/* * @file spark_logic.cpp * * @date Sep 15, 2016 * @author Andrey Belomutskiy, (c) 2012-2019 */ #include "global.h" #include "os_access.h" #include "engine_math.h" #include "utlist.h" #include "event_queue.h" #include "perf_trace.h" #if EFI_TUNER_STUDIO #include "tunerstudio_configuration.h" #endif /* EFI_TUNER_STUDIO */ EXTERN_ENGINE; #if EFI_UNIT_TEST extern bool verboseMode; #endif /* EFI_UNIT_TEST */ static cyclic_buffer ignitionErrorDetection; static Logging *logger; static const char *prevSparkName = nullptr; int isInjectionEnabled(DECLARE_ENGINE_PARAMETER_SIGNATURE) { // todo: is this worth a method? should this be inlined? return CONFIG(isInjectionEnabled); } int isIgnitionTimingError(void) { return ignitionErrorDetection.sum(6) > 4; } static void fireSparkBySettingPinLow(IgnitionEvent *event, IgnitionOutputPin *output) { #if EFI_UNIT_TEST Engine *engine = event->engine; #endif /* EFI_UNIT_TEST */ #if SPARK_EXTREME_LOGGING scheduleMsg(logger, "spark goes low %d %s %d current=%d cnt=%d id=%d", getRevolutionCounter(), output->name, (int)getTimeNowUs(), output->currentLogicValue, output->outOfOrder, event->sparkId); #endif /* FUEL_MATH_EXTREME_LOGGING */ /** * there are two kinds of 'out-of-order' * 1) low goes before high, everything is fine after words * * 2) we have an un-matched low followed by legit pairs */ output->signalFallSparkId = event->sparkId; if (!output->currentLogicValue) { warning(CUSTOM_OUT_OF_ORDER_COIL, "out-of-order coil off %s", output->getName()); output->outOfOrder = true; } output->setLow(); #if EFI_PROD_CODE if (CONFIG(dizzySparkOutputPin) != GPIO_UNASSIGNED) { enginePins.dizzyOutput.setLow(); } #endif /* EFI_PROD_CODE */ } // todo: make this a class method? #define assertPinAssigned(output) { \ if (!output->isInitialized()) { \ warning(CUSTOM_OBD_COIL_PIN_NOT_ASSIGNED, "no_pin_cl #%s", (output)->getName()); \ } \ } static void prepareCylinderIgnitionSchedule(angle_t dwellAngle, floatms_t sparkDwell, IgnitionEvent *event DECLARE_ENGINE_PARAMETER_SUFFIX) { // todo: clean up this implementation? does not look too nice as is. // let's save planned duration so that we can later compare it with reality event->sparkDwell = sparkDwell; // change of sign here from 'before TDC' to 'after TDC' angle_t ignitionPositionWithinEngineCycle = ENGINE(ignitionPositionWithinEngineCycle[event->cylinderIndex]); assertAngleRange(ignitionPositionWithinEngineCycle, "aPWEC", CUSTOM_ERR_6566); cfg_float_t_1f timing_offset_cylinder = CONFIG(timing_offset_cylinder[event->cylinderIndex]); const angle_t localAdvance = -ENGINE(engineState.timingAdvance) + ignitionPositionWithinEngineCycle + timing_offset_cylinder; efiAssertVoid(CUSTOM_ERR_6689, !cisnan(localAdvance), "findAngle#9"); efiAssertVoid(CUSTOM_ERR_6589, !cisnan(localAdvance), "localAdvance#1"); const int index = ENGINE(ignitionPin[event->cylinderIndex]); const int coilIndex = ID2INDEX(getCylinderId(index PASS_ENGINE_PARAMETER_SUFFIX)); IgnitionOutputPin *output = &enginePins.coils[coilIndex]; IgnitionOutputPin *secondOutput; if (getCurrentIgnitionMode(PASS_ENGINE_PARAMETER_SIGNATURE) == IM_WASTED_SPARK && CONFIG(twoWireBatchIgnition)) { int secondIndex = index + CONFIG(specs.cylindersCount) / 2; int secondCoilIndex = ID2INDEX(getCylinderId(secondIndex PASS_ENGINE_PARAMETER_SUFFIX)); secondOutput = &enginePins.coils[secondCoilIndex]; assertPinAssigned(secondOutput); } else { secondOutput = nullptr; } assertPinAssigned(output); event->outputs[0] = output; event->outputs[1] = secondOutput; event->advance = localAdvance; angle_t