/** * @file idle_thread.cpp * @brief Idle Air Control valve thread. * * This thread looks at current RPM and decides if it should increase or decrease IAC duty cycle. * This file is has the hardware & scheduling logic, desired idle level lives separately * * * @date May 23, 2013 * @author Andrey Belomutskiy, (c) 2012-2018 * * This file is part of rusEfi - see http://rusefi.com * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . * */ #include "global.h" #include "engine_configuration.h" #include "rpm_calculator.h" #include "pwm_generator.h" #include "idle_thread.h" #include "pin_repository.h" #include "engine.h" #include "periodic_controller.h" #include "stepper.h" #if EFI_IDLE_CONTROL || defined(__DOXYGEN__) #include "allsensors.h" static Logging *logger; #if EFI_TUNER_STUDIO || defined(__DOXYGEN__) extern TunerStudioOutputChannels tsOutputChannels; #endif /* EFI_TUNER_STUDIO */ EXTERN_ENGINE ; static bool shouldResetPid = false; // we might reset PID state when the state is changed, but only if needed (See autoIdle()) static bool mightResetPid = false; #if EFI_IDLE_INCREMENTAL_PID_CIC || defined(__DOXYGEN__) // Use new PID with CIC integrator static PidCic idlePid(&engineConfiguration->idleRpmPid); #else static Pid idlePid(&engineConfiguration->idleRpmPid); #endif /* EFI_IDLE_INCREMENTAL_PID_CIC */ // todo: extract interface for idle valve hardware, with solenoid and stepper implementations? static SimplePwm idleSolenoid("idle"); static StepperMotor iacMotor; static uint32_t lastCrankingCyclesCounter = 0; static float lastCrankingIacPosition; typedef enum { INIT = 0, TPS_THRESHOLD = 1, RPM_DEAD_ZONE = 2, PID_VALUE = 3, PWM_PRETTY_CLOSE = 4, PID_UPPER = 5, ADJUSTING = 8, BLIP = 16, } idle_state_e; static idle_state_e idleState = INIT; /** * that's current position with CLT and IAT corrections */ static percent_t currentIdlePosition = -100.0f; /** * the same as currentIdlePosition, but without adjustments (iacByTpsTaper, afterCrankingIACtaperDuration) */ static percent_t baseIdlePosition = currentIdlePosition; /** * When the IAC position value change is insignificant (lower than this threshold), leave the poor valve alone * todo: why do we have this logic? is this ever useful? * See */ static percent_t idlePositionSensitivityThreshold = 0.0f; void idleDebug(const char *msg, percent_t value) { scheduleMsg(logger, "idle debug: %s%.2f", msg, value); } static void showIdleInfo(void) { const char * idleModeStr = getIdle_mode_e(engineConfiguration->idleMode); scheduleMsg(logger, "idleMode=%s position=%.2f isStepper=%s", idleModeStr, getIdlePosition(), boolToString(CONFIGB(useStepperIdle))); if (CONFIGB(useStepperIdle)) { scheduleMsg(logger, "directionPin=%s reactionTime=%.2f", hwPortname(CONFIGB(idle).stepperDirectionPin), engineConfiguration->idleStepperReactionTime); scheduleMsg(logger, "stepPin=%s steps=%d", hwPortname(CONFIGB(idle).stepperStepPin), engineConfiguration->idleStepperTotalSteps); scheduleMsg(logger, "enablePin=%s/%d", hwPortname(engineConfiguration->stepperEnablePin), engineConfiguration->stepperEnablePinMode); } else { scheduleMsg(logger, "idle valve freq=%d on %s", CONFIGB(idle).solenoidFrequency, hwPortname(CONFIGB(idle).solenoidPin)); } if (engineConfiguration->idleMode == IM_AUTO) { idlePid.showPidStatus(logger, "idle"); } } void setIdleMode(idle_mode_e value) { engineConfiguration->idleMode = value ? IM_AUTO : IM_MANUAL; showIdleInfo(); } static void