/**
* @file engine_configuration.cpp
* @brief Utility method related to the engine configuration data structure.
*
* @date Nov 22, 2013
* @author Andrey Belomutskiy, (c) 2012-2020
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see .
*
*/
#include "pch.h"
#include "os_access.h"
#include "speed_density.h"
#include "advance_map.h"
#include "flash_main.h"
#include "hip9011_logic.h"
#include "bench_test.h"
#if EFI_MEMS
#include "accelerometer.h"
#endif
#include "defaults.h"
#include "bmw_m73.h"
#include "bmw_n73.h"
#include "citroenBerlingoTU3JP.h"
#include "custom_engine.h"
#include "dodge_neon.h"
#include "dodge_ram.h"
#include "engine_template.h"
#include "ford_aspire.h"
#include "ford_1995_inline_6.h"
#include "honda_accord.h"
#include "honda_k_dbc.h"
#include "honda_600.h"
#include "hyundai.h"
#include "GY6_139QMB.h"
#include "nissan_primera.h"
#include "nissan_vq.h"
#include "mazda_miata.h"
#include "mazda_miata_1_6.h"
#include "mazda_miata_na8.h"
#include "mazda_miata_nb.h"
#include "mazda_miata_vvt.h"
#include "mazda_626.h"
#include "m111.h"
#include "mercedes.h"
#include "mitsubishi.h"
#include "subaru.h"
#include "test_engine.h"
#include "sachs.h"
#include "vw.h"
#include "vw_b6.h"
#include "chevrolet_camaro_4.h"
#include "toyota_jzs147.h"
#include "ford_festiva.h"
#include "boost_control.h"
#if EFI_IDLE_CONTROL
#include "idle_thread.h"
#endif /* EFI_IDLE_CONTROL */
#if EFI_ALTERNATOR_CONTROL
#include "alternator_controller.h"
#endif
#if EFI_ELECTRONIC_THROTTLE_BODY
#include "electronic_throttle.h"
#endif
#if EFI_HIP_9011
#include "hip9011.h"
#endif
#include "hardware.h"
#if EFI_PROD_CODE
#include "board.h"
#endif /* EFI_PROD_CODE */
#if EFI_EMULATE_POSITION_SENSORS
#include "trigger_emulator_algo.h"
#endif /* EFI_EMULATE_POSITION_SENSORS */
#if EFI_TUNER_STUDIO
#include "tunerstudio.h"
#endif
//#define TS_DEFAULT_SPEED 115200
#define TS_DEFAULT_SPEED 38400
/**
* Current engine configuration. On firmware start we assign empty configuration, then
* we copy actual configuration after reading settings.
* This is useful to compare old and new configurations in order to apply new settings.
*
* todo: place this field next to 'engineConfiguration'?
*/
#if EFI_ACTIVE_CONFIGURATION_IN_FLASH
#include "flash_int.h"
engine_configuration_s & activeConfiguration = reinterpret_cast(getFlashAddrFirstCopy())->persistentConfiguration.engineConfiguration;
// we cannot use this activeConfiguration until we call rememberCurrentConfiguration()
bool isActiveConfigurationVoid = true;
#else
static engine_configuration_s activeConfigurationLocalStorage;
engine_configuration_s & activeConfiguration = activeConfigurationLocalStorage;
#endif /* EFI_ACTIVE_CONFIGURATION_IN_FLASH */
void rememberCurrentConfiguration() {
#if ! EFI_ACTIVE_CONFIGURATION_IN_FLASH
memcpy(&activeConfiguration, engineConfiguration, sizeof(engine_configuration_s));
#else
isActiveConfigurationVoid = false;
#endif /* EFI_ACTIVE_CONFIGURATION_IN_FLASH */
}
static void wipeString(char *string, int size) {
// we have to reset bytes after \0 symbol in order to calculate correct tune CRC from MSQ file
for (int i = strlen(string) + 1; i < size; i++) {
string[i] = 0;
}
}
static void wipeStrings() {
wipeString(engineConfiguration->engineMake, sizeof(vehicle_info_t));
wipeString(engineConfiguration->engineCode, sizeof(vehicle_info_t));
wipeString(engineConfiguration->vehicleName, sizeof(vehicle_info_t));
}
void onBurnRequest() {
wipeStrings();
incrementGlobalConfigurationVersion();
}
// Weak link a stub so that every board doesn't have to implement this function
__attribute__((weak)) void boardOnConfigurationChange(engine_configuration_s* /*previousConfiguration*/) { }
/**
* this is the top-level method which should be called in case of any changes to engine configuration
* online tuning of most values in the maps does not count as configuration change, but 'Burn' command does
*
* this method is NOT currently invoked on ECU start - actual user input has to happen!
