/** * @file engine_controller.cpp * @brief Controllers package entry point code * * * * @date Feb 7, 2013 * @author Andrey Belomutskiy, (c) 2012-2020 * * This file is part of rusEfi - see http://rusefi.com * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . */ #include "pch.h" #include "os_access.h" #include "trigger_central.h" #include "fsio_core.h" #include "fsio_impl.h" #include "idle_thread.h" #include "advance_map.h" #include "main_trigger_callback.h" #include "flash_main.h" #include "bench_test.h" #include "os_util.h" #include "electronic_throttle.h" #include "map_averaging.h" #include "high_pressure_fuel_pump.h" #include "malfunction_central.h" #include "malfunction_indicator.h" #include "speed_density.h" #include "local_version_holder.h" #include "alternator_controller.h" #include "fuel_math.h" #include "spark_logic.h" #include "aux_valves.h" #include "accelerometer.h" #include "vvt.h" #include "boost_control.h" #include "launch_control.h" #include "tachometer.h" #include "gppwm.h" #include "date_stamp.h" #include "buttonshift.h" #include "start_stop.h" #include "dynoview.h" #include "vr_pwm.h" #if EFI_SENSOR_CHART #include "sensor_chart.h" #endif /* EFI_SENSOR_CHART */ #if EFI_TUNER_STUDIO #include "tunerstudio.h" #endif /* EFI_TUNER_STUDIO */ #if EFI_LOGIC_ANALYZER #include "logic_analyzer.h" #endif /* EFI_LOGIC_ANALYZER */ #if HAL_USE_ADC #include "AdcConfiguration.h" #endif /* HAL_USE_ADC */ #if defined(EFI_BOOTLOADER_INCLUDE_CODE) #include "bootloader/bootloader.h" #endif /* EFI_BOOTLOADER_INCLUDE_CODE */ #include "periodic_task.h" #if ! EFI_UNIT_TEST #include "init.h" #endif /* EFI_UNIT_TEST */ #if EFI_PROD_CODE #include "pwm_tester.h" #include "lcd_controller.h" #endif /* EFI_PROD_CODE */ #if EFI_CJ125 #include "cj125.h" #endif /* EFI_CJ125 */ #if !EFI_UNIT_TEST /** * Would love to pass reference to configuration object into constructor but C++ does allow attributes after parenthesized initializer */ Engine ___engine CCM_OPTIONAL; Engine * engine = &___engine; #endif /* EFI_UNIT_TEST */ void initDataStructures(DECLARE_ENGINE_PARAMETER_SIGNATURE) { #if EFI_ENGINE_CONTROL initFuelMap(PASS_ENGINE_PARAMETER_SIGNATURE); initTimingMap(PASS_ENGINE_PARAMETER_SIGNATURE); initSpeedDensity(PASS_ENGINE_PARAMETER_SIGNATURE); #endif // EFI_ENGINE_CONTROL } #if !EFI_UNIT_TEST static void doPeriodicSlowCallback(DECLARE_ENGINE_PARAMETER_SIGNATURE); class PeriodicFastController : public PeriodicTimerController { void PeriodicTask() override { engine->periodicFastCallback(); } int getPeriodMs() override { return FAST_CALLBACK_PERIOD_MS; } }; class PeriodicSlowController : public PeriodicTimerController { void PeriodicTask() override { doPeriodicSlowCallback(PASS_ENGINE_PARAMETER_SIGNATURE); } int getPeriodMs() override { // no reason to have this configurable, looks like everyone is happy with 20Hz return SLOW_CALLBACK_PERIOD_MS; } }; static PeriodicFastController fastController; static PeriodicSlowController slowController; class EngineStateBlinkingTask : public PeriodicTimerController { int getPeriodMs() override { return 50; } void PeriodicTask() override { counter++; #if EFI_SHAFT_POSITION_INPUT bool is_running = ENGINE(rpmCalculator).isRunning(); #else bool is_running = false; #endif /* EFI_SHAFT_POSITION_INPUT */ if (is_running) { // blink in running mode enginePins.runningLedPin.setValue(counter % 2); } else { int is_cranking = ENGINE(rpmCalculator).isCranking(); enginePins.runningLedPin.setValue(is_cranking); } } private: int counter = 0; }; static EngineStateBlinkingTask engineStateBlinkingTask; /** * number of SysClock ticks in one ms */ #define TICKS_IN_MS (CH_CFG_ST_FREQUENCY / 1000) // todo: this overflows pretty fast! efitimems_t currentTimeMillis(void) { // todo: migrate to getTimeNowUs? or not? return chVTGetSystemTimeX() / TICKS_IN_MS; } // todo: this overflows pretty fast! efitimesec_t getTimeNowSeconds(void) { return currentTimeMillis() / 1000; } static void resetAccel(void) { engine->tpsAccelEnrichment.resetAE(); for (size_t i = 0; i < efi::size(engine->injectionEvents.elements); i++) { engine->injectionEvents.elements[i].wallFuel.resetWF(); } } static void doPeriodicSlowCallback(DECLARE_ENGINE_PARAMETER_SIGNATURE) { #if EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT efiAssertVoid(CUSTOM_ERR_6661, getCurrentRemainingStack() > 64, "lowStckOnEv"); slowStartStopButtonCallback(PASS_ENGINE_PARAMETER_SIGNATURE); efitick_t nowNt = getTimeNowNt(); for (int bankIndex = 0; bankIndex < BANKS_COUNT; bankIndex++) { for (int camIndex = 0; camIndex < CAMS_PER_BANK; camIndex++) { if (nowNt - engine->triggerCentral.vvtSyncTimeNt[bankIndex][camIndex] >= NT_PER_SECOND) { // loss of VVT sync engine->triggerCentral.vvtSyncTimeNt[bankIndex][camIndex] = 0; } } } /** * Update engine RPM state if needed (check timeouts). */ bool isSpinning = engine->rpmCalculator.checkIfSpinning(nowNt PASS_ENGINE_PARAMETER_SUFFIX); if (!isSpinning) { engine->rpmCalculator.setStopSpinning(PASS_ENGINE_PARAMETER_SIGNATURE); } if (ENGINE(directSelfStimulation) || engine->rpmCalculator.isStopped()) { /** * rusEfi usually runs on hardware which halts execution while writing to internal flash, so we * postpone writes to until engine is stopped. Writes in case of self-stimulation are fine. * * todo: allow writing if 2nd bank of flash is used */ #if EFI_INTERNAL_FLASH writeToFlashIfPending(); #endif /* EFI_INTERNAL_FLASH */ } if (engine->rpmCalculator.isStopped()) { resetAccel(); } else { updatePrimeInjectionPulseState(PASS_ENGINE_PARAMETER_SIGNATURE); } if (engine->versionForConfigurationListeners.isOld(engine->getGlobalConfigurationVersion())) { updateAccelParameters(); } engine->periodicSlowCallback(PASS_ENGINE_PARAMETER_SIGNATURE); #endif /* if EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT */ if (CONFIG(tcuEnabled)) { engine->gearController->update(); } } void initPeriodicEvents(DECLARE_ENGINE_PARAMETER_SIGNATURE) { slowController.Start(); fastController.Start(); } char * getPinNameByAdcChannel(const char *msg, adc_channel_e hwChannel, char *buffer) { #if HAL_USE_ADC if (!isAdcChannelValid(hwChannel)) { strcpy(buffer, "NONE"); } else { strcpy(buffer, portname(getAdcChannelPort(msg, hwChannel))); itoa10(&buffer[2], getAdcChannelPin(hwChannel)); } #else strcpy(buffer, "NONE"); #endif /* HAL_USE_ADC */ return buffer; } static char pinNameBuffer[16]; #if HAL_USE_ADC