/** * @file trigger_structure.cpp * * @date Jan 20, 2014 * @author Andrey Belomutskiy, (c) 2012-2015 * * This file is part of rusEfi - see http://rusefi.com * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . */ #include "main.h" #include "trigger_structure.h" #include "error_handling.h" #include "trigger_decoder.h" #include "engine_math.h" EXTERN_ENGINE; trigger_shape_helper::trigger_shape_helper() { memset(&pinStates, 0, sizeof(pinStates)); for (int i = 0; i < TRIGGER_CHANNEL_COUNT; i++) { waves[i].init(pinStates[i]); } } TriggerShape::TriggerShape() : wave(switchTimesBuffer, NULL) { reset(OM_NONE, false); wave.waves = h.waves; // todo: false here, true in clear() what a mess! useRiseEdge = false; useOnlyPrimaryForSync = false; gapBothDirections = false; isSynchronizationNeeded = false; // todo: reuse 'clear' method? invertOnAdd = false; tdcPosition = 0; skippedToothCount = totalToothCount = 0; syncRatioFrom = syncRatioTo = 0; secondSyncRatioFrom = 0.000001; secondSyncRatioTo = 100000; memset(eventAngles, 0, sizeof(eventAngles)); memset(frontOnlyIndexes, 0, sizeof(frontOnlyIndexes)); memset(isFrontEvent, 0, sizeof(isFrontEvent)); memset(triggerIndexByAngle, 0, sizeof(triggerIndexByAngle)); #if EFI_UNIT_TEST || defined(__DOXYGEN__) memset(&triggerSignals, 0, sizeof(triggerSignals)); #endif } int TriggerShape::getSize() const { return size; } int TriggerShape::getTriggerShapeSynchPointIndex() { return triggerShapeSynchPointIndex; } void TriggerShape::calculateTriggerSynchPoint(DECLARE_ENGINE_PARAMETER_F) { trigger_config_s const*triggerConfig = &engineConfiguration->trigger; triggerShapeSynchPointIndex = findTriggerZeroEventIndex(this, triggerConfig PASS_ENGINE_PARAMETER); engine->engineCycleEventCount = getLength(); float firstAngle = getAngle(triggerShapeSynchPointIndex); int frontOnlyIndex = 0; for (int eventIndex = 0; eventIndex < engine->engineCycleEventCount; eventIndex++) { if (eventIndex == 0) { // explicit check for zero to avoid issues where logical zero is not exactly zero due to float nature eventAngles[0] = 0; // this value would be used in case of front-only eventAngles[1] = 0; frontOnlyIndexes[0] = 0; } else { int triggerDefinitionCoordinate = (triggerShapeSynchPointIndex + eventIndex) % engine->engineCycleEventCount; int triggerDefinitionIndex = triggerDefinitionCoordinate >= size ? triggerDefinitionCoordinate - size : triggerDefinitionCoordinate; float angle = getAngle(triggerDefinitionCoordinate) - firstAngle; fixAngle(angle); if (engineConfiguration->useOnlyFrontForTrigger) { if (isFrontEvent[triggerDefinitionIndex]) { frontOnlyIndex += 2; eventAngles[frontOnlyIndex] = angle; eventAngles[frontOnlyIndex + 1] = angle; } } else { eventAngles[eventIndex] = angle; } frontOnlyIndexes[eventIndex] = frontOnlyIndex; } } } void TriggerShape::clear() { tdcPosition = 0; setTriggerSynchronizationGap(2); // todo: true here, false in constructor() what a mess! useRiseEdge = true; invertOnAdd = false; gapBothDirections = false; } void TriggerShape::reset(operation_mode_e operationMode, bool needSecondTriggerInput) { this->operationMode = operationMode; size = 0; this->needSecondTriggerInput = needSecondTriggerInput; triggerShapeSynchPointIndex = 0; memset(initialState, 0, sizeof(initialState)); memset(switchTimesBuffer, 0, sizeof(switchTimesBuffer)); memset(expectedEventCount, 0, sizeof(expectedEventCount)); wave.reset(); previousAngle = 0; } int multi_wave_s::getChannelState(int channelIndex, int phaseIndex) const { return waves[channelIndex].pinStates[phaseIndex]; } int multi_wave_s::waveIndertionAngle(float angle, int size) const { for (int i = size - 1; i >= 0; i--) { if (angle > switchTimes[i]) return i + 1; } return 0; } int