/* * @file spark_logic.cpp * * @date Sep 15, 2016 * @author Andrey Belomutskiy, (c) 2012-2020 */ #include "pch.h" #include "spark_logic.h" // dependency injection #include "engine_state.h" #include "rpm_calculator_api.h" // end of injection #include "utlist.h" #include "event_queue.h" #include "tooth_logger.h" #include "knock_logic.h" #if EFI_ENGINE_CONTROL #if EFI_UNIT_TEST extern bool verboseMode; #endif /* EFI_UNIT_TEST */ #if EFI_PRINTF_FUEL_DETAILS || FUEL_MATH_EXTREME_LOGGING extern bool printFuelDebug; #endif // EFI_PRINTF_FUEL_DETAILS static cyclic_buffer ignitionErrorDetection; static const char *prevSparkName = nullptr; int isIgnitionTimingError(void) { return ignitionErrorDetection.sum(6) > 4; } static void fireSparkBySettingPinLow(IgnitionEvent *event, IgnitionOutputPin *output) { efitick_t nowNt = getTimeNowNt(); #if SPARK_EXTREME_LOGGING efiPrintf("spark goes low %d %s %d current=%d cnt=%d id=%d", getRevolutionCounter(), output->name, (int)getTimeNowUs(), output->currentLogicValue, output->outOfOrder, event->sparkId); #endif /* SPARK_EXTREME_LOGGING */ /** * there are two kinds of 'out-of-order' * 1) low goes before high, everything is fine after words * * 2) we have an un-matched low followed by legit pairs */ output->signalFallSparkId = event->sparkId; if (!output->currentLogicValue) { warning(CUSTOM_OUT_OF_ORDER_COIL, "out-of-order coil off %s", output->getName()); output->outOfOrder = true; } output->setLow(); } // todo: make this a class method? #define assertPinAssigned(output) { \ if (!output->isInitialized()) { \ warning(CUSTOM_OBD_COIL_PIN_NOT_ASSIGNED, "Pin Not Assigned check configuration #%s", (output)->getName()); \ } \ } /** * @param cylinderIndex from 0 to cylinderCount, not cylinder number */ static int getIgnitionPinForIndex(int cylinderIndex, ignition_mode_e ignitionMode) { switch (ignitionMode) { case IM_ONE_COIL: return 0; case IM_WASTED_SPARK: { if (engineConfiguration->specs.cylindersCount == 1) { // we do not want to divide by zero return 0; } return cylinderIndex % (engineConfiguration->specs.cylindersCount / 2); } case IM_INDIVIDUAL_COILS: return cylinderIndex; case IM_TWO_COILS: return cylinderIndex % 2; default: firmwareError(CUSTOM_OBD_IGNITION_MODE, "Invalid ignition mode getIgnitionPinForIndex(): %d", engineConfiguration->ignitionMode); return 0; } } static void prepareCylinderIgnitionSchedule(angle_t dwellAngleDuration, floatms_t sparkDwell, IgnitionEvent *event) { // todo: clean up this implementation? does not look too nice as is. // let's save planned duration so that we can later compare it with reality event->sparkDwell = sparkDwell; angle_t sparkAngle = // Negate because timing *before* TDC, and we schedule *after* TDC - getEngineState()->timingAdvance[event->cylinderNumber] // Offset by this cylinder's position in the cycle + getCylinderAngle(event->cylinderIndex, event->cylinderNumber) // Pull any extra timing for knock retard + engine->module()->getKnockRetard(); efiAssertVoid(CUSTOM_SPARK_ANGLE_1, !cisnan(sparkAngle), "sparkAngle#1"); auto ignitionMode = getCurrentIgnitionMode(); const int index = getIgnitionPinForIndex(event->cylinderIndex, ignitionMode); const int coilIndex = ID2INDEX(getCylinderId(index)); IgnitionOutputPin *output = &enginePins.coils[coilIndex]; IgnitionOutputPin *secondOutput; // We need two outputs if: // - we are running wasted spark, and have "two wire" mode enabled // - We are running sequential mode, but we're cranking, so we should run in two wire wasted mode (not one wire