/** * @file trigger_decoder.h * * @date Dec 24, 2013 * @author Andrey Belomutskiy, (c) 2012-2020 */ #pragma once #include "global.h" #include "trigger_structure.h" #include "engine_configuration.h" #include "trigger_state_generated.h" class TriggerState; class TriggerStateListener { public: virtual void OnTriggerStateProperState(efitick_t nowNt) = 0; virtual void OnTriggerSyncronization(bool wasSynchronized) = 0; virtual void OnTriggerInvalidIndex(int currentIndex) = 0; virtual void OnTriggerSynchronizationLost() = 0; }; typedef void (*TriggerStateCallback)(TriggerState *); typedef struct { /** * index within trigger revolution, from 0 to trigger event count */ uint32_t current_index; /** * Number of actual events of each channel within current trigger cycle, these * values are used to detect trigger signal errors. * see TriggerWaveform */ uint32_t eventCount[PWM_PHASE_MAX_WAVE_PER_PWM]; /** * This array is used to calculate duty cycle of each trigger channel. * Current implementation is a bit funny - it does not really consider if an event * is a rise or a fall, it works based on the event order within synchronization cycle. * * 32 bit value is good enough here, overflows will happen but they would work just fine. */ uint32_t timeOfPreviousEventNt[PWM_PHASE_MAX_WAVE_PER_PWM]; /** * Here we accumulate the amount of time this signal was ON within current trigger cycle */ uint32_t totalTimeNt[PWM_PHASE_MAX_WAVE_PER_PWM]; } current_cycle_state_s; /** * @see TriggerWaveform for trigger wheel shape definition */ class TriggerState : public trigger_state_s { public: TriggerState(); /** * current trigger processing index, between zero and #size */ int getCurrentIndex() const; int getTotalRevolutionCounter() const; /** * this is important for crank-based virtual trigger and VVT magic */ bool isEvenRevolution() const; void incrementTotalEventCounter(); efitime_t getTotalEventCounter() const; void decodeTriggerEvent(TriggerWaveform *triggerShape, const TriggerStateCallback triggerCycleCallback, TriggerStateListener * triggerStateListener, trigger_event_e const signal, efitime_t nowUs DECLARE_CONFIG_PARAMETER_SUFFIX); bool validateEventCounters(TriggerWaveform *triggerShape) const; void onShaftSynchronization(const TriggerStateCallback triggerCycleCallback, efitick_t nowNt, trigger_wheel_e triggerWheel, TriggerWaveform *triggerShape); bool isValidIndex(TriggerWaveform *triggerShape) const; float getTriggerDutyCycle(int index); /** * TRUE if we know where we are */ bool shaft_is_synchronized; efitick_t mostRecentSyncTime; volatile efitick_t previousShaftEventTimeNt; void setTriggerErrorState(); efitick_t lastDecodingErrorTime; // the boolean flag is a performance optimization so that complex comparison is avoided if no error bool someSortOfTriggerError; /** * current duration at index zero and previous durations are following */ uint32_t toothDurations[GAP_TRACKING_LENGTH + 1]; efitick_t toothed_previous_time; current_cycle_state_s currentCycle; int expectedTotalTime[PWM_PHASE_MAX_WAVE_PER_PWM]; /** * how many times since ECU reboot we had unexpected number of teeth in trigger cycle */ uint32_t totalTriggerErrorCounter; uint32_t orderingErrorCounter; void resetTriggerState(); void setShaftSynchronized(bool value); /** * this is start of real trigger cycle * for virtual double trigger see timeAtVirtualZeroNt */ efitick_t startOfCycleNt; uint32_t findTriggerZeroEventIndex(TriggerWaveform * shape, trigger_config_s const*triggerConfig DECLARE_ENGINE_PARAMETER_SUFFIX); private: void resetCurrentCycleState(); trigger_event_e curSignal; trigger_event_e prevSignal; int64_t totalEventCountBase; uint32_t totalRevolutionCounter; bool isFirstEvent; }; // we only need 90 degrees of events so /4 or maybe even /8 should work? #define PRE_SYNC_EVENTS (PWM_PHASE_MAX_COUNT / 4) /** * the reason for sub-class is simply to save RAM but not having statistics in the trigger initialization instance */ class TriggerStateWithRunningStatistics : public TriggerState { public: TriggerStateWithRunningStatistics(); float instantRpm = 0; /** * timestamp of each trigger wheel tooth */ uint32_t timeOfLastEvent[PWM_PHASE_MAX_COUNT]; int spinningEventIndex = 0; // todo: change the implementation to reuse 'timeOfLastEvent' uint32_t spinningEvents[PRE_SYNC_EVENTS]; /** * instant RPM calculated at this trigger wheel tooth */ float instantRpmValue[PWM_PHASE_MAX_COUNT]; /** * Stores last non-zero instant RPM value to fix early instability */ float prevInstantRpmValue = 0; void movePreSynchTimestamps(DECLARE_ENGINE_PARAMETER_SIGNATURE); float calculateInstantRpm(int *prevIndex, efitick_t nowNt DECLARE_ENGINE_PARAMETER_SUFFIX); #if EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT void runtimeStatistics(efitick_t nowNt DECLARE_ENGINE_PARAMETER_SUFFIX); #endif /** * Update timeOfLastEvent[] on every trigger event - even without synchronization * Needed for early spin-up RPM detection. */ void setLastEventTimeForInstantRpm(efitick_t nowNt DECLARE_ENGINE_PARAMETER_SUFFIX); }; angle_t getEngineCycle(operation_mode_e operationMode); class Engine; void initTriggerDecoder(DECLARE_ENGINE_PARAMETER_SIGNATURE); void initTriggerDecoderLogger(Logging *sharedLogger); bool isTriggerDecoderError(DECLARE_ENGINE_PARAMETER_SIGNATURE); void calculateTriggerSynchPoint(TriggerWaveform *shape, TriggerState *state DECLARE_ENGINE_PARAMETER_SUFFIX);