multi_wave_s::findAngleMatch(float angle, int size) const { for (int i = 0; i < size; i++) { if (isSameF(switchTimes[i], angle)) return i; } return EFI_ERROR_CODE; } void multi_wave_s::setSwitchTime(int index, float value) { switchTimes[index] = value; } TriggerState::TriggerState() { cycleCallback = NULL; shaft_is_synchronized = false; toothed_previous_time = 0; toothed_previous_duration = 0; durationBeforePrevious = 0; totalRevolutionCounter = 0; totalTriggerErrorCounter = 0; orderingErrorCounter = 0; currentDuration = 0; curSignal = SHAFT_PRIMARY_DOWN; prevSignal = SHAFT_PRIMARY_DOWN; prevCycleDuration = 0; startOfCycleNt = 0; resetRunningCounters(); resetCurrentCycleState(); memset(expectedTotalTime, 0, sizeof(expectedTotalTime)); totalEventCountBase = 0; isFirstEvent = true; } int TriggerState::getCurrentIndex() { return currentCycle.current_index; } efitime_t TriggerState::getStartOfRevolutionIndex() { return totalEventCountBase; } void TriggerState::resetRunningCounters() { runningRevolutionCounter = 0; runningTriggerErrorCounter = 0; runningOrderingErrorCounter = 0; } efitime_t TriggerState::getTotalEventCounter() { return totalEventCountBase + currentCycle.current_index; } int TriggerState::getTotalRevolutionCounter() { return totalRevolutionCounter; } void TriggerState::resetCurrentCycleState() { memset(currentCycle.eventCount, 0, sizeof(currentCycle.eventCount)); memset(currentCycle.timeOfPreviousEventNt, 0, sizeof(currentCycle.timeOfPreviousEventNt)); memset(currentCycle.totalTimeNt, 0, sizeof(currentCycle.totalTimeNt)); currentCycle.current_index = 0; } /** * Trigger event count equals engine cycle event count if we have a cam sensor. * Two trigger cycles make one engine cycle in case of a four stroke engine If we only have a cranksensor. */ uint32_t TriggerShape::getLength() const { return operationMode == FOUR_STROKE_CAM_SENSOR ? getSize() : 2 * getSize(); } float TriggerShape::getAngle(int index) const { // todo: why is this check here? looks like the code below could be used universally if (operationMode == FOUR_STROKE_CAM_SENSOR) { return getSwitchAngle(index); } /** * FOUR_STROKE_CRANK_SENSOR magic: * We have two crank shaft revolutions for each engine cycle * See also trigger_central.cpp * See also getEngineCycleEventCount() */ int triggerEventCounter = size; if (index < triggerEventCounter) { return getSwitchAngle(index); } else { return 360 + getSwitchAngle(index - triggerEventCounter); } } void TriggerShape::addEvent(float angle, trigger_wheel_e const waveIndex, trigger_value_e const stateParam, float filterLeft, float filterRight) { if (angle > filterLeft && angle < filterRight) addEvent(angle, waveIndex, stateParam); } operation_mode_e TriggerShape::getOperationMode() { return operationMode; } #if EFI_UNIT_TEST || defined(__DOXYGEN__) extern bool printTriggerDebug; #endif void TriggerShape::addEvent(float angle, trigger_wheel_e const waveIndex, trigger_value_e const stateParam) { efiAssertVoid(operationMode != OM_NONE, "operationMode not set"); efiAssertVoid(waveIndex!= T_SECONDARY || needSecondTriggerInput, "secondary needed or not?"); #if EFI_UNIT_TEST || defined(__DOXYGEN__) if (printTriggerDebug) { printf("addEvent %f\r\n", angle); } #endif trigger_value_e state; if (invertOnAdd) { state = (stateParam == TV_LOW) ? TV_HIGH : TV_LOW; } else { state = stateParam; } #if EFI_UNIT_TEST || defined(__DOXYGEN__) int signal = waveIndex * 1000 + stateParam; triggerSignals[size] = signal; #endif float engineCycle = getEngineCycle(operationMode); /** * While '720' value works perfectly it has not much sense for crank sensor-only scenario. * todo: accept angle as a value in the 0..1 range? */ angle /= engineCycle; #if