store at most (1<<3)*32 EGO values for ~5 secs. #define EGO_AVG_SHIFT 3 #define EGO_AVG_BUF_SIZE 32 // 32*sizeof(float) static bool useAveraging = false; // Circular running-average buffer, used by CIC-like averaging filter static cyclic_buffer egoAfrBuf; // Total ego iterations (>240 days max. for 10ms update period) static int totalEgoCnt = 0; // We need this to calculate the real number of values stored in the buffer. static int prevEgoCnt = 0; // todo: move it to engineConfiguration static const float stoichAfr = 14.7f; static const float maxAfrDeviation = 5.0f; // 9.7..19.7 static const int minAvgSize = (EGO_AVG_BUF_SIZE / 2); // ~0.6 sec for 20ms period of 'fast' callback, and it matches a lag time of most narrow EGOs static const int maxAvgSize = (EGO_AVG_BUF_SIZE - 1); // the whole buffer // we store the last measured AFR value to predict the current averaging window size static float lastAfr = stoichAfr; void initEgoAveraging(DECLARE_ENGINE_PARAMETER_SIGNATURE) { // Our averaging is intended for use only with Narrow EGOs. if (CONFIGB(afr_type) == ES_NarrowBand) { totalEgoCnt = prevEgoCnt = 0; egoAfrBuf.clear(); useAveraging = true; } } static float updateEgoAverage(float afr) { // use a variation of cascaded integrator-comb (CIC) filtering totalEgoCnt++; int localBufPos = (totalEgoCnt >> EGO_AVG_SHIFT) % EGO_AVG_BUF_SIZE; int localPrevBufPos = ((totalEgoCnt - 1) >> EGO_AVG_SHIFT) % EGO_AVG_BUF_SIZE; // reset old buffer cell if (localPrevBufPos != localBufPos) { egoAfrBuf.elements[localBufPos] = 0; // Remove (1 << EGO_AVG_SHIFT) elements from our circular buffer (except for the 1st cycle). if (totalEgoCnt >= (EGO_AVG_BUF_SIZE << EGO_AVG_SHIFT)) prevEgoCnt += (1 << EGO_AVG_SHIFT); } // integrator stage egoAfrBuf.elements[localBufPos] += afr; // Change window size depending on |AFR-stoich| deviation. // The narrow EGO is very noisy when AFR is close to shoich. // And we need the fastest EGO response when AFR has the extreme deviation (way too lean/rich). float avgSize = maxAvgSize;//interpolateClamped(minAvgSize, maxAfrDeviation, maxAvgSize, 0.0f, absF(lastAfr - stoichAfr)); // choose the number of recently filled buffer cells for averaging int avgCnt = (int)efiRound(avgSize, 1.0f) << EGO_AVG_SHIFT; // limit averaging count to the real stored count int startAvgCnt = maxI(totalEgoCnt - avgCnt, prevEgoCnt); // return moving average of N last sums float egoAfrSum = 0; for (int i = (totalEgoCnt >> EGO_AVG_SHIFT); i >= (startAvgCnt >> EGO_AVG_SHIFT); i--) { egoAfrSum += egoAfrBuf.elements[i % EGO_AVG_BUF_SIZE]; } // we divide by a real number of stored values to get an exact average return egoAfrSum / float(totalEgoCnt - startAvgCnt); } #else void initEgoAveraging(DECLARE_ENGINE_PARAMETER_SIGNATURE) { } #endif bool hasAfrSensor(DECLARE_ENGINE_PARAMETER_SIGNATURE) { #if EFI_CJ125 && HAL_USE_SPI if (CONFIGB(isCJ125Enabled)) { return cjHasAfrSensor(PASS_ENGINE_PARAMETER_SIGNATURE); } #endif /* EFI_CJ125 && HAL_USE_SPI */ return engineConfiguration->afr.hwChannel != EFI_ADC_NONE; } float getAfr(DECLARE_ENGINE_PARAMETER_SIGNATURE) { #if EFI_CJ125 && HAL_USE_SPI if (CONFIGB(isCJ125Enabled)) { return cjGetAfr(PASS_ENGINE_PARAMETER_SIGNATURE); } #endif /* EFI_CJ125 && HAL_USE_SPI */ afr_sensor_s * sensor = &CONFIG(afr); float volts = getVoltageDivided("ego", sensor->hwChannel PASS_ENGINE_PARAMETER_SUFFIX); if (CONFIGB(afr_type) == ES_NarrowBand) { float afr = interpolate2d("narrow", volts, engineConfiguration->narrowToWideOxygenBins, engineConfiguration->narrowToWideOxygen); #ifdef EFI_NARROW_EGO_AVERAGING if (useAveraging) afr = updateEgoAverage(afr); return (lastAfr = afr); #else return afr; #endif } return interpolateMsg("AFR", sensor->v1, sensor->value1, sensor->v2, sensor->value2, volts) + engineConfiguration->egoValueShift; } static void initEgoSensor(afr_sensor_s *sensor, ego_sensor_e type) { switch (type) { case ES_BPSX_D1: /** * This decodes BPSX D1 Wideband Controller analog signal */ sensor->v1 = 0; sensor->value1 = 9; sensor->v2 = 5; sensor->value2 = 19; break; case ES_Innovate_MTX_L: sensor->v1 = 0; sensor->value1 = 7.35; sensor->v2 = 5; sensor->value2 = 22.39; break; case ES_14Point7_Free: sensor->v1 = 0; sensor->value1 = 9.996; sensor->v2 = 5; sensor->value2 = 19.992; break; // technically 14Point7 and PLX use the same scale case ES_PLX: sensor->v1 = 0; sensor->value1 = 10; sensor->v2 = 5; sensor->value2 = 20; break; case ES_NarrowBand: sensor->v1 = 0.1; sensor->value1 = 15; sensor->v2 = 0.9; sensor->value2 = 14; break; default: firmwareError(CUSTOM_EGO_TYPE, "Unexpected EGO %d", type); break; } } void setEgoSensor(ego_sensor_e type DECLARE_CONFIG_PARAMETER_SUFFIX) { CONFIGB(afr_type) = type; initEgoSensor(&engineConfiguration->afr, type); }