a = localAdvance - dwellAngle; efiAssertVoid(CUSTOM_ERR_6590, !cisnan(a), "findAngle#5"); assertAngleRange(a, "findAngle#a6", CUSTOM_ERR_6550); TRIGGER_SHAPE(findTriggerPosition(&event->dwellPosition, a PASS_CONFIG_PARAM(engineConfiguration->globalTriggerAngleOffset))); #if FUEL_MATH_EXTREME_LOGGING printf("addIgnitionEvent %s ind=%d\n", output->name, event->dwellPosition.triggerEventIndex); // scheduleMsg(logger, "addIgnitionEvent %s ind=%d", output->name, event->dwellPosition->eventIndex); #endif /* FUEL_MATH_EXTREME_LOGGING */ } void fireSparkAndPrepareNextSchedule(IgnitionEvent *event) { for (int i = 0; i< MAX_OUTPUTS_FOR_IGNITION;i++) { IgnitionOutputPin *output = event->outputs[i]; if (output != NULL) { fireSparkBySettingPinLow(event, output); } } #if !EFI_UNIT_TEST if (engineConfiguration->debugMode == DBG_DWELL_METRIC) { #if EFI_TUNER_STUDIO uint32_t actualDwellDurationNt = getTimeNowLowerNt() - event->actualStartOfDwellNt; /** * ratio of desired dwell duration to actual dwell duration gives us some idea of how good is input trigger jitter */ float ratio = NT2US(actualDwellDurationNt) / 1000.0 / event->sparkDwell; // todo: smarted solution for index to field mapping if (event->cylinderIndex == 0) { tsOutputChannels.debugFloatField1 = ratio; } else if (event->cylinderIndex == 1) { tsOutputChannels.debugFloatField2 = ratio; } else if (event->cylinderIndex == 2) { tsOutputChannels.debugFloatField3 = ratio; } else if (event->cylinderIndex == 3) { tsOutputChannels.debugFloatField4 = ratio; } #endif } #endif /* EFI_UNIT_TEST */ #if EFI_UNIT_TEST Engine *engine = event->engine; EXPAND_Engine; #endif /* EFI_UNIT_TEST */ // now that we've just fired a coil let's prepare the new schedule for the next engine revolution angle_t dwellAngle = ENGINE(engineState.dwellAngle); floatms_t sparkDwell = ENGINE(engineState.sparkDwell); if (cisnan(dwellAngle) || cisnan(sparkDwell)) { // we are here if engine has just stopped return; } prepareCylinderIgnitionSchedule(dwellAngle, sparkDwell, event PASS_ENGINE_PARAMETER_SUFFIX); } static void startDwellByTurningSparkPinHigh(IgnitionEvent *event, IgnitionOutputPin *output) { #if EFI_UNIT_TEST Engine *engine = event->engine; EXPAND_Engine; #endif /* EFI_UNIT_TEST */ // todo: no reason for this to be disabled in unit_test mode?! #if ! EFI_UNIT_TEST if (GET_RPM_VALUE > 2 * engineConfiguration->cranking.rpm) { const char *outputName = output->getName(); if (prevSparkName == outputName && getCurrentIgnitionMode(PASS_ENGINE_PARAMETER_SIGNATURE) != IM_ONE_COIL) { warning(CUSTOM_OBD_SKIPPED_SPARK, "looks like skipped spark event %d %s", getRevolutionCounter(), outputName); } prevSparkName = outputName; } #endif /* EFI_UNIT_TEST */ #if SPARK_EXTREME_LOGGING scheduleMsg(logger, "spark goes high %d %s %d current=%d cnt=%d id=%d", getRevolutionCounter(), output->name, (int)getTimeNowUs(), output->currentLogicValue, output->outOfOrder, event->sparkId); #endif /* FUEL_MATH_EXTREME_LOGGING */ if (output->outOfOrder) { output->outOfOrder = false; if (output->signalFallSparkId == event->sparkId) { // let's save this coil if things do not look right return; } } output->setHigh(); #if EFI_PROD_CODE if (CONFIG(dizzySparkOutputPin) != GPIO_UNASSIGNED) { enginePins.dizzyOutput.setHigh(); } #endif /* EFI_PROD_CODE */ } void turnSparkPinHigh(IgnitionEvent *event) { event->actualStartOfDwellNt = getTimeNowLowerNt(); for (int i = 0; i< MAX_OUTPUTS_FOR_IGNITION;i++) { IgnitionOutputPin *output = event->outputs[i]; if (output != NULL) { startDwellByTurningSparkPinHigh(event, output); } } } static