EFI_PROD_CODE || defined(__DOXYGEN__) // todo: PASS_ENGINE? if (!engineConfiguration->useOnlyFrontForTrigger || stateParam == TV_HIGH) { expectedEventCount[waveIndex]++; } #endif efiAssertVoid(angle > 0, "angle should be positive"); if (size > 0) { if (angle <= previousAngle) { firmwareError("invalid angle order: %f and %f, size=%d", angle, previousAngle, size); return; } } previousAngle = angle; if (size == 0) { size = 1; for (int i = 0; i < PWM_PHASE_MAX_WAVE_PER_PWM; i++) { single_wave_s *wave = &this->wave.waves[i]; if (wave->pinStates == NULL) { firmwareError("wave pinStates is NULL"); return; } wave->pinStates[0] = initialState[i]; } isFrontEvent[0] = TV_HIGH == stateParam; wave.setSwitchTime(0, angle); wave.waves[waveIndex].pinStates[0] = state; return; } int exactMatch = wave.findAngleMatch(angle, size); if (exactMatch != EFI_ERROR_CODE) { firmwareError("same angle: not supported"); return; } int index = wave.waveIndertionAngle(angle, size); // shifting existing data // todo: does this logic actually work? I think it does not! for (int i = size - 1; i >= index; i--) { for (int j = 0; j < PWM_PHASE_MAX_WAVE_PER_PWM; j++) { wave.waves[j].pinStates[i + 1] = wave.getChannelState(j, index); } wave.setSwitchTime(i + 1, wave.getSwitchTime(i)); } isFrontEvent[index] = TV_HIGH == stateParam; if (index != size) { firmwareError("are we ever here?"); } // int index = size; size++; for (int i = 0; i < PWM_PHASE_MAX_WAVE_PER_PWM; i++) { wave.waves[i].pinStates[index] = wave.getChannelState(i, index - 1); } wave.setSwitchTime(index, angle); wave.waves[waveIndex].pinStates[index] = state; } int TriggerShape::getCycleDuration() const { return (operationMode == FOUR_STROKE_CAM_SENSOR) ? 720 : 360; } float TriggerShape::getSwitchAngle(int index) const { return getCycleDuration() * wave.getSwitchTime(index); } void multi_wave_s::checkSwitchTimes(int size) { checkSwitchTimes2(size, switchTimes); } void setVwConfiguration(TriggerShape *s) { efiAssertVoid(s != NULL, "TriggerShape is NULL"); operation_mode_e operationMode = FOUR_STROKE_CRANK_SENSOR; s->useRiseEdge = true; initializeSkippedToothTriggerShapeExt(s, 60, 2, operationMode); s->isSynchronizationNeeded = true; s->reset(operationMode, false); int totalTeethCount = 60; int skippedCount = 2; float engineCycle = getEngineCycle(operationMode); float toothWidth = 0.5; addSkippedToothTriggerEvents(T_PRIMARY, s, 60, 2, toothWidth, 0, engineCycle, NO_LEFT_FILTER, 690); float angleDown = engineCycle / totalTeethCount * (totalTeethCount - skippedCount - 1 + (1 - toothWidth) ); s->addEvent(0 + angleDown + 12, T_PRIMARY, TV_HIGH, NO_LEFT_FILTER, NO_RIGHT_FILTER); s->addEvent(0 + engineCycle, T_PRIMARY, TV_LOW, NO_LEFT_FILTER, NO_RIGHT_FILTER); s->setTriggerSynchronizationGap2(1.6, 4); } void setToothedWheelConfiguration(TriggerShape *s, int total, int skipped, operation_mode_e operationMode) { #if EFI_ENGINE_CONTROL || defined(__DOXYGEN__) s->useRiseEdge = true; initializeSkippedToothTriggerShapeExt(s, total, skipped, operationMode); #endif } void TriggerShape::setTriggerSynchronizationGap2(float syncRatioFrom, float syncRatioTo) { isSynchronizationNeeded = true; this->syncRatioFrom = syncRatioFrom; this->syncRatioTo = syncRatioTo; } void TriggerShape::setTriggerSynchronizationGap(float synchRatio) { setTriggerSynchronizationGap2(synchRatio * 0.75f, synchRatio * 1.25f); } void TriggerShape::setSecondTriggerSynchronizationGap2(float syncRatioFrom, float syncRatioTo) { isSynchronizationNeeded = true; this->secondSyncRatioFrom = syncRatioFrom; this->secondSyncRatioTo = syncRatioTo; } void TriggerShape::setSecondTriggerSynchronizationGap(float synchRatio) { setSecondTriggerSynchronizationGap2(synchRatio * 