* See preCalculate which is invoked BOTH on start and configuration change
*/
void incrementGlobalConfigurationVersion() {
engine->globalConfigurationVersion++;
#if EFI_DEFAILED_LOGGING
efiPrintf("set globalConfigurationVersion=%d", globalConfigurationVersion);
#endif /* EFI_DEFAILED_LOGGING */
applyNewHardwareSettings();
boardOnConfigurationChange(&activeConfiguration);
/**
* All these callbacks could be implemented as listeners, but these days I am saving RAM
*/
engine->preCalculate();
#if EFI_ALTERNATOR_CONTROL
onConfigurationChangeAlternatorCallback(&activeConfiguration);
#endif /* EFI_ALTERNATOR_CONTROL */
#if EFI_BOOST_CONTROL
onConfigurationChangeBoostCallback(&activeConfiguration);
#endif
#if EFI_ELECTRONIC_THROTTLE_BODY
onConfigurationChangeElectronicThrottleCallback(&activeConfiguration);
#endif /* EFI_ELECTRONIC_THROTTLE_BODY */
#if EFI_ENGINE_CONTROL && EFI_PROD_CODE
onConfigurationChangeBenchTest();
#endif
#if EFI_SHAFT_POSITION_INPUT
onConfigurationChangeTriggerCallback();
#endif /* EFI_SHAFT_POSITION_INPUT */
#if EFI_EMULATE_POSITION_SENSORS && ! EFI_UNIT_TEST
onConfigurationChangeRpmEmulatorCallback(&activeConfiguration);
#endif /* EFI_EMULATE_POSITION_SENSORS */
engine->engineModules.apply_all([](auto & m) {
m.onConfigurationChange(&activeConfiguration);
});
rememberCurrentConfiguration();
}
/**
* @brief Sets the same dwell time across the whole getRpm() range
* set dwell X
*/
void setConstantDwell(floatms_t dwellMs) {
for (int i = 0; i < DWELL_CURVE_SIZE; i++) {
engineConfiguration->sparkDwellRpmBins[i] = 1000 * i;
}
setArrayValues(engineConfiguration->sparkDwellValues, dwellMs);
}
void setWholeIgnitionIatCorr(float value) {
setTable(config->ignitionIatCorrTable, value);
}
void setFuelTablesLoadBin(float minValue, float maxValue) {
setLinearCurve(config->injPhaseLoadBins, minValue, maxValue, 1);
setLinearCurve(config->veLoadBins, minValue, maxValue, 1);
setLinearCurve(config->lambdaLoadBins, minValue, maxValue, 1);
}
void setWholeIatCorrTimingTable(float value) {
setTable(config->ignitionIatCorrTable, value);
}
/**
* See also crankingTimingAngle
*/
void setWholeTimingTable_d(angle_t value) {
setTable(config->ignitionTable, value);
}
static void initTemperatureCurve(float *bins, float *values, int size, float defaultValue) {
for (int i = 0; i < size; i++) {
bins[i] = -40 + i * 10;
values[i] = defaultValue; // this correction is a multiplier
}
}
void prepareVoidConfiguration(engine_configuration_s *engineConfiguration) {
efiAssertVoid(OBD_PCM_Processor_Fault, engineConfiguration != NULL, "ec NULL");
efi::clear(engineConfiguration);
engineConfiguration->clutchDownPinMode = PI_PULLUP;
engineConfiguration->clutchUpPinMode = PI_PULLUP;
engineConfiguration->brakePedalPinMode = PI_PULLUP;
}
void setDefaultBasePins() {
#ifdef EFI_WARNING_PIN
engineConfiguration->warningLedPin = EFI_WARNING_PIN;
#else
engineConfiguration->warningLedPin = GPIOD_13; // orange LED on discovery
#endif
#ifdef EFI_COMMUNICATION_PIN
engineConfiguration->communicationLedPin = EFI_COMMUNICATION_PIN;
#else
engineConfiguration->communicationLedPin = GPIOD_15; // blue LED on discovery
#endif
#ifdef EFI_RUNNING_PIN
engineConfiguration->runningLedPin = EFI_RUNNING_PIN;
#else
engineConfiguration->runningLedPin = GPIOD_12; // green LED on discovery
#endif
#if EFI_PROD_CODE
// call overrided board-specific serial configuration setup, if needed (for custom boards only)
// needed also by bootloader code
setPinConfigurationOverrides();
#endif /* EFI_PROD_CODE */
// set UART pads configuration based on the board
// needed also by bootloader code
engineConfiguration->useSerialPort = true;
engineConfiguration->binarySerialTxPin = GPIOC_10;
engineConfiguration->binarySerialRxPin = GPIOC_11;
engineConfiguration->tunerStudioSerialSpeed = TS_DEFAULT_SPEED;
engineConfiguration->uartConsoleSerialSpeed = 115200;
#if EFI_PROD_CODE
// call overrided board-specific serial configuration setup, if needed (for custom boards only)
setSerialConfigurationOverrides();
#endif /* EFI_PROD_CODE */
}
// needed also by bootloader code
// at the moment bootloader does NOT really need SD card, this is a step towards future bootloader SD card usage
void setDefaultSdCardParameters() {
engineConfiguration->is_enabled_spi_3 = true;
engineConfiguration->sdCardSpiDevice = SPI_DEVICE_3;
engineConfiguration->sdCardCsPin = GPIOD_4;
engineConfiguration->isSdCardEnabled = true;
#if EFI_PROD_CODE
// call overrided board-specific SD card configuration setup, if needed (for custom boards only)
setSdCardConfigurationOverrides();
#endif /* EFI_PROD_CODE */
}
static void setDefaultWarmupIdleCorrection() {
initTemperatureCurve(CLT_MANUAL_IDLE_CORRECTION, 1.0);
float baseIdle = 30;
setCurveValue(CLT_MANUAL_IDLE_CORRECTION, -40, 1.5);
setCurveValue(CLT_MANUAL_IDLE_CORRECTION, -30, 1.5);
setCurveValue(CLT_MANUAL_IDLE_CORRECTION, -20, 40.0 / baseIdle);
setCurveValue(CLT_MANUAL_IDLE_CORRECTION, -10, 40.0 / baseIdle);
setCurveValue(CLT_MANUAL_IDLE_CORRECTION, 0, 40.0 / baseIdle);
setCurveValue(CLT_MANUAL_IDLE_CORRECTION, 10, 40.0 / baseIdle);
setCurveValue(CLT_MANUAL_IDLE_CORRECTION, 20, 40.0 / baseIdle);
setCurveValue(CLT_MANUAL_IDLE_CORRECTION, 30, 40.0 / baseIdle);