bool assertNotInIgnitionList(AngleBasedEvent *head, AngleBasedEvent *element) { assertNotInListMethodBody(AngleBasedEvent, head, element, nextToothEvent) } /** * @return true if event corresponds to current tooth and was time-based scheduler * false if event was put into queue for scheduling at a later tooth */ static bool scheduleOrQueue(AngleBasedEvent *event, uint32_t trgEventIndex, angle_t advance, schfunc_t callback, void *param DECLARE_ENGINE_PARAMETER_SUFFIX) { TRIGGER_SHAPE(findTriggerPosition(&event->position, advance PASS_CONFIG_PARAM(engineConfiguration->globalTriggerAngleOffset))); /** * todo: extract a "scheduleForAngle" method with best implementation into a separate utility method * * Here's the status as of Nov 2018: * "scheduleForLater" uses time only and for best precision it's best to use "scheduleForLater" only * once we hit the last trigger tooth prior to needed event. This case we use as much trigger position angle as possible * and only use less precise RPM-based time calculation for the last portion of the angle, the one between two teeth closest to the * desired angle moment. * * At the moment we only have time-based scheduler. I believe what needs to be added is a trigger-event based scheduler on top of the * time-based schedule. This case we would be firing events with best possible angle precision. * */ if (event->position.triggerEventIndex == trgEventIndex) { /** * Spark should be fired before the next trigger event - time-based delay is best precision possible */ float timeTillIgnitionUs = ENGINE(rpmCalculator.oneDegreeUs) * event->position.angleOffsetFromTriggerEvent; scheduling_s * sDown = &event->scheduling; engine->executor.scheduleForLater(sDown, (int) timeTillIgnitionUs, callback, param); return true; } else { event->action.setAction(callback, param); /** * Spark should be scheduled in relation to some future trigger event, this way we get better firing precision */ bool isPending = assertNotInIgnitionList(ENGINE(ignitionEventsHead), event); if (isPending) { #if SPARK_EXTREME_LOGGING scheduleMsg(logger, "isPending thus nt adding to queue index=%d rev=%d now=%d", trgEventIndex, getRevolutionCounter(), (int)getTimeNowUs()); #endif /* FUEL_MATH_EXTREME_LOGGING */ } else { LL_APPEND2(ENGINE(ignitionEventsHead), event, nextToothEvent); } return false; } } static ALWAYS_INLINE void handleSparkEvent(bool limitedSpark, uint32_t trgEventIndex, IgnitionEvent *iEvent, int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) { angle_t advance = iEvent->advance; const floatms_t dwellMs = ENGINE(engineState.sparkDwell); if (cisnan(dwellMs) || dwellMs <= 0) { warning(CUSTOM_DWELL, "invalid dwell to handle: %.2f at %d", dwellMs, rpm); return; } if (cisnan(advance)) { warning(CUSTOM_ERR_6688, "NaN advance"); return; } floatus_t chargeDelayUs = ENGINE(rpmCalculator.oneDegreeUs) * iEvent->dwellPosition.angleOffsetFromTriggerEvent; int isIgnitionError = chargeDelayUs < 0; ignitionErrorDetection.add(isIgnitionError); if (isIgnitionError) { #if EFI_PROD_CODE scheduleMsg(logger, "Negative spark delay=%.2f", chargeDelayUs); #endif /* EFI_PROD_CODE */ chargeDelayUs = 0; return; } iEvent->sparkId = engine->globalSparkIdCounter++; /** * We are alternating two event lists in order to avoid a potential issue around revolution boundary * when an event is scheduled within the next revolution. */ scheduling_s * sUp = &iEvent->dwellStartTimer; /** * The start of charge is always within the current trigger event range, so just plain time-based scheduling */ if (!limitedSpark) { #if SPARK_EXTREME_LOGGING scheduleMsg(logger, "scheduling sparkUp ind=%d %d %s now=%d %d later id=%d", trgEventIndex, getRevolutionCounter(), iEvent->getOutputForLoggins()->name, (int)getTimeNowUs(), (int)chargeDelayUs, iEvent->sparkId); #endif /* FUEL_MATH_EXTREME_LOGGING */ /** * Note how we do not check if spark is limited or not while scheduling 'spark down' * This way we make sure that coil dwell started while spark was enabled would fire and not burn * the coil. */ engine->executor.scheduleForLater(sUp, chargeDelayUs, (schfunc_t) &turnSparkPinHigh, iEvent); } /** * Spark event is often happening during a later trigger event timeframe * TODO: improve precision */ efiAssertVoid(CUSTOM_ERR_6591, !cisnan(advance), "findAngle#4"); assertAngleRange(advance, "findAngle#a5", CUSTOM_ERR_6549); bool scheduled = scheduleOrQueue(&iEvent->sparkEvent, trgEventIndex, advance, (schfunc_t)fireSparkAndPrepareNextSchedule, iEvent PASS_ENGINE_PARAMETER_SUFFIX); if (scheduled) { #if SPARK_EXTREME_LOGGING scheduleMsg(logger, "scheduling sparkDown ind=%d %d %s now=%d later id=%d", trgEventIndex, getRevolutionCounter(), iEvent->getOutputForLoggins()->name, (int)getTimeNowUs(), iEvent->sparkId); #endif /* FUEL_MATH_EXTREME_LOGGING */ } else { #if SPARK_EXTREME_LOGGING scheduleMsg(logger, "to queue sparkDown ind=%d %d %s now=%d for id=%d", trgEventIndex, getRevolutionCounter(), iEvent->getOutputForLoggins()->name, (int)getTimeNowUs(), iEvent->sparkEvent.position.triggerEventIndex); #endif /* FUEL_MATH_EXTREME_LOGGING */ } #if EFI_UNIT_TEST if (verboseMode) { printf("spark dwell@ %d/%d spark@ %d/%d id=%d\r\n", iEvent->dwellPosition.triggerEventIndex, (int)iEvent->dwellPosition.angleOffsetFromTriggerEvent, iEvent->sparkEvent.position.triggerEventIndex, (int)iEvent->sparkEvent.position.angleOffsetFromTriggerEvent, iEvent->sparkId); } #endif } void initializeIgnitionActions(DECLARE_ENGINE_PARAMETER_SIGNATURE) { IgnitionEventList *list = &engine->ignitionEvents; angle_t dwellAngle = ENGINE(engineState.dwellAngle); floatms_t sparkDwell = ENGINE(engineState.sparkDwell); if (cisnan(ENGINE(engineState.timingAdvance)) || cisnan(dwellAngle)) { // error should already be reported // need to invalidate previous ignition schedule list->isReady = false; return; } efiAssertVoid(CUSTOM_ERR_6592, engineConfiguration->specs.cylindersCount > 0, "cylindersCount"); for (int cylinderIndex = 0; cylinderIndex < CONFIG(specs.cylindersCount); cylinderIndex++) { list->elements[cylinderIndex].cylinderIndex = cylinderIndex; #if EFI_UNIT_TEST list->elements[cylinderIndex].engine = engine; #endif /* EFI_UNIT_TEST */ prepareCylinderIgnitionSchedule(dwellAngle, sparkDwell, &list->elements[cylinderIndex] PASS_ENGINE_PARAMETER_SUFFIX); } list->isReady = true; } static ALWAYS_INLINE void prepareIgnitionSchedule(DECLARE_ENGINE_PARAMETER_SIGNATURE) { engine->m.beforeIgnitionSch = getTimeNowLowerNt(); /** * TODO: warning. there is a bit of a hack here, todo: improve. * currently output signals/times dwellStartTimer from the previous revolutions could be * still used because they have crossed the revolution boundary * but we are already re-purposing the output signals, but everything works because we * are not affecting that space in memory. todo: use two instances of 'ignitionSignals' */ operation_mode_e operationMode = engine->getOperationMode(PASS_ENGINE_PARAMETER_SIGNATURE); float maxAllowedDwellAngle = (int) (getEngineCycle(operationMode) / 2); // the cast is about making Coverity happy if (getCurrentIgnitionMode(PASS_ENGINE_PARAMETER_SIGNATURE) == IM_ONE_COIL) { maxAllowedDwellAngle = getEngineCycle(operationMode) / engineConfiguration->specs.cylindersCount / 1.1; } if (engine->engineState.dwellAngle == 0) { warning(CUSTOM_ZERO_DWELL, "dwell is zero?"); } if (engine->engineState.dwellAngle > maxAllowedDwellAngle) { warning(CUSTOM_DWELL_TOO_LONG, "dwell angle too long: %.2f", engine->engineState.dwellAngle); } // todo: add some check for dwell overflow? like 4 times 6 ms while engine cycle is less then that initializeIgnitionActions(PASS_ENGINE_PARAMETER_SIGNATURE); engine->m.ignitionSchTime = getTimeNowLowerNt() - engine->m.beforeIgnitionSch; } static void scheduleAllSparkEventsUntilNextTriggerTooth(uint32_t trgEventIndex DECLARE_ENGINE_PARAMETER_SUFFIX) { AngleBasedEvent *current, *tmp; LL_FOREACH_SAFE2(ENGINE(ignitionEventsHead), current, tmp, nextToothEvent) { if (current->position.triggerEventIndex == trgEventIndex) { // time to fire a spark which was scheduled previously LL_DELETE2(ENGINE(ignitionEventsHead), current, nextToothEvent); scheduling_s * sDown = ¤t->scheduling; #if SPARK_EXTREME_LOGGING scheduleMsg(logger, "time to invoke ind=%d %d %d", trgEventIndex, getRevolutionCounter(), (int)getTimeNowUs()); #endif /* FUEL_MATH_EXTREME_LOGGING */ float timeTillIgnitionUs = ENGINE(rpmCalculator.oneDegreeUs) * current->position.angleOffsetFromTriggerEvent; engine->executor.scheduleForLater(sDown, (int) timeTillIgnitionUs, (schfunc_t) current->action.getCallback(), current->action.getArgument()); } } } void onTriggerEventSparkLogic(bool limitedSpark, uint32_t trgEventIndex, int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) { ScopePerf perf(PE::OnTriggerEventSparkLogic); if (!isValidRpm(rpm) || !CONFIG(isIgnitionEnabled)) { // this might happen for instance in case of a single trigger event after a pause return; } if (!ENGINE(ignitionEvents.isReady)) { prepareIgnitionSchedule(PASS_ENGINE_PARAMETER_SIGNATURE); } /** * Ignition schedule is defined once per revolution * See initializeIgnitionActions() */ scheduleAllSparkEventsUntilNextTriggerTooth(trgEventIndex PASS_ENGINE_PARAMETER_SUFFIX); // scheduleSimpleMsg(&logger, "eventId spark ", eventIndex); if (ENGINE(ignitionEvents.isReady)) { for (int i = 0; i < CONFIG(specs.cylindersCount); i++) { IgnitionEvent *event = &ENGINE(ignitionEvents.elements[i]); if (event->dwellPosition.triggerEventIndex != trgEventIndex) continue; handleSparkEvent(limitedSpark, trgEventIndex, event, rpm PASS_ENGINE_PARAMETER_SUFFIX); } } } void initSparkLogic(Logging *sharedLogger) { logger = sharedLogger; } /** * Number of sparks per physical coil * @see getNumberOfInjections */ int getNumberOfSparks(ignition_mode_e mode DECLARE_ENGINE_PARAMETER_SUFFIX) { switch (mode) { case IM_ONE_COIL: return engineConfiguration->specs.cylindersCount; case IM_TWO_COILS: return engineConfiguration->specs.cylindersCount / 2; case IM_INDIVIDUAL_COILS: return 1; case IM_WASTED_SPARK: return 2; default: firmwareError(CUSTOM_ERR_IGNITION_MODE, "Unexpected ignition_mode_e %d", mode); return 1; } } /** * @see getInjectorDutyCycle */ percent_t getCoilDutyCycle(int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) { floatms_t totalPerCycle = ENGINE(engineState.sparkDwell) * getNumberOfSparks(getCurrentIgnitionMode(PASS_ENGINE_PARAMETER_SIGNATURE) PASS_ENGINE_PARAMETER_SUFFIX); floatms_t engineCycleDuration = getCrankshaftRevolutionTimeMs(rpm) * (engine->getOperationMode(PASS_ENGINE_PARAMETER_SIGNATURE) == TWO_STROKE ? 1 : 2); return 100 * totalPerCycle / engineCycleDuration; }