/** * @file fsio_impl.cpp * @brief FSIO as it's used for GPIO * * set debug_mode 23 * https://rusefi.com/wiki/index.php?title=Manual:Flexible_Logic * * 'fsioinfo' command in console shows current state of FSIO - formulas and current value * * @date Oct 5, 2014 * @author Andrey Belomutskiy, (c) 2012-2020 */ #include "pch.h" #include "fsio_impl.h" #if EFI_PROD_CODE // todo: that's about bench test mode, wrong header for sure! #include "bench_test.h" #endif // EFI_PROD_CODE #if EFI_FSIO #include "os_access.h" /** * in case of zero frequency pin is operating as simple on/off. '1' for ON and '0' for OFF * */ #define NO_PWM 0 static fsio8_Map3D_f32t fsioTable1; static fsio8_Map3D_u8t fsioTable2; static fsio8_Map3D_u8t fsioTable3; static fsio8_Map3D_u8t fsioTable4; /** * Here we define all rusEfi-specific methods */ static LENameOrdinalPair leRpm(LE_METHOD_RPM, "rpm"); static LENameOrdinalPair leTps(LE_METHOD_TPS, "tps"); static LENameOrdinalPair lePps(LE_METHOD_PPS, "pps"); static LENameOrdinalPair leMaf(LE_METHOD_MAF, "maf"); static LENameOrdinalPair leMap(LE_METHOD_MAP, "map"); static LENameOrdinalPair leVBatt(LE_METHOD_VBATT, "vbatt"); static LENameOrdinalPair leFan(LE_METHOD_FAN, "fan"); static LENameOrdinalPair leCoolant(LE_METHOD_COOLANT, "coolant"); static LENameOrdinalPair leIntakeTemp(LE_METHOD_INTAKE_AIR, "iat"); static LENameOrdinalPair leIsCoolantBroken(LE_METHOD_IS_COOLANT_BROKEN, "is_clt_broken"); static LENameOrdinalPair leOilPressure(LE_METHOD_OIL_PRESSURE, "oilp"); // @returns boolean state of A/C toggle switch static LENameOrdinalPair leAcToggle(LE_METHOD_AC_TOGGLE, "ac_on_switch"); // @returns float number of seconds since last A/C toggle static LENameOrdinalPair leTimeSinceAcToggle(LE_METHOD_TIME_SINCE_AC_TOGGLE, "time_since_ac_on_switch"); static LENameOrdinalPair leTimeSinceBoot(LE_METHOD_TIME_SINCE_BOOT, "time_since_boot"); static LENameOrdinalPair leFsioSetting(LE_METHOD_FSIO_SETTING, FSIO_METHOD_FSIO_SETTING); static LENameOrdinalPair leFsioTable(LE_METHOD_FSIO_TABLE, FSIO_METHOD_FSIO_TABLE); static LENameOrdinalPair leFsioAnalogInput(LE_METHOD_FSIO_ANALOG_INPUT, FSIO_METHOD_FSIO_ANALOG_INPUT); static LENameOrdinalPair leFsioDigitalInput(LE_METHOD_FSIO_DIGITAL_INPUT, FSIO_METHOD_FSIO_DIGITAL_INPUT); static LENameOrdinalPair leKnock(LE_METHOD_KNOCK, "knock"); static LENameOrdinalPair leIntakeVVT(LE_METHOD_INTAKE_VVT, "ivvt"); static LENameOrdinalPair leExhaustVVT(LE_METHOD_EXHAUST_VVT, "evvt"); static LENameOrdinalPair leCrankingRpm(LE_METHOD_CRANKING_RPM, "cranking_rpm"); static LENameOrdinalPair leStartupFuelPumpDuration(LE_METHOD_STARTUP_FUEL_PUMP_DURATION, "startup_fuel_pump_duration"); static LENameOrdinalPair leInShutdown(LE_METHOD_IN_SHUTDOWN, "in_shutdown"); static LENameOrdinalPair leInMrBench(LE_METHOD_IN_MR_BENCH, "in_mr_bench"); static LENameOrdinalPair leTimeSinceTrigger(LE_METHOD_TIME_SINCE_TRIGGER_EVENT, "time_since_trigger"); static LENameOrdinalPair leFuelRate(LE_METHOD_FUEL_FLOW_RATE, "fuel_flow"); #include "fsio_names.def" #define SYS_ELEMENT_POOL_SIZE 24 #define UD_ELEMENT_POOL_SIZE 64 static LEElement sysElements[SYS_ELEMENT_POOL_SIZE] CCM_OPTIONAL; LEElementPool sysPool(sysElements, SYS_ELEMENT_POOL_SIZE); static