setCurveValue(CLT_MANUAL_IDLE_CORRECTION, 40, 40.0 / baseIdle);
setCurveValue(CLT_MANUAL_IDLE_CORRECTION, 50, 37.0 / baseIdle);
setCurveValue(CLT_MANUAL_IDLE_CORRECTION, 60, 35.0 / baseIdle);
setCurveValue(CLT_MANUAL_IDLE_CORRECTION, 70, 33.0 / baseIdle);
}
/**
* see also setTargetRpmCurve()
*/
static void setDefaultIdleSpeedTarget() {
setLinearCurve(engineConfiguration->cltIdleRpmBins, CLT_CURVE_RANGE_FROM, 140, 10);
setCurveValue(engineConfiguration->cltIdleRpmBins, engineConfiguration->cltIdleRpm, CLT_CURVE_SIZE, -30, 1350);
setCurveValue(engineConfiguration->cltIdleRpmBins, engineConfiguration->cltIdleRpm, CLT_CURVE_SIZE, -20, 1300);
setCurveValue(engineConfiguration->cltIdleRpmBins, engineConfiguration->cltIdleRpm, CLT_CURVE_SIZE, -10, 1200);
setCurveValue(engineConfiguration->cltIdleRpmBins, engineConfiguration->cltIdleRpm, CLT_CURVE_SIZE, 0, 1150);
setCurveValue(engineConfiguration->cltIdleRpmBins, engineConfiguration->cltIdleRpm, CLT_CURVE_SIZE, 10, 1100);
setCurveValue(engineConfiguration->cltIdleRpmBins, engineConfiguration->cltIdleRpm, CLT_CURVE_SIZE, 20, 1050);
setCurveValue(engineConfiguration->cltIdleRpmBins, engineConfiguration->cltIdleRpm, CLT_CURVE_SIZE, 30, 1000);
setCurveValue(engineConfiguration->cltIdleRpmBins, engineConfiguration->cltIdleRpm, CLT_CURVE_SIZE, 40, 1000);
setCurveValue(engineConfiguration->cltIdleRpmBins, engineConfiguration->cltIdleRpm, CLT_CURVE_SIZE, 50, 950);
setCurveValue(engineConfiguration->cltIdleRpmBins, engineConfiguration->cltIdleRpm, CLT_CURVE_SIZE, 60, 950);
setCurveValue(engineConfiguration->cltIdleRpmBins, engineConfiguration->cltIdleRpm, CLT_CURVE_SIZE, 70, 930);
setCurveValue(engineConfiguration->cltIdleRpmBins, engineConfiguration->cltIdleRpm, CLT_CURVE_SIZE, 80, 900);
setCurveValue(engineConfiguration->cltIdleRpmBins, engineConfiguration->cltIdleRpm, CLT_CURVE_SIZE, 90, 900);
setCurveValue(engineConfiguration->cltIdleRpmBins, engineConfiguration->cltIdleRpm, CLT_CURVE_SIZE, 100, 1000);
setCurveValue(engineConfiguration->cltIdleRpmBins, engineConfiguration->cltIdleRpm, CLT_CURVE_SIZE, 110, 1100);
}
static void setDefaultFrankensoStepperIdleParameters() {
engineConfiguration->idle.stepperDirectionPin = GPIOE_10;
engineConfiguration->idle.stepperStepPin = GPIOE_12;
engineConfiguration->stepperEnablePin = GPIOE_14;
engineConfiguration->idleStepperReactionTime = 10;
engineConfiguration->idleStepperTotalSteps = 150;
}
static void setCanFrankensoDefaults() {
engineConfiguration->canTxPin = GPIOB_6;
engineConfiguration->canRxPin = GPIOB_12;
}
/**
* see also setDefaultIdleSpeedTarget()
*/
void setTargetRpmCurve(int rpm) {
setLinearCurve(engineConfiguration->cltIdleRpmBins, CLT_CURVE_RANGE_FROM, 140, 10);
setLinearCurve(engineConfiguration->cltIdleRpm, rpm, rpm, 10);
}
void setDefaultGppwmParameters() {
// Same config for all channels
for (size_t i = 0; i < efi::size(engineConfiguration->gppwm); i++) {
auto& cfg = engineConfiguration->gppwm[i];
cfg.pin = GPIO_UNASSIGNED;
cfg.dutyIfError = 0;
cfg.onAboveDuty = 60;
cfg.offBelowDuty = 50;
cfg.pwmFrequency = 250;
for (size_t j = 0; j < efi::size(cfg.loadBins); j++) {
uint8_t z = j * 100 / (efi::size(cfg.loadBins) - 1);
cfg.loadBins[j] = z;
// Fill some values in the table
for (size_t k = 0; k < efi::size(cfg.rpmBins); k++) {
cfg.table[j][k] = z;
}
}
for (size_t j = 0; j < efi::size(cfg.rpmBins); j++) {
cfg.rpmBins[j] = 1000 * j;
}
}
}
static void setDefaultEngineNoiseTable() {
setRpmTableBin(engineConfiguration->knockNoiseRpmBins, ENGINE_NOISE_CURVE_SIZE);
engineConfiguration->knockSamplingDuration = 45;
engineConfiguration->knockNoise[0] = 2; // 800
engineConfiguration->knockNoise[1] = 2; // 1700
engineConfiguration->knockNoise[2] = 2; // 2600
engineConfiguration->knockNoise[3] = 2; // 3400
engineConfiguration->knockNoise[4] = 2; // 4300
engineConfiguration->knockNoise[5] = 2; // 5200
engineConfiguration->knockNoise[6] = 2; // 6100
engineConfiguration->knockNoise[7] = 2; // 7000
}
static void setHip9011FrankensoPinout() {
/**
* SPI on PB13/14/15
*/
// engineConfiguration->hip9011CsPin = GPIOD_0; // rev 0.1
engineConfiguration->isHip9011Enabled = true;
engineConfiguration->hip9011PrescalerAndSDO = HIP_8MHZ_PRESCALER; // 8MHz chip
engineConfiguration->is_enabled_spi_2 = true;
// todo: convert this to rusEfi, hardware-independent enum
#if EFI_PROD_CODE
#ifdef EFI_HIP_CS_PIN
engineConfiguration->hip9011CsPin = EFI_HIP_CS_PIN;
#else
engineConfiguration->hip9011CsPin = GPIOB_0; // rev 0.4
#endif
engineConfiguration->hip9011CsPinMode = OM_OPENDRAIN;
engineConfiguration->hip9011IntHoldPin = GPIOB_11;
engineConfiguration->hip9011IntHoldPinMode = OM_OPENDRAIN;
engineConfiguration->spi2SckMode = PO_OPENDRAIN; // 4
engineConfiguration->spi2MosiMode = PO_OPENDRAIN; // 4
engineConfiguration->spi2MisoMode = PO_PULLUP; // 32
#endif /* EFI_PROD_CODE */
engineConfiguration->hip9011Gain = 1;
if (!engineConfiguration->useTpicAdvancedMode) {
engineConfiguration->hipOutputChannel = EFI_ADC_10; // PC0
}
}
/**
* @brief Global default engine configuration
* This method sets the global engine configuration defaults. These default values are then
* overridden by engine-specific defaults and the settings are saved in flash memory.