wasted) bool isTwoWireWasted = engineConfiguration->twoWireBatchIgnition || (engineConfiguration->ignitionMode == IM_INDIVIDUAL_COILS); if (ignitionMode == IM_WASTED_SPARK && isTwoWireWasted) { int secondIndex = index + engineConfiguration->specs.cylindersCount / 2; int secondCoilIndex = ID2INDEX(getCylinderId(secondIndex)); secondOutput = &enginePins.coils[secondCoilIndex]; assertPinAssigned(secondOutput); } else { secondOutput = nullptr; } assertPinAssigned(output); event->outputs[0] = output; event->outputs[1] = secondOutput; wrapAngle2(sparkAngle, "findAngle#2", CUSTOM_ERR_6550, getEngineCycle(getEngineRotationState()->getOperationMode())); event->sparkAngle = sparkAngle; // Stash which cylinder we're scheduling so that knock sensing knows which // cylinder just fired event->cylinderNumber = coilIndex; angle_t dwellStartAngle = sparkAngle - dwellAngleDuration; efiAssertVoid(CUSTOM_ERR_6590, !cisnan(dwellStartAngle), "findAngle#5"); assertAngleRange(dwellStartAngle, "findAngle dwellStartAngle", CUSTOM_ERR_6550); wrapAngle2(dwellStartAngle, "findAngle#7", CUSTOM_ERR_6550, getEngineCycle(getEngineRotationState()->getOperationMode())); event->dwellAngle = dwellStartAngle; #if FUEL_MATH_EXTREME_LOGGING if (printFuelDebug) { printf("addIgnitionEvent %s angle=%.1f\n", output->name, dwellStartAngle); } // efiPrintf("addIgnitionEvent %s ind=%d", output->name, event->dwellPosition->eventIndex); #endif /* FUEL_MATH_EXTREME_LOGGING */ } static void chargeTrailingSpark(IgnitionOutputPin* pin) { #if SPARK_EXTREME_LOGGING efiPrintf("chargeTrailingSpark %s", pin->name); #endif /* SPARK_EXTREME_LOGGING */ pin->setHigh(); } static void fireTrailingSpark(IgnitionOutputPin* pin) { #if SPARK_EXTREME_LOGGING efiPrintf("fireTrailingSpark %s", pin->name); #endif /* SPARK_EXTREME_LOGGING */ pin->setLow(); } static void overFireSparkAndPrepareNextSchedule(IgnitionEvent *event) { #if SPARK_EXTREME_LOGGING efiPrintf("overFireSparkAndPrepareNextSchedule %s", event->outputs[0]->name); #endif /* SPARK_EXTREME_LOGGING */ fireSparkAndPrepareNextSchedule(event); } void fireSparkAndPrepareNextSchedule(IgnitionEvent *event) { for (int i = 0; i< MAX_OUTPUTS_FOR_IGNITION;i++) { IgnitionOutputPin *output = event->outputs[i]; if (output) { fireSparkBySettingPinLow(event, output); } } efitick_t nowNt = getTimeNowNt(); #if EFI_TOOTH_LOGGER LogTriggerCoilState(nowNt, false); #endif // EFI_TOOTH_LOGGER #if !EFI_UNIT_TEST if (engineConfiguration->debugMode == DBG_DWELL_METRIC) { #if EFI_TUNER_STUDIO uint32_t actualDwellDurationNt = getTimeNowLowerNt() - event->actualStartOfDwellNt; /** * ratio of desired dwell duration to actual dwell duration gives us some idea of how good is input trigger jitter */ float ratio = NT2US(actualDwellDurationNt) / 1000.0 / event->sparkDwell; // todo: smarted solution for index to field mapping switch (event->cylinderIndex) { case 0: engine->outputChannels.debugFloatField1 = ratio; break; case 1: engine->outputChannels.debugFloatField2 = ratio; break; case 2: engine->outputChannels.debugFloatField3 = ratio; break; case 3: engine->outputChannels.debugFloatField4 = ratio; break; } #endif } #endif /* EFI_UNIT_TEST */ // now that we've just fired a coil let's prepare the new schedule for the next engine revolution angle_t dwellAngleDuration = engine->engineState.dwellAngle; floatms_t sparkDwell = engine->engineState.sparkDwell; if (cisnan(dwellAngleDuration) || cisnan(sparkDwell)) { // we are here if engine has just stopped return; } // If there are more sparks to