applyIACposition(percent_t position) { if (CONFIGB(useStepperIdle)) { iacMotor.setTargetPosition(position / 100 * engineConfiguration->idleStepperTotalSteps); } else { /** * currently idle level is an percent value (0-100 range), and PWM takes a float in the 0..1 range * todo: unify? */ idleSolenoid.setSimplePwmDutyCycle(position / 100.0); } } static percent_t manualIdleController(float cltCorrection) { percent_t correctedPosition = cltCorrection * CONFIGB(manIdlePosition); // let's put the value into the right range correctedPosition = maxF(correctedPosition, 0.01); correctedPosition = minF(correctedPosition, 99.9); return correctedPosition; } void setIdleValvePosition(int positionPercent) { if (positionPercent < 1 || positionPercent > 99) return; scheduleMsg(logger, "setting idle valve position %d", positionPercent); showIdleInfo(); // todo: this is not great that we have to write into configuration here CONFIGB(manIdlePosition) = positionPercent; } static percent_t blipIdlePosition; static efitimeus_t timeToStopBlip = 0; static efitimeus_t timeToStopIdleTest = 0; /** * I use this questionable feature to tune acceleration enrichment */ static void blipIdle(int idlePosition, int durationMs) { if (timeToStopBlip != 0) { return; // already in idle blip } blipIdlePosition = idlePosition; timeToStopBlip = getTimeNowUs() + 1000 * durationMs; } static void finishIdleTestIfNeeded() { if (timeToStopIdleTest != 0 && getTimeNowUs() > timeToStopIdleTest) timeToStopIdleTest = 0; } static void undoIdleBlipIfNeeded() { if (timeToStopBlip != 0 && getTimeNowUs() > timeToStopBlip) { timeToStopBlip = 0; } } percent_t getIdlePosition(void) { return currentIdlePosition; } /** * @return idle valve position percentage for automatic closed loop mode */ static percent_t automaticIdleController() { percent_t tpsPos = getTPS(PASS_ENGINE_PARAMETER_SIGNATURE); if (tpsPos > CONFIGB(idlePidDeactivationTpsThreshold)) { // Don't store old I and D terms if PID doesn't work anymore. // Otherwise they will affect the idle position much later, when the throttle is closed. if (mightResetPid) { mightResetPid = false; shouldResetPid = true; } idleState = TPS_THRESHOLD; // just leave IAC position as is (but don't return currentIdlePosition - it may already contain additionalAir) return baseIdlePosition; } // get Target RPM for Auto-PID from a separate table int targetRpm = getTargetRpmForIdleCorrection(PASS_ENGINE_PARAMETER_SIGNATURE); // check if within the dead zone int rpm = GET_RPM(); if (absI(rpm - targetRpm) <= CONFIG(idlePidRpmDeadZone)) { idleState = RPM_DEAD_ZONE; // current RPM is close enough, no need to change anything return baseIdlePosition; } // When rpm < targetRpm, there's a risk of dropping RPM too low - and the engine dies out. // So PID reaction should be increased by adding extra percent to PID-error: percent_t errorAmpCoef = 1.0f; if (rpm < targetRpm) errorAmpCoef += (float)CONFIG(pidExtraForLowRpm) / PERCENT_MULT; // If errorAmpCoef > 1.0, then PID thinks that RPM is lower than it is, and controls IAC more aggressively idlePid.setErrorAmplification(errorAmpCoef); percent_t newValue = idlePid.getOutput(targetRpm, rpm, engineConfiguration->idleRpmPid.periodMs); idleState = PID_VALUE; // the state of PID has been changed, so we might reset it now, but only when needed (see idlePidDeactivationTpsThreshold) mightResetPid = true; #if EFI_IDLE_INCREMENTAL_PID_CIC || defined(__DOXYGEN__) // Treat