*
* This method is invoked only when new configuration is needed:
* * recently re-flashed chip
* * flash version of configuration failed CRC check or appears to be older then FLASH_DATA_VERSION
* * 'rewriteconfig' command
* * 'set engine_type X' command
*
* This method should only change the state of the configuration data structure but should NOT change the state of
* anything else.
*
* This method should NOT be setting any default pinout
*/
static void setDefaultEngineConfiguration() {
#if (! EFI_UNIT_TEST)
efi::clear(persistentState.persistentConfiguration);
#endif
prepareVoidConfiguration(engineConfiguration);
setDefaultBaseEngine();
setDefaultFuel();
setDefaultIgnition();
setDefaultCranking();
// VVT closed loop, totally random values!
engineConfiguration->auxPid[0].pFactor = 2;
engineConfiguration->auxPid[0].iFactor = 0.005;
engineConfiguration->auxPid[0].dFactor = 0;
engineConfiguration->auxPid[0].offset = 33;
engineConfiguration->auxPid[0].minValue = 10;
engineConfiguration->auxPid[0].maxValue = 90;
engineConfiguration->vvtOutputFrequency[0] = 300; // VVT solenoid control
engineConfiguration->isCylinderCleanupEnabled = true;
engineConfiguration->auxPid[1].minValue = 10;
engineConfiguration->auxPid[1].maxValue = 90;
engineConfiguration->turboSpeedSensorMultiplier = 1;
#if EFI_IDLE_CONTROL
setDefaultIdleParameters();
#endif /* EFI_IDLE_CONTROL */
#if EFI_ELECTRONIC_THROTTLE_BODY
setDefaultEtbParameters();
setDefaultEtbBiasCurve();
#endif /* EFI_ELECTRONIC_THROTTLE_BODY */
#if EFI_BOOST_CONTROL
setDefaultBoostParameters();
#endif
// OBD-II default rate is 500kbps
engineConfiguration->canBaudRate = B500KBPS;
engineConfiguration->mafSensorType = Bosch0280218037;
setBosch0280218037(config);
engineConfiguration->canSleepPeriodMs = 50;
engineConfiguration->canReadEnabled = true;
engineConfiguration->canWriteEnabled = true;
// Don't enable, but set default address
engineConfiguration->verboseCanBaseAddress = CAN_DEFAULT_BASE;
engineConfiguration->sdCardPeriodMs = 50;
engineConfiguration->mapMinBufferLength = 1;
engineConfiguration->startCrankingDuration = 3;
engineConfiguration->idlePidRpmDeadZone = 50;
engineConfiguration->maxAcRpm = 5000;
engineConfiguration->maxAcClt = 100;
engineConfiguration->maxAcTps = 75;
initTemperatureCurve(IAT_FUEL_CORRECTION_CURVE, 1);
engineConfiguration->auxPid[0].minValue = 10;
engineConfiguration->auxPid[0].maxValue = 90;
engineConfiguration->alternatorControl.minValue = 10;
engineConfiguration->alternatorControl.maxValue = 90;
setLinearCurve(engineConfiguration->scriptCurve1Bins, 0, 100, 1);
setLinearCurve(engineConfiguration->scriptCurve1, 0, 100, 1);
setLinearCurve(engineConfiguration->scriptCurve2Bins, 0, 100, 1);
setLinearCurve(engineConfiguration->scriptCurve2, 30, 170, 1);
setLinearCurve(engineConfiguration->scriptCurve3Bins, 0, 100, 1);
setLinearCurve(engineConfiguration->scriptCurve4Bins, 0, 100, 1);
setLinearCurve(engineConfiguration->scriptCurve5Bins, 0, 100, 1);
setLinearCurve(engineConfiguration->scriptCurve6Bins, 0, 100, 1);
#if EFI_ENGINE_CONTROL
setDefaultWarmupIdleCorrection();
setLinearCurve(engineConfiguration->map.samplingAngleBins, 800, 7000, 1);
setLinearCurve(engineConfiguration->map.samplingAngle, 100, 130, 1);
setLinearCurve(engineConfiguration->map.samplingWindowBins, 800, 7000, 1);
setLinearCurve(engineConfiguration->map.samplingWindow, 50, 50, 1);
setLinearCurve(config->vvtTable1LoadBins, 20, 120, 10);
setRpmTableBin(config->vvtTable1RpmBins, SCRIPT_TABLE_8);
setLinearCurve(config->vvtTable2LoadBins, 20, 120, 10);
setRpmTableBin(config->vvtTable2RpmBins, SCRIPT_TABLE_8);
setLinearCurve(config->scriptTable1LoadBins, 20, 120, 10);
setRpmTableBin(config->scriptTable1RpmBins, SCRIPT_TABLE_8);
setLinearCurve(config->scriptTable2LoadBins, 20, 120, 10);
setRpmTableBin(config->scriptTable2RpmBins, SCRIPT_TABLE_8);
setLinearCurve(config->scriptTable3LoadBins, 20, 120, 10);
setRpmTableBin(config->scriptTable3RpmBins, SCRIPT_TABLE_8);
setLinearCurve(config->scriptTable4LoadBins, 20, 120, 10);
setRpmTableBin(config->scriptTable4RpmBins, SCRIPT_TABLE_8);
setDefaultEngineNoiseTable();
engineConfiguration->clt.config = {0, 23.8889, 48.8889, 9500, 2100, 1000, 1500};
// todo: this value is way off! I am pretty sure temp coeffs are off also
engineConfiguration->iat.config = {32, 75, 120, 9500, 2100, 1000, 2700};
// wow unit tests have much cooler setDefaultLaunchParameters method
engineConfiguration->launchRpm = 3000;
// engineConfiguration->launchTimingRetard = 10;