0.75f, synchRatio * 1.25f); } #define S24 (720.0f / 24 / 2) static float addAccordPair(TriggerShape *s, float sb, trigger_wheel_e const waveIndex) { s->addEvent(sb, waveIndex, TV_HIGH); sb += S24; s->addEvent(sb, waveIndex, TV_LOW); sb += S24; return sb; } #define DIP 7.5f static float addAccordPair3(TriggerShape *s, float sb) { sb += DIP; s->addEvent(sb, T_CHANNEL_3, TV_HIGH); sb += DIP; s->addEvent(sb, T_CHANNEL_3, TV_LOW); sb += 2 * DIP; return sb; } /** * Thank you Dip! * http://forum.pgmfi.org/viewtopic.php?f=2&t=15570start=210#p139007 */ void configureHondaAccordCDDip(TriggerShape *s) { s->reset(FOUR_STROKE_CAM_SENSOR, true); s->initialState[T_SECONDARY] = TV_HIGH; float sb = 0; sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); s->addEvent(90, T_SECONDARY, TV_LOW); sb = 90; sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); s->addEvent(180, T_SECONDARY, TV_HIGH); sb = 180; sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); s->addEvent(270, T_SECONDARY, TV_LOW); sb = 270; sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); s->addEvent(360.0f - DIP, T_PRIMARY, TV_HIGH); s->addEvent(360, T_SECONDARY, TV_HIGH); sb = 360; sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); s->addEvent(450, T_SECONDARY, TV_LOW); sb = 450; sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); s->addEvent(540, T_SECONDARY, TV_HIGH); sb = 540; sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); s->addEvent(630, T_SECONDARY, TV_LOW); sb = 630; sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); sb = addAccordPair3(s, sb); s->addEvent(720.0f - DIP, T_PRIMARY, TV_LOW); // s->addEvent(720.0f - 12 * sb, T_SECONDARY, TV_LOW); // s->addEvent(720.0f, T_SECONDARY, TV_LOW); s->addEvent(720.0f, T_SECONDARY, TV_HIGH); s->isSynchronizationNeeded = false; } void configureHondaAccordCD(TriggerShape *s, bool withOneEventSignal, bool withFourEventSignal, trigger_wheel_e const oneEventWave, trigger_wheel_e const fourEventWave, float prefix) { s->reset(FOUR_STROKE_CAM_SENSOR, true); // trigger_wheel_e const oneEventWave = T_CHANNEL_3; // bool withFourEventSignal = true; // trigger_wheel_e const fourEventWave = T_PRIMARY; float sb = 5.0f + prefix; float tdcWidth = 0.1854 * 720 / 4; s->isSynchronizationNeeded = false; sb = addAccordPair(s, sb, T_SECONDARY); if (withOneEventSignal) s->addEvent(sb - S24 / 2, oneEventWave, TV_HIGH); sb = addAccordPair(s, sb, T_SECONDARY); sb = addAccordPair(s, sb, T_SECONDARY); if (withOneEventSignal) s->addEvent(sb - S24 / 2, oneEventWave, TV_LOW); sb = addAccordPair(s, sb, T_SECONDARY); sb = addAccordPair(s, sb, T_SECONDARY); if (withFourEventSignal) { s->addEvent(1 * 180.0f + prefix - tdcWidth, fourEventWave, TV_HIGH); } sb = addAccordPair(s, sb, T_SECONDARY); if (withFourEventSignal) { s->addEvent(1 * 180.0f + prefix, fourEventWave, TV_LOW); } sb = addAccordPair(s, sb, T_SECONDARY); sb = addAccordPair(s, sb,T_SECONDARY); sb = addAccordPair(s, sb, T_SECONDARY); sb = addAccordPair(s, sb, T_SECONDARY); sb = addAccordPair(s, sb, T_SECONDARY); if (withFourEventSignal) { s->addEvent(2 * 180.0f + prefix - tdcWidth, fourEventWave, TV_HIGH); } sb = addAccordPair(s, sb, T_SECONDARY); if (withFourEventSignal) { s->addEvent(2 * 180.0f + prefix, fourEventWave, TV_LOW); } for (int i = 3; i <= 4; i++) { sb = addAccordPair(s, sb, T_SECONDARY); sb = addAccordPair(s, sb, T_SECONDARY); sb = addAccordPair(s, sb, T_SECONDARY); sb = addAccordPair(s, sb, T_SECONDARY); sb = addAccordPair(s, sb, T_SECONDARY); if (withFourEventSignal) { s->addEvent(i * 180.0f + prefix - tdcWidth, fourEventWave, TV_HIGH); } sb = addAccordPair(s, sb, T_SECONDARY); if (withFourEventSignal) { s->addEvent(i * 180.0f + prefix, fourEventWave, TV_LOW); } } }