the 'newValue' as if it contains not an actual IAC position, but an incremental delta. // So we add this delta to the base IAC position, with a smooth taper for TPS transients. newValue = baseIdlePosition + interpolateClamped(0.0f, newValue, CONFIGB(idlePidDeactivationTpsThreshold), 0.0f, tpsPos); // apply the PID limits newValue = maxF(newValue, CONFIG(idleRpmPid.minValue)); newValue = minF(newValue, CONFIG(idleRpmPid.maxValue)); #endif /* EFI_IDLE_INCREMENTAL_PID_CIC */ // Interpolate to the manual position when RPM is close to the upper RPM limit (if idlePidRpmUpperLimit is set). // If RPM increases and the throttle is closed, then we're in coasting mode, and we should smoothly disable auto-pid. // If we just leave IAC at baseIdlePosition (as in case of TPS deactivation threshold), RPM would get stuck. // That's why there's 'useIacTableForCoasting' setting which involves a separate IAC position table for coasting (iacCoasting). // Currently it's user-defined. But eventually we'll use a real calculated and stored IAC position instead. int idlePidLowerRpm = targetRpm + CONFIG(idlePidRpmDeadZone); if (CONFIG(idlePidRpmUpperLimit) > 0) { idleState = PID_UPPER; if (CONFIGB(useIacTableForCoasting) && !cisnan(engine->sensors.clt)) { percent_t iacPosForCoasting = interpolate2d("iacCoasting", engine->sensors.clt, CONFIG(iacCoastingBins), CONFIG(iacCoasting), CLT_CURVE_SIZE); newValue = interpolateClamped(idlePidLowerRpm, newValue, idlePidLowerRpm + CONFIG(idlePidRpmUpperLimit), iacPosForCoasting, rpm); } else { // Well, just leave it as is, without PID regulation... newValue = baseIdlePosition; } } return newValue; } class IdleController : public PeriodicController { public: IdleController() : PeriodicController("IdleValve") { } private: void PeriodicTask(efitime_t nowNt) override { UNUSED(nowNt); setPeriod(NOT_TOO_OFTEN(10 /* ms */, engineConfiguration->idleRpmPid.periodMs)); /* * Here we have idle logic thread - actual stepper movement is implemented in a separate * working thread, * @see stepper.cpp */ if (engineConfiguration->isVerboseIAC && engineConfiguration->idleMode == IM_AUTO) { scheduleMsg(logger, "state %d", idleState); idlePid.showPidStatus(logger, "idle"); } if (shouldResetPid) { idlePid.reset(); // alternatorPidResetCounter++; shouldResetPid = false; } #if EFI_PROD_CODE || defined(__DOXYGEN__) // this value is not used yet if (CONFIGB(clutchDownPin) != GPIO_UNASSIGNED) { engine->clutchDownState = efiReadPin(CONFIGB(clutchDownPin)); } if (hasAcToggle(PASS_ENGINE_PARAMETER_SIGNATURE)) { engine->acSwitchState = getAcToggle(PASS_ENGINE_PARAMETER_SIGNATURE); } if (CONFIGB(clutchUpPin) != GPIO_UNASSIGNED) { engine->clutchUpState = efiReadPin(CONFIGB(clutchUpPin)); } if (engineConfiguration->brakePedalPin != GPIO_UNASSIGNED) { engine->brakePedalState = efiReadPin(engineConfiguration->brakePedalPin); } #endif /* EFI_PROD_CODE */ finishIdleTestIfNeeded(); undoIdleBlipIfNeeded(); float clt = engine->sensors.clt; bool isRunning = engine->rpmCalculator.isRunning(PASS_ENGINE_PARAMETER_SIGNATURE); // cltCorrection is used only for cranking or running in manual mode float cltCorrection; if (cisnan(clt)) cltCorrection = 1.0f; // Use separate CLT correction table for cranking else if (engineConfiguration->overrideCrankingIacSetting && !isRunning) { cltCorrection = interpolate2d("cltCrankingT", clt, config->cltCrankingCorrBins, config->cltCrankingCorr, CLT_CRANKING_CURVE_SIZE) / PERCENT_MULT; } else { // this value would be ignored if running in AUTO mode // but we need it while cranking in AUTO mode cltCorrection = interpolate2d("cltT", clt, config->cltIdleCorrBins, config->cltIdleCorr, CLT_CURVE_SIZE) / PERCENT_MULT; } percent_t iacPosition; if (timeToStopBlip != 0) { iacPosition = blipIdlePosition; baseIdlePosition = iacPosition; idleState = BLIP; } else if (!isRunning) { // during cranking it's always manual mode, PID would make no sence during cranking iacPosition = cltCorrection * engineConfiguration->crankingIACposition; // save cranking position & cycles counter for taper transition lastCrankingIacPosition = iacPosition; lastCrankingCyclesCounter = engine->rpmCalculator.getRevolutionCounterSinceStart(); baseIdlePosition = iacPosition; } else { if (engineConfiguration->idleMode == IM_MANUAL) { // let's re-apply CLT correction iacPosition = manualIdleController(cltCorrection); } else { iacPosition = automaticIdleController(); } // store 'base' iacPosition without adjustments baseIdlePosition = iacPosition; percent_t tpsPos = getTPS(PASS_ENGINE_PARAMETER_SIGNATURE); float additionalAir = (float)engineConfiguration->iacByTpsTaper; iacPosition += interpolateClamped(0.0f, 0.0f, CONFIGB(idlePidDeactivationTpsThreshold), additionalAir, tpsPos); // taper transition from cranking to running (uint32_t to float conversion is safe here) if (engineConfiguration->afterCrankingIACtaperDuration > 0) iacPosition = interpolateClamped(lastCrankingCyclesCounter, lastCrankingIacPosition, lastCrankingCyclesCounter + engineConfiguration->afterCrankingIACtaperDuration, iacPosition, engine->rpmCalculator.getRevolutionCounterSinceStart()); } if (engineConfiguration->debugMode == DBG_IDLE_CONTROL) { if (engineConfiguration->idleMode == IM_AUTO) { #if EFI_TUNER_STUDIO || defined(__DOXYGEN__) // see also tsOutputChannels->idlePosition idlePid.postState(&tsOutputChannels, 1000000); tsOutputChannels.debugIntField4 = idleState; #endif /* EFI_TUNER_STUDIO */ } else { #if EFI_TUNER_STUDIO || defined(__DOXYGEN__) tsOutputChannels.debugFloatField1 = iacPosition; tsOutputChannels.debugIntField1 = iacMotor.getTargetPosition(); #endif /* EFI_TUNER_STUDIO */ } } // The threshold is dependent on IAC type (see initIdleHardware()) if (absF(iacPosition - currentIdlePosition) < idlePositionSensitivityThreshold) { idleState = (idle_state_e)(idleState | PWM_PRETTY_CLOSE); return; // value is pretty close, let's leave the poor valve alone } currentIdlePosition = iacPosition; idleState = (idle_state_e)(idleState | ADJUSTING); applyIACposition(currentIdlePosition); } }; static IdleController instance; void setTargetIdleRpm(int value) { setTargetRpmCurve(value PASS_ENGINE_PARAMETER_SUFFIX); scheduleMsg(logger, "target idle RPM %d", value); showIdleInfo(); } static void apply(void) { idlePid.updateFactors(engineConfiguration->idleRpmPid.pFactor, engineConfiguration->idleRpmPid.iFactor, engineConfiguration->idleRpmPid.dFactor); } void setIdleOffset(float value) { engineConfiguration->idleRpmPid.offset = value; showIdleInfo(); } void setIdlePFactor(float value) { engineConfiguration->idleRpmPid.pFactor = value; apply(); showIdleInfo(); } void setIdleIFactor(float value) { engineConfiguration->idleRpmPid.iFactor = value; apply(); showIdleInfo(); } void setIdleDFactor(float value) { engineConfiguration->idleRpmPid.dFactor = value; apply(); showIdleInfo(); } void setIdleDT(int