engineConfiguration->launchTimingRpmRange = 500;
engineConfiguration->launchSpeedThreshold = 30;
engineConfiguration->hardCutRpmRange = 500;
engineConfiguration->slowAdcAlpha = 0.33333;
engineConfiguration->engineSnifferRpmThreshold = 2500;
engineConfiguration->sensorSnifferRpmThreshold = 2500;
engineConfiguration->noAccelAfterHardLimitPeriodSecs = 3;
/**
* Idle control defaults
*/
setDefaultIdleSpeedTarget();
// setTargetRpmCurve(1200);
engineConfiguration->idleRpmPid.pFactor = 0.05;
engineConfiguration->idleRpmPid.iFactor = 0.002;
engineConfiguration->idleRpmPid.minValue = 0;
engineConfiguration->idleRpmPid.maxValue = 99;
/**
* between variation between different sensor and weather and fabrication tolerance
* five percent looks like a safer default
*/
engineConfiguration->idlePidDeactivationTpsThreshold = 5;
engineConfiguration->idle.solenoidFrequency = 200;
// set idle_position 50
engineConfiguration->manIdlePosition = 50;
// engineConfiguration->idleMode = IM_AUTO;
engineConfiguration->idleMode = IM_MANUAL;
engineConfiguration->useStepperIdle = false;
setDefaultGppwmParameters();
#if !EFI_UNIT_TEST
engineConfiguration->analogInputDividerCoefficient = 2;
#endif
// performance optimization
engineConfiguration->sensorChartMode = SC_OFF;
engineConfiguration->tpsMin = convertVoltageTo10bitADC(0);
engineConfiguration->tpsMax = convertVoltageTo10bitADC(5);
engineConfiguration->tps1SecondaryMin = convertVoltageTo10bitADC(0);
engineConfiguration->tps1SecondaryMax = convertVoltageTo10bitADC(5);
engineConfiguration->tps2Min = convertVoltageTo10bitADC(0);
engineConfiguration->tps2Max = convertVoltageTo10bitADC(5);
engineConfiguration->tps2SecondaryMin = convertVoltageTo10bitADC(0);
engineConfiguration->tps2SecondaryMax = convertVoltageTo10bitADC(5);
engineConfiguration->idlePositionMin = PACK_MULT_VOLTAGE * 0;
engineConfiguration->idlePositionMax = PACK_MULT_VOLTAGE * 5;
engineConfiguration->wastegatePositionMin = PACK_MULT_VOLTAGE * 0;
engineConfiguration->wastegatePositionMax = PACK_MULT_VOLTAGE * 5;
engineConfiguration->tpsErrorDetectionTooLow = -10; // -10% open
engineConfiguration->tpsErrorDetectionTooHigh = 110; // 110% open
engineConfiguration->oilPressure.v1 = 0.5f;
engineConfiguration->oilPressure.v2 = 4.5f;
engineConfiguration->oilPressure.value1 = 0;
engineConfiguration->oilPressure.value2 = 689.476f; // 100psi = 689.476kPa
engineConfiguration->mapLowValueVoltage = 0;
// todo: start using this for custom MAP
engineConfiguration->mapHighValueVoltage = 5;
engineConfiguration->HD44780width = 20;
engineConfiguration->HD44780height = 4;
engineConfiguration->cylinderBore = 87.5;
setBoschHDEV_5_injectors();
setEgoSensor(ES_14Point7_Free);
engineConfiguration->globalFuelCorrection = 1;
engineConfiguration->adcVcc = 3.0;
engineConfiguration->map.sensor.type = MT_MPX4250;
engineConfiguration->baroSensor.type = MT_CUSTOM;
engineConfiguration->baroSensor.lowValue = 0;
engineConfiguration->baroSensor.highValue = 500;
engineConfiguration->isEngineChartEnabled = true;
#if EFI_PROD_CODE
engineConfiguration->engineChartSize = 300;
#else
// need more events for automated test
engineConfiguration->engineChartSize = 400;
#endif
engineConfiguration->primingSquirtDurationMs = 5;
engineConfiguration->isMapAveragingEnabled = true;
engineConfiguration->isWaveAnalyzerEnabled = true;
engineConfiguration->acIdleRpmBump = 200;
/* these two are used for HIP9011 only
* Currently this is offset from fire event, not TDC */
/* TODO: convert to offset from TDC */
engineConfiguration->knockDetectionWindowStart = 15.0 + 5.0;
engineConfiguration->knockDetectionWindowEnd = 15.0 + 45.0;
/**
* this is RPM. 10000 rpm is only 166Hz, 800 rpm is 13Hz
*/
engineConfiguration->triggerSimulatorFrequency = 1200;
engineConfiguration->alternatorPwmFrequency = 300;
engineConfiguration->cj125isUaDivided = true;
engineConfiguration->isAlternatorControlEnabled = false;
engineConfiguration->driveWheelRevPerKm = 500;
engineConfiguration->vssGearRatio = 3.73;
engineConfiguration->vssToothCount = 21;
engineConfiguration->mapErrorDetectionTooLow = 5;
engineConfiguration->mapErrorDetectionTooHigh = 250;
engineConfiguration->useLcdScreen = true;
engineConfiguration->hip9011Gain = 1;
engineConfiguration->isEngineControlEnabled = true;
#endif // EFI_ENGINE_CONTROL
strncpy(config->luaScript, "function onTick()\nend", efi::size(config->luaScript));
}
/**
* @brief Hardware board-specific default configuration (GPIO pins, ADC channels, SPI configs etc.)