fire, schedule them if (event->sparksRemaining > 0) { event->sparksRemaining--; efitick_t nextDwellStart = nowNt + engine->engineState.multispark.delay; efitick_t nextFiring = nextDwellStart + engine->engineState.multispark.dwell; #if SPARK_EXTREME_LOGGING efiPrintf("schedule multispark"); #endif /* SPARK_EXTREME_LOGGING */ // We can schedule both of these right away, since we're going for "asap" not "particular angle" engine->executor.scheduleByTimestampNt("dwell", &event->dwellStartTimer, nextDwellStart, { &turnSparkPinHigh, event }); engine->executor.scheduleByTimestampNt("firing", &event->sparkEvent.scheduling, nextFiring, { fireSparkAndPrepareNextSchedule, event }); } else { if (engineConfiguration->enableTrailingSparks) { #if SPARK_EXTREME_LOGGING efiPrintf("scheduleByAngle TrailingSparks"); #endif /* SPARK_EXTREME_LOGGING */ // Trailing sparks are enabled - schedule an event for the corresponding trailing coil scheduleByAngle( &event->trailingSparkFire, nowNt, engine->engineState.trailingSparkAngle, { &fireTrailingSpark, &enginePins.trailingCoils[event->cylinderNumber] } ); } // If all events have been scheduled, prepare for next time. prepareCylinderIgnitionSchedule(dwellAngleDuration, sparkDwell, event); } engine->onSparkFireKnockSense(event->cylinderNumber, nowNt); } static void startDwellByTurningSparkPinHigh(IgnitionEvent *event, IgnitionOutputPin *output) { // todo: no reason for this to be disabled in unit_test mode?! #if ! EFI_UNIT_TEST if (Sensor::getOrZero(SensorType::Rpm) > 2 * engineConfiguration->cranking.rpm) { const char *outputName = output->getName(); if (prevSparkName == outputName && getCurrentIgnitionMode() != IM_ONE_COIL) { warning(CUSTOM_OBD_SKIPPED_SPARK, "looks like skipped spark event %d %s", getRevolutionCounter(), outputName); } prevSparkName = outputName; } #endif /* EFI_UNIT_TEST */ #if SPARK_EXTREME_LOGGING efiPrintf("spark goes high %d %s %d current=%d cnt=%d id=%d", getRevolutionCounter(), output->name, (int)getTimeNowUs(), output->currentLogicValue, output->outOfOrder, event->sparkId); #endif /* SPARK_EXTREME_LOGGING */ if (output->outOfOrder) { output->outOfOrder = false; if (output->signalFallSparkId == event->sparkId) { // let's save this coil if things do not look right return; } } output->setHigh(); } void turnSparkPinHigh(IgnitionEvent *event) { event->actualStartOfDwellNt = getTimeNowLowerNt(); efitick_t nowNt = getTimeNowNt(); #if EFI_TOOTH_LOGGER LogTriggerCoilState(nowNt, true); #endif // EFI_TOOTH_LOGGER for (int i = 0; i< MAX_OUTPUTS_FOR_IGNITION;i++) { IgnitionOutputPin *output = event->outputs[i]; if (output != NULL) { startDwellByTurningSparkPinHigh(event, output); } } if (engineConfiguration->enableTrailingSparks) { IgnitionOutputPin *output = &enginePins.trailingCoils[event->cylinderNumber]; // Trailing sparks are enabled - schedule an event for the corresponding trailing coil scheduleByAngle( &event->trailingSparkCharge, nowNt, engine->engineState.trailingSparkAngle, { &chargeTrailingSpark, output } ); } } static void scheduleSparkEvent(bool limitedSpark, uint32_t trgEventIndex, IgnitionEvent *event, int rpm, efitick_t edgeTimestamp, float currentPhase, float nextPhase) { angle_t sparkAngle = event->sparkAngle; const floatms_t dwellMs = engine->engineState.sparkDwell; if (cisnan(dwellMs) || dwellMs <= 0) { warning(CUSTOM_DWELL, "invalid dwell to handle: %.2f at %d", dwellMs, rpm); return; } if (cisnan(sparkAngle)) { warning(CUSTOM_ADVANCE_SPARK, "NaN advance"); return; } float angleOffset = event->dwellAngle - currentPhase; if (angleOffset < 0) { angleOffset += engine->engineState.engineCycle; } /** * By the way 32-bit value should hold at least 400 hours of events at 6K RPM x 12 events per revolution */ event->sparkId = engine->engineState.sparkCounter++; efitick_t chargeTime = 0; /** * The start of charge is always within the current trigger event range, so just plain time-based scheduling */ if (!limitedSpark) { #if SPARK_EXTREME_LOGGING efiPrintf("scheduling sparkUp %d %s now=%d %d later id=%d", getRevolutionCounter(), event->getOutputForLoggins()->name, (int)getTimeNowUs(), (int)angleOffset, event->sparkId); #endif /* SPARK_EXTREME_LOGGING */ /** * Note how we do not check if spark is limited or not while scheduling 'spark down' * This way we make sure that coil dwell started while spark was enabled would fire and not burn * the coil. */ chargeTime = scheduleByAngle(&event->dwellStartTimer, edgeTimestamp, angleOffset, { &turnSparkPinHigh, event }); event->sparksRemaining = engine->engineState.multispark.count; } else { // don't fire multispark if spark is cut completely! event->sparksRemaining = 0; } /** * Spark event is often happening during a later trigger event timeframe */ efiAssertVoid(CUSTOM_ERR_6591, !cisnan(sparkAngle), "findAngle#4"); assertAngleRange(sparkAngle, "findAngle#a5", CUSTOM_ERR_6549); bool scheduled = engine->module()->scheduleOrQueue( &event->sparkEvent, trgEventIndex, edgeTimestamp, sparkAngle, { fireSparkAndPrepareNextSchedule, event }, currentPhase, nextPhase); if (scheduled) { #if SPARK_EXTREME_LOGGING efiPrintf("scheduling sparkDown ind=%d %d %s now=%d later id=%d", trgEventIndex, getRevolutionCounter(), event->getOutputForLoggins()->name, (int)getTimeNowUs(), event->sparkId); #endif /* FUEL_MATH_EXTREME_LOGGING */ } else { #if SPARK_EXTREME_LOGGING efiPrintf("to queue sparkDown ind=%d %d %s now=%d for id=%d angle=%.1f", trgEventIndex, getRevolutionCounter(), event->getOutputForLoggins()->name, (int)getTimeNowUs(), event->sparkId, sparkAngle); #endif /* SPARK_EXTREME_LOGGING */ if (!limitedSpark && engine->enableOverdwellProtection) { // auto fire spark at 1.5x nominal dwell efitick_t fireTime = chargeTime + MSF2NT(1.5f * dwellMs); engine->executor.scheduleByTimestampNt("overdwell", &event->sparkEvent.scheduling, fireTime, { overFireSparkAndPrepareNextSchedule, event }); } } #if EFI_UNIT_TEST if (verboseMode) { printf("spark dwell@ %.1f spark@ %.2f id=%d\r\n", event->dwellAngle, event->sparkEvent.enginePhase, event->sparkId); } #endif } void initializeIgnitionActions() { IgnitionEventList *list = &engine->ignitionEvents; angle_t dwellAngle = engine->engineState.dwellAngle; floatms_t sparkDwell = engine->engineState.sparkDwell; if (cisnan(engine->engineState.timingAdvance[0]) || cisnan(dwellAngle)) { // error should already be reported // need to invalidate previous ignition schedule list->isReady = false; return; } efiAssertVoid(CUSTOM_ERR_6592, engineConfiguration->specs.cylindersCount > 0, "cylindersCount"); for (size_t cylinderIndex = 0; cylinderIndex < engineConfiguration->specs.cylindersCount; cylinderIndex++) { list->elements[cylinderIndex].cylinderIndex = cylinderIndex; prepareCylinderIgnitionSchedule(dwellAngle, sparkDwell, &list->elements[cylinderIndex]); } list->isReady = true; } static void prepareIgnitionSchedule() { ScopePerf perf(PE::PrepareIgnitionSchedule); /** * TODO: warning. there is a bit of a hack here, todo: improve. * currently output signals/times dwellStartTimer from the previous revolutions could