extern AdcDevice fastAdc; #endif /* HAL_USE_ADC */ static void printAnalogChannelInfoExt(const char *name, adc_channel_e hwChannel, float adcVoltage, float dividerCoeff) { #if HAL_USE_ADC if (!isAdcChannelValid(hwChannel)) { efiPrintf("ADC is not assigned for %s", name); return; } float voltage = adcVoltage * dividerCoeff; efiPrintf("%s ADC%d %s %s adc=%.2f/input=%.2fv/divider=%.2f", name, hwChannel, getAdc_channel_mode_e(getAdcMode(hwChannel)), getPinNameByAdcChannel(name, hwChannel, pinNameBuffer), adcVoltage, voltage, dividerCoeff); #endif /* HAL_USE_ADC */ } static void printAnalogChannelInfo(const char *name, adc_channel_e hwChannel) { #if HAL_USE_ADC printAnalogChannelInfoExt(name, hwChannel, getVoltage(name, hwChannel PASS_ENGINE_PARAMETER_SUFFIX), engineConfiguration->analogInputDividerCoefficient); #endif /* HAL_USE_ADC */ } static void printAnalogInfo(void) { efiPrintf("analogInputDividerCoefficient: %.2f", engineConfiguration->analogInputDividerCoefficient); printAnalogChannelInfo("hip9011", engineConfiguration->hipOutputChannel); printAnalogChannelInfo("fuel gauge", engineConfiguration->fuelLevelSensor); printAnalogChannelInfo("TPS1 Primary", engineConfiguration->tps1_1AdcChannel); printAnalogChannelInfo("TPS1 Secondary", engineConfiguration->tps1_2AdcChannel); printAnalogChannelInfo("TPS2 Primary", engineConfiguration->tps2_1AdcChannel); printAnalogChannelInfo("TPS2 Secondary", engineConfiguration->tps2_2AdcChannel); printAnalogChannelInfo("LPF", engineConfiguration->lowPressureFuel.hwChannel); printAnalogChannelInfo("HPF", engineConfiguration->highPressureFuel.hwChannel); printAnalogChannelInfo("pPS1", engineConfiguration->throttlePedalPositionAdcChannel); printAnalogChannelInfo("pPS2", engineConfiguration->throttlePedalPositionSecondAdcChannel); printAnalogChannelInfo("CLT", engineConfiguration->clt.adcChannel); printAnalogChannelInfo("IAT", engineConfiguration->iat.adcChannel); printAnalogChannelInfo("AuxT1", engineConfiguration->auxTempSensor1.adcChannel); printAnalogChannelInfo("AuxT2", engineConfiguration->auxTempSensor2.adcChannel); printAnalogChannelInfo("MAF", engineConfiguration->mafAdcChannel); for (int i = 0; i < AUX_ANALOG_INPUT_COUNT ; i++) { adc_channel_e ch = engineConfiguration->auxAnalogInputs[i]; printAnalogChannelInfo("Aux analog", ch); } printAnalogChannelInfo("AFR", engineConfiguration->afr.hwChannel); printAnalogChannelInfo("MAP", engineConfiguration->map.sensor.hwChannel); printAnalogChannelInfo("BARO", engineConfiguration->baroSensor.hwChannel); printAnalogChannelInfo("OilP", engineConfiguration->oilPressure.hwChannel); printAnalogChannelInfo("CJ UR", engineConfiguration->cj125ur); printAnalogChannelInfo("CJ UA", engineConfiguration->cj125ua); printAnalogChannelInfo("HIP9011", engineConfiguration->hipOutputChannel); printAnalogChannelInfoExt("Vbatt", engineConfiguration->vbattAdcChannel, getVoltage("vbatt", engineConfiguration->vbattAdcChannel PASS_ENGINE_PARAMETER_SUFFIX), engineConfiguration->vbattDividerCoeff); } #define isOutOfBounds(offset) ((offset<0) || (offset) >= (int) sizeof(engine_configuration_s)) static void getShort(int offset) { if (isOutOfBounds(offset)) return; uint16_t *ptr = (uint16_t *) (&((char *) engineConfiguration)[offset]); uint16_t value = *ptr; /** * this response is part of rusEfi console API */ efiPrintf("short%s%d is %d", CONSOLE_DATA_PROTOCOL_TAG, offset, value); } static void getByte(int offset) { if (isOutOfBounds(offset)) return; uint8_t *ptr = (uint8_t *) (&((char *) engineConfiguration)[offset]); uint8_t value = *ptr; /** * this response is part of rusEfi console API */ efiPrintf("byte%s%d is %d", CONSOLE_DATA_PROTOCOL_TAG, offset, value); } static void onConfigurationChanged() { #if EFI_TUNER_STUDIO // on start-up rusEfi would read from working copy of TS while // we have a lot of console commands which write into real copy of configuration directly // we have a bit of a mess here syncTunerStudioCopy(); #endif /* EFI_TUNER_STUDIO */ incrementGlobalConfigurationVersion(PASS_ENGINE_PARAMETER_SIGNATURE); } static void setBit(const char *offsetStr, const char *bitStr, const char *valueStr) { int offset = atoi(offsetStr); if (absI(offset) == absI(ERROR_CODE)) { efiPrintf("invalid offset [%s]", offsetStr); return; } if (isOutOfBounds(offset)) { return; } int bit = atoi(bitStr); if (absI(bit) == absI(ERROR_CODE)) { efiPrintf("invalid bit [%s]", bitStr); return; } int value = atoi(valueStr); if (absI(value) == absI(ERROR_CODE)) { efiPrintf("invalid value [%s]", valueStr); return; } int *ptr = (int *) (&((char *) engineConfiguration)[offset]); *ptr ^= (-value ^ *ptr) & (1 << bit); /** * this response is part of rusEfi console API */ efiPrintf("bit%s%d/%d is %d", CONSOLE_DATA_PROTOCOL_TAG, offset, bit, value); onConfigurationChanged(); } static void setShort(const int offset, const int value) { if (isOutOfBounds(offset)) return; uint16_t *ptr = (uint16_t *) (&((char *) engineConfiguration)[offset]); *ptr = (uint16_t) value; getShort(offset); onConfigurationChanged(); } static void setByte(const int offset, const int value) { if (isOutOfBounds(offset)) return; uint8_t *ptr = (uint8_t *) (&((char *) engineConfiguration)[offset]); *ptr = (uint8_t) value; getByte(offset); onConfigurationChanged(); } static void getBit(int offset, int bit) { if (isOutOfBounds(offset)) return; int *ptr = (int *) (&((char *) engineConfiguration)[offset]); int value = (*ptr >> bit) & 1; /** * this response is part of rusEfi console API */ efiPrintf("bit%s%d/%d is %d", CONSOLE_DATA_PROTOCOL_TAG, offset, bit, value); } static void getInt(int offset) { if (isOutOfBounds(offset)) return; int *ptr = (int *) (&((char *) engineConfiguration)[offset]); int value = *ptr; /** * this response is part of rusEfi console API */ efiPrintf("int%s%d is %d", CONSOLE_DATA_PROTOCOL_TAG, offset, value); } static void setInt(const int offset, const int value) { if (isOutOfBounds(offset)) return; int *ptr = (int *) (&((char *) engineConfiguration)[offset]); *ptr = value; getInt(offset); onConfigurationChanged(); } static void getFloat(int offset) { if (isOutOfBounds(offset)) return; float *ptr = (float *) (&((char *) engineConfiguration)[offset]); float value = *ptr; /** * this response is part of rusEfi console API */ efiPrintf("float%s%d is %.5f", CONSOLE_DATA_PROTOCOL_TAG, offset, value); } static void setFloat(const char *offsetStr, const char *valueStr) { int offset = atoi(offsetStr); if (absI(offset) == absI(ERROR_CODE)) { efiPrintf("invalid offset [%s]", offsetStr); return; } if (isOutOfBounds(offset)) return; float value = atoff(valueStr); if (cisnan(value)) { efiPrintf("invalid value [%s]", valueStr); return; } float *ptr = (float *) (&((char *) engineConfiguration)[offset]); *ptr = value; getFloat(offset); onConfigurationChanged(); } static void initConfigActions(void) { addConsoleActionSS("set_float", (VoidCharPtrCharPtr) setFloat); addConsoleActionII("set_int", (VoidIntInt) setInt); addConsoleActionII("set_short", (VoidIntInt) setShort); addConsoleActionII("set_byte", (VoidIntInt) setByte); addConsoleActionSSS("set_bit", setBit); addConsoleActionI("get_float", getFloat); addConsoleActionI("get_int", getInt); addConsoleActionI("get_short", getShort); addConsoleActionI("get_byte", getByte); addConsoleActionII("get_bit", getBit); } #endif /* EFI_UNIT_TEST */ // this method is used by real firmware and simulator and unit test void commonInitEngineController(DECLARE_ENGINE_PARAMETER_SIGNATURE) { initInterpolation(); #if EFI_SIMULATOR printf("commonInitEngineController\n"); #endif #if !EFI_UNIT_TEST initConfigActions(); #endif /* EFI_UNIT_TEST */ #if EFI_ENGINE_CONTROL /** * This has to go after 'enginePins.startPins()' in order to * properly detect un-assigned output pins */ prepareShapes(PASS_ENGINE_PARAMETER_SIGNATURE); #endif /* EFI_PROD_CODE && EFI_ENGINE_CONTROL */ #if EFI_SENSOR_CHART initSensorChart(); #endif /* EFI_SENSOR_CHART */ #if EFI_PROD_CODE || EFI_SIMULATOR initSettings(); if (hasFirmwareError()) { return; } #endif #if !EFI_UNIT_TEST // This is tested independently - don't configure sensors for tests. // This lets us selectively mock them for each test. initNewSensors(); #endif /* EFI_UNIT_TEST */ initSensors(PASS_ENGINE_PARAMETER_SIGNATURE); initAccelEnrichment(PASS_ENGINE_PARAMETER_SIGNATURE); #if EFI_FSIO initFsioImpl(PASS_ENGINE_PARAMETER_SIGNATURE); #endif /* EFI_FSIO */ initGpPwm(PASS_ENGINE_PARAMETER_SIGNATURE); #if EFI_IDLE_CONTROL startIdleThread(PASS_ENGINE_PARAMETER_SIGNATURE); #endif /* EFI_IDLE_CONTROL */ initButtonShift(PASS_ENGINE_PARAMETER_SIGNATURE); initButtonDebounce(); initStartStopButton(PASS_ENGINE_PARAMETER_SIGNATURE); #if EFI_ELECTRONIC_THROTTLE_BODY initElectronicThrottle(PASS_ENGINE_PARAMETER_SIGNATURE); #endif /* EFI_ELECTRONIC_THROTTLE_BODY */ #if EFI_MAP_AVERAGING if (engineConfiguration->isMapAveragingEnabled) { initMapAveraging(PASS_ENGINE_PARAMETER_SIGNATURE); } #endif /* EFI_MAP_AVERAGING */ #if EFI_BOOST_CONTROL initBoostCtrl(PASS_ENGINE_PARAMETER_SIGNATURE); #endif /* EFI_BOOST_CONTROL */ #if EFI_LAUNCH_CONTROL initLaunchControl(PASS_ENGINE_PARAMETER_SIGNATURE); #endif #if EFI_SHAFT_POSITION_INPUT /** * there is an implicit dependency on the fact that 'tachometer' listener is the 1st listener - this case * other listeners can access current RPM value */ initRpmCalculator(PASS_ENGINE_PARAMETER_SIGNATURE); #endif /* EFI_SHAFT_POSITION_INPUT */ #if (EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT) || EFI_SIMULATOR || EFI_UNIT_TEST if (CONFIG(isEngineControlEnabled)) { initAuxValves(PASS_ENGINE_PARAMETER_SIGNATURE); /** * This