*/
void setDefaultFrankensoConfiguration() {
setDefaultFrankensoStepperIdleParameters();
setCanFrankensoDefaults();
engineConfiguration->map.sensor.hwChannel = EFI_ADC_4;
engineConfiguration->clt.adcChannel = EFI_ADC_6;
engineConfiguration->iat.adcChannel = EFI_ADC_7;
engineConfiguration->afr.hwChannel = EFI_ADC_14;
engineConfiguration->accelerometerSpiDevice = SPI_DEVICE_1;
engineConfiguration->hip9011SpiDevice = SPI_DEVICE_2;
engineConfiguration->cj125SpiDevice = SPI_DEVICE_2;
// engineConfiguration->gps_rx_pin = GPIOB_7;
// engineConfiguration->gps_tx_pin = GPIOB_6;
engineConfiguration->triggerSimulatorPins[0] = GPIOD_1;
engineConfiguration->triggerSimulatorPins[1] = GPIOD_2;
engineConfiguration->triggerInputPins[0] = GPIOC_6;
engineConfiguration->triggerInputPins[1] = GPIOA_5;
// set this to SPI_DEVICE_3 to enable stimulation
//engineConfiguration->digitalPotentiometerSpiDevice = SPI_DEVICE_3;
engineConfiguration->digitalPotentiometerChipSelect[0] = GPIOD_7;
engineConfiguration->digitalPotentiometerChipSelect[1] = GPIO_UNASSIGNED;
engineConfiguration->digitalPotentiometerChipSelect[2] = GPIOD_5;
engineConfiguration->digitalPotentiometerChipSelect[3] = GPIO_UNASSIGNED;
engineConfiguration->spi1mosiPin = GPIOB_5;
engineConfiguration->spi1misoPin = GPIOB_4;
engineConfiguration->spi1sckPin = GPIOB_3; // please note that this pin is also SWO/SWD - Single Wire debug Output
engineConfiguration->spi2mosiPin = GPIOB_15;
engineConfiguration->spi2misoPin = GPIOB_14;
engineConfiguration->spi2sckPin = GPIOB_13;
engineConfiguration->spi3mosiPin = GPIOB_5;
engineConfiguration->spi3misoPin = GPIOB_4;
engineConfiguration->spi3sckPin = GPIOB_3;
// set optional subsystem configs
#if EFI_MEMS
// this would override some values from above
configureAccelerometerPins();
#endif /* EFI_MEMS */
#if EFI_HIP_9011
setHip9011FrankensoPinout();
#endif /* EFI_HIP_9011 */
#if EFI_FILE_LOGGING
setDefaultSdCardParameters();
#endif /* EFI_FILE_LOGGING */
engineConfiguration->is_enabled_spi_1 = false;
engineConfiguration->is_enabled_spi_2 = false;
engineConfiguration->is_enabled_spi_3 = true;
}
#ifdef CONFIG_RESET_SWITCH_PORT
// this pin is not configurable at runtime so that we have a reliable way to reset configuration
#define SHOULD_IGNORE_FLASH() (palReadPad(CONFIG_RESET_SWITCH_PORT, CONFIG_RESET_SWITCH_PIN) == 0)
#else
#define SHOULD_IGNORE_FLASH() (false)
#endif // CONFIG_RESET_SWITCH_PORT
// by default, do not ignore config from flash! use it!
#ifndef IGNORE_FLASH_CONFIGURATION
#define IGNORE_FLASH_CONFIGURATION false
#endif
void loadConfiguration() {
#ifdef CONFIG_RESET_SWITCH_PORT
// initialize the reset pin if necessary
palSetPadMode(CONFIG_RESET_SWITCH_PORT, CONFIG_RESET_SWITCH_PIN, PAL_MODE_INPUT_PULLUP);
#endif /* CONFIG_RESET_SWITCH_PORT */
#if ! EFI_ACTIVE_CONFIGURATION_IN_FLASH
// Clear the active configuration so that registered output pins (etc) detect the change on startup and init properly
prepareVoidConfiguration(&activeConfiguration);
#endif /* EFI_ACTIVE_CONFIGURATION_IN_FLASH */
#if EFI_INTERNAL_FLASH
if (SHOULD_IGNORE_FLASH() || IGNORE_FLASH_CONFIGURATION) {
engineConfiguration->engineType = DEFAULT_ENGINE_TYPE;
resetConfigurationExt(engineConfiguration->engineType);
writeToFlashNow();
} else {
// this call reads configuration from flash memory or sets default configuration
// if flash state does not look right.