LEElement userElements[UD_ELEMENT_POOL_SIZE] CCM_OPTIONAL; LEElementPool userPool(userElements, UD_ELEMENT_POOL_SIZE); class FsioPointers { public: FsioPointers(); LEElement * fsioLogics[FSIO_COMMAND_COUNT]; }; FsioPointers::FsioPointers() : fsioLogics() { } static FsioPointers state; static LEElement * fuelPumpLogic; static LEElement * starterRelayDisableLogic; #if EFI_MAIN_RELAY_CONTROL static LEElement * mainRelayLogic; #endif /* EFI_MAIN_RELAY_CONTROL */ #if EFI_PROD_CODE || EFI_SIMULATOR FsioResult getEngineValue(le_action_e action DECLARE_ENGINE_PARAMETER_SUFFIX) { efiAssert(CUSTOM_ERR_ASSERT, engine!=NULL, "getLEValue", unexpected); switch (action) { case LE_METHOD_FAN: return enginePins.fanRelay.getLogicValue(); case LE_METHOD_TIME_SINCE_AC_TOGGLE: return (getTimeNowUs() - engine->acSwitchLastChangeTime) / US_PER_SECOND_F; case LE_METHOD_AC_TOGGLE: return getAcToggle(PASS_ENGINE_PARAMETER_SIGNATURE); case LE_METHOD_COOLANT: return Sensor::get(SensorType::Clt).value_or(0); case LE_METHOD_IS_COOLANT_BROKEN: return !Sensor::get(SensorType::Clt).Valid; case LE_METHOD_INTAKE_AIR: return Sensor::get(SensorType::Iat).value_or(0); case LE_METHOD_RPM: return Sensor::get(SensorType::Rpm).value_or(0); case LE_METHOD_MAF: return Sensor::get(SensorType::Maf).value_or(0); case LE_METHOD_MAP: return Sensor::get(SensorType::Map).value_or(0); #if EFI_SHAFT_POSITION_INPUT case LE_METHOD_INTAKE_VVT: return engine->triggerCentral.getVVTPosition(0, 0); case LE_METHOD_EXHAUST_VVT: return engine->triggerCentral.getVVTPosition(0, 1); #endif case LE_METHOD_TIME_SINCE_TRIGGER_EVENT: return engine->triggerCentral.getTimeSinceTriggerEvent(getTimeNowNt()); case LE_METHOD_TIME_SINCE_BOOT: #if EFI_MAIN_RELAY_CONTROL // in main relay control mode, we return the number of seconds since the ignition is turned on // (or negative if the ignition key is switched off) return engine->getTimeIgnitionSeconds(); #else return getTimeNowSeconds(); #endif /* EFI_MAIN_RELAY_CONTROL */ case LE_METHOD_STARTUP_FUEL_PUMP_DURATION: return engineConfiguration->startUpFuelPumpDuration; case LE_METHOD_CRANKING_RPM: return engineConfiguration->cranking.rpm; case LE_METHOD_IN_SHUTDOWN: return engine->isInShutdownMode(); case LE_METHOD_IN_MR_BENCH: return engine->isInMainRelayBench(); case LE_METHOD_VBATT: return Sensor::get(SensorType::BatteryVoltage).value_or(0); case LE_METHOD_TPS: return Sensor::get(SensorType::DriverThrottleIntent).value_or(0); case LE_METHOD_FUEL_FLOW_RATE: return engine->engineState.fuelConsumption.getConsumptionGramPerSecond(); case LE_METHOD_OIL_PRESSURE: return Sensor::get(SensorType::OilPressure).value_or(0); // cfg_xxx references are code generated #include "fsio_getters.def" default: warning(CUSTOM_FSIO_UNEXPECTED, "FSIO ERROR no data for action=%d", action); return unexpected; } } #if EFI_PROD_CODE static void setFsioAnalogInputPin(const char *indexStr, const char *pinName) { // todo: reduce code duplication between all "set pin methods" int index = atoi(indexStr) - 1; if (index < 0 || index >= FSIO_ANALOG_INPUT_COUNT) { efiPrintf("invalid FSIO index: %d", index); return; } brain_pin_e pin = parseBrainPin(pinName); // todo: extract method - code duplication with other 'set_xxx_pin' methods? if (pin == GPIO_INVALID) { efiPrintf("invalid pin name [%s]", pinName); return; } engineConfiguration->fsioAdc[index] = (adc_channel_e) pin; efiPrintf("FSIO analog input pin #%d [%s]", (index + 1), hwPortname(pin)); } static void setFsioDigitalInputPin(const char *indexStr, const char *pinName) { // todo: reduce code duplication between all "set pin methods" int index = atoi(indexStr) - 1; if (index < 0 || index >= FSIO_COMMAND_COUNT) { efiPrintf("invalid FSIO index: %d", index); return; } brain_pin_e pin = parseBrainPin(pinName); // todo: extract method - code duplication with other 'set_xxx_pin' methods? if (pin == GPIO_INVALID) { efiPrintf("invalid pin name [%s]", pinName); return; } CONFIG(fsioDigitalInputs)[index] = pin; efiPrintf("FSIO digital input pin #%d [%s]", (index + 1), hwPortname(pin)); } static void setFsioPidOutputPin(const char *indexStr, const char *pinName) { int index = atoi(indexStr) - 1; if (index < 0 || index >= CAM_INPUTS_COUNT) { efiPrintf("invalid VVT index: %d", index); return; } brain_pin_e pin = parseBrainPin(pinName); // todo: extract method - code duplication with other 'set_xxx_pin' methods? if (pin == GPIO_INVALID) { efiPrintf("invalid pin name [%s]", pinName); return; } engineConfiguration->auxPidPins[index] = pin; efiPrintf("VVT pid pin #%d [%s]", (index + 1), hwPortname(pin)); } static void showFsioInfo(void); static void setFsioOutputPin(const char *indexStr, const char *pinName) { int index = atoi(indexStr) - 1; if (index < 0 || index >= FSIO_COMMAND_COUNT) { efiPrintf("invalid FSIO index: %d", index); return; } brain_pin_e pin = parseBrainPin(pinName); // todo: extract method - code duplication with other 'set_xxx_pin' methods? if (pin == GPIO_INVALID) { efiPrintf("invalid pin name [%s]", pinName); return; } CONFIG(fsioOutputPins)[index] = pin; efiPrintf("FSIO output pin #%d [%s]", (index + 1), hwPortname(pin)); efiPrintf("please writeconfig and reboot for pin to take effect"); showFsioInfo(); } #endif /* EFI_PROD_CODE */ #endif /** * index is between zero and LE_COMMAND_LENGTH-1 */ void setFsioExt(int index, brain_pin_e pin, const char * formula, int pwmFrequency DECLARE_CONFIG_PARAMETER_SUFFIX) { CONFIG(fsioOutputPins)[index] = pin; int len = strlen(formula); if (len >= LE_COMMAND_LENGTH) { return; } strcpy(config->fsioFormulas[index], formula); CONFIG(fsioFrequency)[index] = pwmFrequency; } void setFsio(int index, brain_pin_e pin, const char * exp DECLARE_CONFIG_PARAMETER_SUFFIX) { setFsioExt(index, pin, exp, NO_PWM PASS_CONFIG_PARAMETER_SUFFIX); } void applyFsioConfiguration(DECLARE_ENGINE_PARAMETER_SIGNATURE) { userPool.reset(); for (int i = 0; i < FSIO_COMMAND_COUNT; i++) { const char *formula = config->fsioFormulas[i]; int len = strlen(formula); LEElement *logic = userPool.parseExpression(formula); if (len > 0 && logic == NULL) { warning(CUSTOM_FSIO_PARSING, "parsing [%s]", formula); } state.fsioLogics[i] = logic; } } void onConfigurationChangeFsioCallback(engine_configuration_s *previousConfiguration DECLARE_ENGINE_PARAMETER_SUFFIX) { (void)previousConfiguration; #if EFI_FSIO applyFsioConfiguration(PASS_ENGINE_PARAMETER_SIGNATURE); #endif } static LECalculator calc; static SimplePwm fsioPwm[FSIO_COMMAND_COUNT] CCM_OPTIONAL; // that's crazy, but what's an alternative? we need const char *, a shared buffer would not work for pin repository static const char *getGpioPinName(int index) { switch (index) { case 0: return "FSIO_OUT_0"; case 1: return "FSIO_OUT_1"; case 10: return "FSIO_OUT_10"; case 11: return "FSIO_OUT_11"; case 12: return "FSIO_OUT_12"; case 13: return "FSIO_OUT_13"; case 14: return "FSIO_OUT_14"; case 15: return "FSIO_OUT_15"; case 2: return "FSIO_OUT_2"; case 3: return "FSIO_OUT_3"; case 4: return "FSIO_OUT_4"; case 5: return "FSIO_OUT_5"; case 6: return "FSIO_OUT_6"; case 7: return "FSIO_OUT_7"; case 8: return "FSIO_OUT_8"; case 9: return "FSIO_OUT_9"; } return NULL; } float getFsioOutputValue(int index DECLARE_ENGINE_PARAMETER_SUFFIX) { if (state.fsioLogics[index] == NULL) { warning(CUSTOM_NO_FSIO, "no FSIO for #%d %s", index + 1, hwPortname(CONFIG(fsioOutputPins)[index])); return NAN; } else { return calc.evaluate("FSIO", engine->fsioState.fsioLastValue[index], state.fsioLogics[index] PASS_ENGINE_PARAMETER_SUFFIX); } } /** * @param index from zero for (FSIO_COMMAND_COUNT - 1) */ static void runFsioCalculation(int index DECLARE_ENGINE_PARAMETER_SUFFIX) { if (strlen(config->fsioFormulas[index]) == 0) { engine->fsioState.fsioLastValue[index] = NAN; return; } bool isPwmMode = CONFIG(fsioFrequency)[index] != NO_PWM; float fvalue = getFsioOutputValue(index PASS_ENGINE_PARAMETER_SUFFIX); engine->fsioState.fsioLastValue[index] = fvalue; if (isPwmMode) { fsioPwm[index].setSimplePwmDutyCycle(fvalue); } else { int value = (int) fvalue; if (value != enginePins.fsioOutputs[index].getLogicValue()) { // efiPrintf("setting %s %s", getIo_pin_e(pin), boolToString(value)); enginePins.fsioOutputs[index].setValue(value); } } } static const char * action2String(le_action_e action) { static char buffer[_MAX_FILLER]; switch(action) { case LE_METHOD_RPM: return "RPM"; case LE_METHOD_CRANKING_RPM: return "cranking_rpm"; case LE_METHOD_COOLANT: return "CLT"; case LE_METHOD_FAN: return "fan"; case LE_METHOD_STARTUP_FUEL_PUMP_DURATION: return leStartupFuelPumpDuration.name; case LE_METHOD_IN_SHUTDOWN: return leInShutdown.name; case LE_METHOD_IN_MR_BENCH: return leInMrBench.name; #include "fsio_strings.def" default: { // this is here to make compiler happy } } itoa10(buffer, (int)action); return buffer; } static void setPinState(const char * msg, OutputPin *pin, LEElement *element DECLARE_ENGINE_PARAMETER_SUFFIX) { #if EFI_PROD_CODE if (isRunningBenchTest()) { return; // let's not mess with bench testing } #endif /* EFI_PROD_CODE */ if (!element) { warning(CUSTOM_FSIO_INVALID_EXPRESSION, "invalid expression for %s", msg); } else { int value = (int)calc.evaluate(msg, pin->getLogicValue(), element PASS_ENGINE_PARAMETER_SUFFIX); if (pin->isInitialized() && value != pin->getLogicValue()) { for (int i = 0;i < calc.currentCalculationLogPosition;i++) { efiPrintf("calc %d: action %s value %.2f", i, action2String(calc.calcLogAction[i]), calc.calcLogValue[i]); } efiPrintf("setPin %s %s", msg, value ? "on" : "off"); pin->setValue(value); } } } #if EFI_PROD_CODE static void setFsioFrequency(int