method adds trigger listener which actually schedules ignition */ initMainEventListener(PASS_ENGINE_PARAMETER_SIGNATURE); #if EFI_HPFP initHPFP(PASS_ENGINE_PARAMETER_SIGNATURE); #endif // EFI_HPFP } #endif /* EFI_ENGINE_CONTROL */ initTachometer(PASS_ENGINE_PARAMETER_SIGNATURE); } // Returns false if there's an obvious problem with the loaded configuration bool validateConfig(DECLARE_CONFIG_PARAMETER_SIGNATURE) { if (CONFIG(specs.cylindersCount) > MAX_CYLINDER_COUNT) { firmwareError(OBD_PCM_Processor_Fault, "Invalid cylinder count: %d", CONFIG(specs.cylindersCount)); return false; } // Fueling { ensureArrayIsAscending("VE load", config->veLoadBins); ensureArrayIsAscending("VE RPM", config->veRpmBins); ensureArrayIsAscending("Lambda/AFR load", config->lambdaLoadBins); ensureArrayIsAscending("Lambda/AFR RPM", config->lambdaRpmBins); ensureArrayIsAscending("Fuel CLT mult", config->cltFuelCorrBins); ensureArrayIsAscending("Fuel IAT mult", config->iatFuelCorrBins); ensureArrayIsAscending("Injection phase load", config->injPhaseLoadBins); ensureArrayIsAscending("Injection phase RPM", config->injPhaseRpmBins); ensureArrayIsAscending("TPS/TPS AE from", config->tpsTpsAccelFromRpmBins); ensureArrayIsAscending("TPS/TPS AE to", config->tpsTpsAccelToRpmBins); } // Ignition { ensureArrayIsAscending("Dwell RPM", engineConfiguration->sparkDwellRpmBins); ensureArrayIsAscending("Ignition load", config->ignitionLoadBins); ensureArrayIsAscending("Ignition RPM", config->ignitionRpmBins); ensureArrayIsAscending("Ignition CLT corr", engineConfiguration->cltTimingBins); ensureArrayIsAscending("Ignition IAT corr IAT", config->ignitionIatCorrLoadBins); ensureArrayIsAscending("Ignition IAT corr RPM", config->ignitionIatCorrRpmBins); } if (config->mapEstimateTpsBins[1] != 0) { // only validate map if not all zeroes default ensureArrayIsAscending("Map estimate TPS", config->mapEstimateTpsBins); } if (config->mapEstimateRpmBins[1] != 0) { // only validate map if not all zeroes default ensureArrayIsAscending("Map estimate RPM", config->mapEstimateRpmBins); } ensureArrayIsAscending("MAF decoding", config->mafDecodingBins); // Cranking tables ensureArrayIsAscending("Cranking fuel mult", config->crankingFuelBins); ensureArrayIsAscending("Cranking duration", config->crankingCycleBins); ensureArrayIsAscending("Cranking TPS", engineConfiguration->crankingTpsBins); // Idle tables ensureArrayIsAscending("Idle target RPM", engineConfiguration->cltIdleRpmBins); ensureArrayIsAscending("Idle warmup mult", config->cltIdleCorrBins); if (engineConfiguration->iacCoastingBins[1] != 0) { // only validate map if not all zeroes default ensureArrayIsAscending("Idle coasting position", engineConfiguration->iacCoastingBins); } if (config->idleVeBins[1] != 0) { // only validate map if not all zeroes default ensureArrayIsAscending("Idle VE", config->idleVeBins); } if (config->idleAdvanceBins[1] != 0) { // only validate map if not all zeroes default ensureArrayIsAscending("Idle timing", config->idleAdvanceBins); } for (size_t index = 0; index < efi::size(CONFIG(vrThreshold)); index++) { auto& cfg = CONFIG(vrThreshold)[index]; if (cfg.pin == GPIO_UNASSIGNED) { continue; } ensureArrayIsAscending("VR Bins", cfg.rpmBins); ensureArrayIsAscending("VR values", cfg.values); } // Boost ensureArrayIsAscending("Boost control TPS", config->boostTpsBins); ensureArrayIsAscending("Boost control RPM", config->boostRpmBins); // ETB ensureArrayIsAscending("Pedal map pedal", config->pedalToTpsPedalBins); ensureArrayIsAscending("Pedal map RPM", config->pedalToTpsRpmBins); // VVT if (CONFIG(camInputs[0]) != GPIO_UNASSIGNED) { ensureArrayIsAscending("VVT intake load", config->vvtTable1LoadBins); ensureArrayIsAscending("VVT intake RPM", config->vvtTable1RpmBins); } #if CAM_INPUTS_COUNT != 1 if (CONFIG(camInputs[1]) != GPIO_UNASSIGNED) { ensureArrayIsAscending("VVT exhaust load", config->vvtTable2LoadBins); ensureArrayIsAscending("VVT exhaust RPM", config->vvtTable2RpmBins); } #endif return true; } #if !EFI_UNIT_TEST void initEngineContoller(DECLARE_ENGINE_PARAMETER_SUFFIX) { addConsoleAction("analoginfo", printAnalogInfo); #if EFI_PROD_CODE && EFI_ENGINE_CONTROL initBenchTest(); #endif /* EFI_PROD_CODE && EFI_ENGINE_CONTROL */ commonInitEngineController(); #if EFI_LOGIC_ANALYZER if (engineConfiguration->isWaveAnalyzerEnabled) { initWaveAnalyzer(); } #endif /* EFI_LOGIC_ANALYZER */ #if EFI_CJ125 /** * this uses SimplePwm which depends on scheduler, has to be initialized after scheduler */ initCJ125(PASS_ENGINE_PARAMETER_SIGNATURE); #endif /* EFI_CJ125 */ if (hasFirmwareError()) { return; } engineStateBlinkingTask.Start(); initVrPwm(PASS_ENGINE_PARAMETER_SIGNATURE); #if EFI_PWM_TESTER initPwmTester(); #endif /* EFI_PWM_TESTER */ #if EFI_ALTERNATOR_CONTROL initAlternatorCtrl(PASS_ENGINE_PARAMETER_SIGNATURE); #endif /* EFI_ALTERNATOR_CONTROL */ #if EFI_AUX_PID initAuxPid(); #endif /* EFI_AUX_PID */ #if EFI_MALFUNCTION_INDICATOR initMalfunctionIndicator(); #endif /* EFI_MALFUNCTION_INDICATOR */ initEgoAveraging(PASS_ENGINE_PARAMETER_SIGNATURE); #if EFI_PROD_CODE addConsoleAction("reset_accel", resetAccel); #endif /* EFI_PROD_CODE */ #if EFI_HD44780_LCD initLcdController(); #endif /* EFI_HD44780_LCD */ } /** * these two variables are here only to let us know how much RAM is available, also these * help to notice when RAM usage goes up - if a code change adds to RAM usage these variables would fail * linking process which is the way to raise the alarm * * You get "cannot move location counter backwards" linker error when you run out of RAM. When you run out of RAM you shall reduce these * UNUSED_SIZE constants. */ #ifndef RAM_UNUSED_SIZE #define RAM_UNUSED_SIZE 5000 #endif #ifndef CCM_UNUSED_SIZE #define CCM_UNUSED_SIZE 2600 #endif static char UNUSED_RAM_SIZE[RAM_UNUSED_SIZE]; static char UNUSED_CCM_SIZE[CCM_UNUSED_SIZE] CCM_OPTIONAL; /** * See also VCS_VERSION */ int getRusEfiVersion(void) { if (UNUSED_RAM_SIZE[0] != 0) return 123; // this is here to make the compiler happy about the unused array if (UNUSED_CCM_SIZE[0] * 0 != 0) return 3211; // this is here to make the compiler happy about the unused array #if defined(EFI_BOOTLOADER_INCLUDE_CODE) // make bootloader code happy too if (initBootloader() != 0) return 123; #endif /* EFI_BOOTLOADER_INCLUDE_CODE */ return VCS_DATE; } #endif /* EFI_UNIT_TEST */