be * still used because they have crossed the revolution boundary * but we are already re-purposing the output signals, but everything works because we * are not affecting that space in memory. todo: use two instances of 'ignitionSignals' */ operation_mode_e operationMode = getEngineRotationState()->getOperationMode(); float maxAllowedDwellAngle = (int) (getEngineCycle(operationMode) / 2); // the cast is about making Coverity happy if (getCurrentIgnitionMode() == IM_ONE_COIL) { maxAllowedDwellAngle = getEngineCycle(operationMode) / engineConfiguration->specs.cylindersCount / 1.1; } if (engine->engineState.dwellAngle == 0) { warning(CUSTOM_ZERO_DWELL, "dwell is zero?"); } if (engine->engineState.dwellAngle > maxAllowedDwellAngle) { warning(CUSTOM_DWELL_TOO_LONG, "dwell angle too long: %.2f", engine->engineState.dwellAngle); } // todo: add some check for dwell overflow? like 4 times 6 ms while engine cycle is less then that initializeIgnitionActions(); } void onTriggerEventSparkLogic(uint32_t trgEventIndex, int rpm, efitick_t edgeTimestamp, float currentPhase, float nextPhase) { ScopePerf perf(PE::OnTriggerEventSparkLogic); if (!isValidRpm(rpm) || !engineConfiguration->isIgnitionEnabled) { // this might happen for instance in case of a single trigger event after a pause return; } LimpState limitedSparkState = getLimpManager()->allowIgnition(); // todo: eliminate state copy logic by giving limpManager it's owm limp_manager.txt and leveraging LiveData engine->outputChannels.sparkCutReason = (int8_t)limitedSparkState.reason; bool limitedSpark = !limitedSparkState.value; if (!engine->ignitionEvents.isReady) { prepareIgnitionSchedule(); } /** * Ignition schedule is defined once per revolution * See initializeIgnitionActions() */ // scheduleSimpleMsg(&logger, "eventId spark ", eventIndex); if (engine->ignitionEvents.isReady) { for (size_t i = 0; i < engineConfiguration->specs.cylindersCount; i++) { IgnitionEvent *event = &engine->ignitionEvents.elements[i]; if (!isPhaseInRange(event->dwellAngle, currentPhase, nextPhase)) { continue; } if (i == 0 && engineConfiguration->artificialTestMisfire && (getRevolutionCounter() % ((int)engineConfiguration->scriptSetting[5]) == 0)) { // artificial misfire on cylinder #1 for testing purposes // enable artificialMisfire // set_fsio_setting 6 20 warning(CUSTOM_ARTIFICIAL_MISFIRE, "artificial misfire on cylinder #1 for testing purposes %d", engine->engineState.sparkCounter); continue; } #if EFI_LAUNCH_CONTROL if (engine->softSparkLimiter.shouldSkip()) { continue; } #endif // EFI_LAUNCH_CONTROL scheduleSparkEvent(limitedSpark, trgEventIndex, event, rpm, edgeTimestamp, currentPhase, nextPhase); } } } /** * Number of sparks per physical coil * @see getNumberOfInjections */ int getNumberOfSparks(ignition_mode_e mode) { switch (mode) { case IM_ONE_COIL: return engineConfiguration->specs.cylindersCount; case IM_TWO_COILS: return engineConfiguration->specs.cylindersCount / 2; case IM_INDIVIDUAL_COILS: return 1; case IM_WASTED_SPARK: return 2; default: firmwareError(CUSTOM_ERR_IGNITION_MODE, "Unexpected ignition_mode_e %d", mode); return 1; } } /** * @see getInjectorDutyCycle */ percent_t getCoilDutyCycle(int rpm) { floatms_t totalPerCycle = engine->engineState.sparkDwell * getNumberOfSparks(getCurrentIgnitionMode()); floatms_t engineCycleDuration = getCrankshaftRevolutionTimeMs(rpm) * (getEngineRotationState()->getOperationMode() == TWO_STROKE ? 1 : 2); return 100 * totalPerCycle / engineCycleDuration; } #endif // EFI_ENGINE_CONTROL