value) { engineConfiguration->idleRpmPid.periodMs = value; apply(); showIdleInfo(); } void onConfigurationChangeIdleCallback(engine_configuration_s *previousConfiguration) { shouldResetPid = !idlePid.isSame(&previousConfiguration->idleRpmPid); idleSolenoid.setFrequency(CONFIGB(idle).solenoidFrequency); } /** * Idle test would activate the solenoid for three seconds */ void startIdleBench(void) { timeToStopIdleTest = getTimeNowUs() + MS2US(3000); // 3 seconds scheduleMsg(logger, "idle valve bench test"); showIdleInfo(); } void setDefaultIdleParameters(void) { engineConfiguration->idleRpmPid.pFactor = 0.1f; engineConfiguration->idleRpmPid.iFactor = 0.05f; engineConfiguration->idleRpmPid.dFactor = 0.0f; engineConfiguration->idleRpmPid.periodMs = 10; } static void applyIdleSolenoidPinState(PwmConfig *state, int stateIndex) { efiAssertVoid(CUSTOM_ERR_6645, stateIndex < PWM_PHASE_MAX_COUNT, "invalid stateIndex"); efiAssertVoid(CUSTOM_ERR_6646, state->multiWave.waveCount == 1, "invalid idle waveCount"); OutputPin *output = state->outputPins[0]; int value = state->multiWave.getChannelState(/*channelIndex*/0, stateIndex); if (!value /* always allow turning solenoid off */ || (GET_RPM_VALUE != 0 || timeToStopIdleTest != 0) /* do not run solenoid unless engine is spinning or bench testing in progress */ ) { output->setValue(value); } } static void initIdleHardware() { if (CONFIGB(useStepperIdle)) { iacMotor.initialize(CONFIGB(idle).stepperStepPin, CONFIGB(idle).stepperDirectionPin, engineConfiguration->stepperDirectionPinMode, engineConfiguration->idleStepperReactionTime, engineConfiguration->idleStepperTotalSteps, engineConfiguration->stepperEnablePin, engineConfiguration->stepperEnablePinMode, logger); // This greatly improves PID accuracy for steppers with a small number of steps idlePositionSensitivityThreshold = 1.0f / engineConfiguration->idleStepperTotalSteps; } else { /** * Start PWM for idleValvePin */ startSimplePwmExt(&idleSolenoid, "Idle Valve", &engine->executor, CONFIGB(idle).solenoidPin, &enginePins.idleSolenoidPin, CONFIGB(idle).solenoidFrequency, CONFIGB(manIdlePosition) / 100, applyIdleSolenoidPinState); idlePositionSensitivityThreshold = 0.0f; } } void startIdleThread(Logging*sharedLogger) { logger = sharedLogger; // todo: re-initialize idle pins on the fly initIdleHardware(); //scheduleMsg(logger, "initial idle %d", idlePositionController.value); instance.Start(); // this is neutral/no gear switch input. on Miata it's wired both to clutch pedal and neutral in gearbox // this switch is not used yet if (CONFIGB(clutchDownPin) != GPIO_UNASSIGNED) { efiSetPadMode("clutch down switch", CONFIGB(clutchDownPin), getInputMode(CONFIGB(clutchDownPinMode))); } if (CONFIGB(clutchUpPin) != GPIO_UNASSIGNED) { efiSetPadMode("clutch up switch", CONFIGB(clutchUpPin), getInputMode(CONFIGB(clutchUpPinMode))); } if (engineConfiguration->brakePedalPin != GPIO_UNASSIGNED) { #if EFI_PROD_CODE || defined(__DOXYGEN__) efiSetPadMode("brake pedal switch", engineConfiguration->brakePedalPin, getInputMode(engineConfiguration->brakePedalPinMode)); #endif /* EFI_PROD_CODE */ } addConsoleAction("idleinfo", showIdleInfo); addConsoleActionII("blipidle", blipIdle); // split this whole file into manual controller and auto controller? move these commands into the file // which would be dedicated to just auto-controller? addConsoleAction("idlebench", startIdleBench); apply(); } #endif /* EFI_IDLE_CONTROL */