readFromFlash();
}
#else // not EFI_INTERNAL_FLASH
// This board doesn't load configuration, initialize the default
engineConfiguration->engineType = DEFAULT_ENGINE_TYPE;
resetConfigurationExt(engineConfiguration->engineType);
#endif /* EFI_INTERNAL_FLASH */
detectBoardType();
// Force any board configuration options that humans shouldn't be able to change
setBoardConfigOverrides();
}
void resetConfigurationExt(configuration_callback_t boardCallback, engine_type_e engineType) {
enginePins.reset(); // that's mostly important for functional tests
/**
* Let's apply global defaults first
*/
setDefaultEngineConfiguration();
// set initial pin groups
setDefaultBasePins();
if (boardCallback != nullptr) {
boardCallback(engineConfiguration);
}
#if EFI_PROD_CODE
// call overrided board-specific configuration setup, if needed (for custom boards only)
setBoardDefaultConfiguration();
setBoardConfigOverrides();
#endif
engineConfiguration->engineType = engineType;
/**
* And override them with engine-specific defaults
*/
switch (engineType) {
case UNUSED60:
case UNUSED61:
case HELLEN72_ETB:
case UNUSED100:
case MINIMAL_PINS:
// all basic settings are already set in prepareVoidConfiguration(), no need to set anything here
// nothing to do - we do it all in setBoardDefaultConfiguration
break;
case TEST_ENGINE:
setTestCamEngineConfiguration();
break;
case TEST_CRANK_ENGINE:
setTestCrankEngineConfiguration();
break;
#if EFI_UNIT_TEST
case TEST_ISSUE_366_BOTH:
setTestEngineIssue366both();
break;
case TEST_ISSUE_366_RISE:
setTestEngineIssue366rise();
break;
case TEST_ISSUE_898:
setIssue898();
break;
#endif // EFI_UNIT_TEST
#if HW_MICRO_RUSEFI
case VW_B6:
setVwPassatB6();
break;
case MRE_M111:
setM111EngineConfiguration();
break;
case MRE_SECONDARY_CAN:
mreSecondaryCan();
break;
case UNUSED101:
case MRE_SUBARU_EJ18:
setSubaruEJ18_MRE();
break;
case UNUSED30:
case MRE_BOARD_NEW_TEST:
mreBoardNewTest();
break;
case BMW_M73_MRE:
case BMW_M73_MRE_SLAVE:
setEngineBMW_M73_microRusEfi();
break;
case MRE_MIATA_NA6_VAF:
setMiataNA6_VAF_MRE();
break;
case MRE_MIATA_94_MAP:
setMiata94_MAP_MRE();
break;
case MRE_MIATA_NA6_MAP:
setMiataNA6_MAP_MRE();
break;
case MRE_MIATA_NB2_MAP:
setMiataNB2_MRE_MAP();
break;
case MRE_MIATA_NB2_MAF:
setMiataNB2_MRE_MAF();
break;
case MRE_MIATA_NB2_ETB:
setMiataNB2_MRE_ETB();
break;
case MRE_BODY_CONTROL:
mreBCM();
break;
#endif // HW_MICRO_RUSEFI
#if HW_PROTEUS
case PROTEUS_QC_TEST_BOARD:
proteusBoardTest();
break;
case PROTEUS_LUA_DEMO:
proteusLuaDemo();
break;
case PROTEUS_HARLEY:
proteusHarley();
break;
case PROTEUS_BMW_M73:
setEngineBMW_M73_Proteus();
break;
case MIATA_PROTEUS_TCU:
setMiataNB2_Proteus_TCU();
break;
case PROTEUS_HONDA_ELEMENT_2003:
setProteusHondaElement2003();
break;
case PROTEUS_HONDA_OBD2A:
setProteusHondaOBD2A();
break;
case PROTEUS_VAG_80_18T:
case PROTEUS_N73:
case PROTEUS_MIATA_NB2:
setMiataNB2_ProteusEngineConfiguration();
break;
#ifdef HARDWARE_CI
case PROTEUS_ANALOG_PWM_TEST:
setProteusAnalogPwmTest();
break;
#endif // HARDWARE_CI
#endif // HW_PROTEUS
#if HW_HELLEN
case HELLEN_128_MERCEDES_4_CYL:
setHellenMercedes128_4_cyl();
break;
case HELLEN_128_MERCEDES_6_CYL:
setHellenMercedes128_6_cyl();
break;
case HELLEN_128_MERCEDES_8_CYL:
setHellenMercedes128_8_cyl();
break;
case HELLEN_NB2:
setMiataNB2_Hellen72();
break;
case HELLEN_NB2_36:
setMiataNB2_Hellen72_36();
break;
case HELLEN_NB1:
case HELLEN_NA8_96:
setHellenNB1();
break;
case HELLEN_121_NISSAN_4_CYL:
setHellen121nissanQR();
break;
case HELLEN_121_NISSAN_6_CYL:
setHellen121nissanVQ();
break;
case HELLEN_121_VAG_5_CYL:
setHellen121Vag_5_cyl();
break;
case HELLEN_121_VAG_V6_CYL:
setHellen121Vag_v6_cyl();
break;
case HELLEN_121_VAG_VR6_CYL:
setHellen121Vag_vr6_cyl();
break;
case HELLEN_121_VAG_8_CYL:
setHellen121Vag_8_cyl();
break;
case HELLEN_121_VAG_4_CYL:
case HELLEN_55_BMW:
case HELLEN_88_BMW:
case HELLEN_134_BMW:
case HELLEN_154_VAG:
break;
case HELLEN_154_HYUNDAI_COUPE_BK1:
setGenesisCoupeBK1();
break;
case HELLEN_154_HYUNDAI_COUPE_BK2:
setGenesisCoupeBK2();
break;
case HELLEN_NA6:
setHellenNA6();
break;
case HELLEN_NA94:
setHellenNA94();
break;
#endif // HW_HELLEN
#if HW_FRANKENSO
case DEFAULT_FRANKENSO:
setFrankensoConfiguration();
break;
case FRANKENSO_QA_ENGINE:
setFrankensoBoardTestConfiguration();
break;
case FRANKENSO_BMW_M73_F:
setBMW_M73_TwoCoilUnitTest();
break;
case BMW_M73_M:
setEngineBMW_M73_Manhattan();
break;
case DODGE_NEON_1995:
setDodgeNeon1995EngineConfiguration();
break;
case DODGE_NEON_2003_CRANK:
setDodgeNeonNGCEngineConfiguration();
break;
case UNUSED39:
case FORD_ASPIRE_1996:
setFordAspireEngineConfiguration();
break;
case NISSAN_PRIMERA:
setNissanPrimeraEngineConfiguration();
break;
case FRANKENSO_MIATA_NA6_MAP:
setMiataNA6_MAP_Frankenso();
break;
case FRANKENSO_MIATA_NA6_VAF:
setMiataNA6_VAF_Frankenso();
break;
case ETB_BENCH_ENGINE:
setEtbTestConfiguration();
break;
case TLE8888_BENCH_ENGINE:
setTle8888TestConfiguration();
break;
case FRANKENSO_MAZDA_MIATA_NA8:
setMazdaMiataNA8Configuration();
break;
case HONDA_ACCORD_CD_TWO_WIRES:
setHondaAccordConfiguration1_24();
break;
case UNUSED18:
case MITSU_4G93:
setMitsubishiConfiguration();
break;
case FORD_INLINE_6_1995:
setFordInline6();
break;
case GY6_139QMB:
setGy6139qmbDefaultEngineConfiguration();
break;
case HONDA_600:
setHonda600();
break;
case PROTEUS_E65_6H_MAN_IN_THE_MIDDLE:
setEngineProteusGearboxManInTheMiddle();
break;
case FORD_ESCORT_GT:
setFordEscortGt();
break;
case UNUSED_19:
case MIATA_1996:
setFrankensteinMiata1996();
break;
case CITROEN_TU3JP:
setCitroenBerlingoTU3JPConfiguration();
break;
case SUBARU_2003_WRX:
setSubaru2003Wrx();
break;
case DODGE_RAM:
setDodgeRam1996();
break;
case VW_ABA:
setVwAba();
break;
case FRANKENSO_MAZDA_MIATA_2003:
setMazdaMiata2003EngineConfiguration();
break;
case MAZDA_MIATA_2003_NA_RAIL:
setMazdaMiata2003EngineConfigurationNaFuelRail();
break;
case MAZDA_MIATA_2003_BOARD_TEST:
setMazdaMiata2003EngineConfigurationBoardTest();
break;
case TEST_ENGINE_VVT:
setTestVVTEngineConfiguration();
break;
case SACHS:
setSachs();
break;
case CAMARO_4:
setCamaro4();
break;
case TOYOTA_2JZ_GTE_VVTi:
setToyota_2jz_vics();
break;
case TOYOTA_JZS147:
setToyota_jzs147EngineConfiguration();
break;
case TEST_33816:
setTest33816EngineConfiguration();
break;
case TEST_108:
case TEST_109:
case TEST_110:
case TEST_ROTARY:
setRotary();
break;
#endif // HW_FRANKENSO
#ifdef HW_SUBARU_EG33
case SUBARUEG33_DEFAULTS:
setSubaruEG33Defaults();
break;
#endif //HW_SUBARU_EG33
default:
firmwareError(CUSTOM_UNEXPECTED_ENGINE_TYPE, "Unexpected engine type: %d", engineType);
}
applyNonPersistentConfiguration();
}
void emptyCallbackWithConfiguration(engine_configuration_s * engineConfiguration) {
UNUSED(engineConfiguration);
}
void resetConfigurationExt(engine_type_e engineType) {
resetConfigurationExt(&emptyCallbackWithConfiguration, engineType);
}
void validateConfiguration() {
if (engineConfiguration->adcVcc > 5.0f || engineConfiguration->adcVcc < 1.0f) {
engineConfiguration->adcVcc = 3.0f;
}
engine->preCalculate();
/**
* TunerStudio text tune files convert negative zero into positive zero so to keep things consistent we should avoid
* negative zeros altogether. Unfortunately default configuration had one and here we are mitigating that.
*/
for (int i = 0;i < CLT_CURVE_SIZE;i++) {
engineConfiguration->cltIdleRpmBins[i] = fixNegativeZero(engineConfiguration->cltIdleRpmBins[i]);
}
}
void applyNonPersistentConfiguration() {
#if EFI_PROD_CODE
efiAssertVoid(CUSTOM_APPLY_STACK, getCurrentRemainingStack() > EXPECTED_REMAINING_STACK, "apply c");
efiPrintf("applyNonPersistentConfiguration()");
#endif
#if EFI_ENGINE_CONTROL
engine->initializeTriggerWaveform();
#endif // EFI_ENGINE_CONTROL
}
#if EFI_ENGINE_CONTROL
void prepareShapes() {
prepareOutputSignals();
engine->injectionEvents.addFuelEvents();
}
#endif
void setOperationMode(engine_configuration_s *engineConfiguration, operation_mode_e mode) {
engineConfiguration->ambiguousOperationMode = mode;
}
void commonFrankensoAnalogInputs(engine_configuration_s *engineConfiguration) {
/**
* VBatt
*/
engineConfiguration->vbattAdcChannel = EFI_ADC_14;
}
void setFrankenso0_1_joystick(engine_configuration_s *engineConfiguration) {
engineConfiguration->joystickCenterPin = GPIOC_8;
engineConfiguration->joystickAPin = GPIOD_10;
engineConfiguration->joystickBPin = GPIO_UNASSIGNED;
engineConfiguration->joystickCPin = GPIO_UNASSIGNED;
engineConfiguration->joystickDPin = GPIOD_11;
}
// These symbols are weak so that a board_configuration.cpp file can override them
__attribute__((weak)) void setBoardDefaultConfiguration() { }
__attribute__((weak)) void setBoardConfigOverrides() { }