index, int frequency) { index--; if (index < 0 || index >= FSIO_COMMAND_COUNT) { efiPrintf("invalid FSIO index: %d", index); return; } CONFIG(fsioFrequency)[index] = frequency; if (frequency == 0) { efiPrintf("FSIO output #%d@%s set to on/off mode", index + 1, hwPortname(CONFIG(fsioOutputPins)[index])); } else { efiPrintf("Setting FSIO frequency %dHz on #%d@%s", frequency, index + 1, hwPortname(CONFIG(fsioOutputPins)[index])); } } #endif /* EFI_PROD_CODE */ /** * @param out param! current and new value as long as element is not NULL * @return 'true' if value has changed */ static bool updateValueOrWarning(int humanIndex, const char *msg, float *value DECLARE_ENGINE_PARAMETER_SUFFIX) { int fsioIndex = humanIndex - 1; LEElement * element = state.fsioLogics[fsioIndex]; if (element == NULL) { warning(CUSTOM_FSIO_INVALID_EXPRESSION, "invalid expression for %s", msg); return false; } else { float beforeValue = *value; *value = calc.evaluate(msg, beforeValue, element PASS_ENGINE_PARAMETER_SUFFIX); // floating '==' comparison without EPS seems fine here return (beforeValue != *value); } } /** * this method should be invoked periodically to calculate FSIO and toggle corresponding FSIO outputs */ void runFsio(DECLARE_ENGINE_PARAMETER_SIGNATURE) { for (int index = 0; index < FSIO_COMMAND_COUNT; index++) { runFsioCalculation(index PASS_ENGINE_PARAMETER_SUFFIX); } #if EFI_FUEL_PUMP if (isBrainPinValid(CONFIG(fuelPumpPin))) { setPinState("pump", &enginePins.fuelPumpRelay, fuelPumpLogic PASS_ENGINE_PARAMETER_SUFFIX); } #endif /* EFI_FUEL_PUMP */ #if EFI_MAIN_RELAY_CONTROL if (isBrainPinValid(CONFIG(mainRelayPin))) // the MAIN_RELAY_LOGIC calls engine->isInShutdownMode() setPinState("main_relay", &enginePins.mainRelay, mainRelayLogic PASS_ENGINE_PARAMETER_SUFFIX); #else /* EFI_MAIN_RELAY_CONTROL */ /** * main relay is always on if ECU is on, that's a good enough initial implementation */ if (isBrainPinValid(CONFIG(mainRelayPin))) enginePins.mainRelay.setValue(!engine->isInMainRelayBench(PASS_ENGINE_PARAMETER_SIGNATURE)); #endif /* EFI_MAIN_RELAY_CONTROL */ if (isBrainPinValid(CONFIG(starterRelayDisablePin))) setPinState("starter_relay", &enginePins.starterRelayDisable, starterRelayDisableLogic PASS_ENGINE_PARAMETER_SUFFIX); /** * o2 heater is off during cranking * todo: convert to FSIO? * open question if heater should be ON during cranking */ enginePins.o2heater.setValue(engine->rpmCalculator.isRunning()); #if EFI_ENABLE_ENGINE_WARNING if (engineConfiguration->useFSIO4ForSeriousEngineWarning) { updateValueOrWarning(MAGIC_OFFSET_FOR_ENGINE_WARNING, "eng warning", &ENGINE(fsioState.isEngineWarning) PASS_ENGINE_PARAMETER_SUFFIX); } #endif /* EFI_ENABLE_ENGINE_WARNING */ #if EFI_ENABLE_CRITICAL_ENGINE_STOP if (engineConfiguration->useFSIO5ForCriticalIssueEngineStop) { bool changed = updateValueOrWarning(MAGIC_OFFSET_FOR_CRITICAL_ENGINE, "eng critical", &ENGINE(fsioState.isCriticalEngineCondition) PASS_ENGINE_PARAMETER_SUFFIX); if (changed && float2bool(ENGINE(fsioState.isCriticalEngineCondition))) { doScheduleStopEngine(PASS_ENGINE_PARAMETER_SIGNATURE); } } #endif /* EFI_ENABLE_CRITICAL_ENGINE_STOP */ } static void showFsio(const char *msg, LEElement *element) { #if EFI_PROD_CODE || EFI_SIMULATOR if (msg != NULL) efiPrintf("%s:", msg); while (element->action != LE_METHOD_RETURN) { efiPrintf("action %d: fValue=%.2f", element->action, element->fValue); element++; } efiPrintf(""); #endif } static void showFsioInfo(void) { #if EFI_PROD_CODE || EFI_SIMULATOR efiPrintf("sys used %d/user used %d", sysPool.getSize(), userPool.getSize()); showFsio("fuel", fuelPumpLogic); for (int i = 0; i < CAM_INPUTS_COUNT ; i++) { brain_pin_e pin = engineConfiguration->auxPidPins[i]; if (isBrainPinValid(pin)) { efiPrintf("VVT pid #%d [%s]", (i + 1), hwPortname(pin)); } } for (int i = 0; i < FSIO_COMMAND_COUNT; i++) { char * exp = config->fsioFormulas[i]; if (exp[0] != 0) { /** * in case of FSIO user interface indexes are starting with 0, the argument for that * is the fact that the target audience is more software developers */ int freq = CONFIG(fsioFrequency)[i]; const char *modeMessage = freq == 0 ? " (on/off mode)" : ""; efiPrintf("FSIO #%d [%s] at %s@%dHz%s value=%.2f", (i + 1), exp, hwPortname(CONFIG(fsioOutputPins)[i]), freq, modeMessage, engine->fsioState.fsioLastValue[i]); // efiPrintf("user-defined #%d value=%.2f", i, engine->engineConfigurationPtr2->fsioLastValue[i]); showFsio(NULL, state.fsioLogics[i]); } } for (int i = 0; i < FSIO_COMMAND_COUNT; i++) { float v = CONFIG(fsio_setting)[i]; if (!cisnan(v)) { efiPrintf("user property #%d: %.2f", i + 1, v); } } for (int i = 0; i < FSIO_COMMAND_COUNT; i++) { brain_pin_e inputPin = CONFIG(fsioDigitalInputs)[i]; if (isBrainPinValid(inputPin)) { efiPrintf("FSIO digital input #%d: %s", i, hwPortname(inputPin)); } } #endif } /** * set_fsio_setting 1 0.11 */ static void setFsioSetting(float humanIndexF, float value) { #if EFI_PROD_CODE || EFI_SIMULATOR int index = (int)humanIndexF - 1; if (index < 0 || index >= FSIO_COMMAND_COUNT) { efiPrintf("invalid FSIO index: %d", (int)humanIndexF); return; } engineConfiguration->fsio_setting[index] = value; showFsioInfo(); #endif } void setFsioExpression(const char *indexStr, const char *quotedLine DECLARE_CONFIG_PARAMETER_SUFFIX) { int index = atoi(indexStr) - 1; if (index < 0 || index >= FSIO_COMMAND_COUNT) { efiPrintf("invalid FSIO index: %d", index); return; } char * l = unquote((char*) quotedLine); if (strlen(l) > LE_COMMAND_LENGTH - 1) { efiPrintf("Too long %d", strlen(l)); return; } efiPrintf("setting user out #%d to [%s]", index + 1, l); strcpy(config->fsioFormulas[index], l); } void applyFsioExpression(const char *indexStr, const char *quotedLine DECLARE_ENGINE_PARAMETER_SUFFIX) { setFsioExpression(indexStr, quotedLine PASS_CONFIG_PARAMETER_SUFFIX); // this would apply the changes applyFsioConfiguration(PASS_ENGINE_PARAMETER_SIGNATURE); showFsioInfo(); } ValueProvider3D *getFSIOTable(int index) { switch (index) { default: return &fsioTable1; case 1: return &fsioTable2; case 2: return &fsioTable3; case 3: return &fsioTable4; } } void initFsioImpl(DECLARE_ENGINE_PARAMETER_SIGNATURE) { #if EFI_UNIT_TEST // only unit test needs this sysPool.reset(); #endif #if EFI_FUEL_PUMP fuelPumpLogic = sysPool.parseExpression(FUEL_PUMP_LOGIC); #endif /* EFI_FUEL_PUMP */ #if EFI_MAIN_RELAY_CONTROL if (isBrainPinValid(CONFIG(mainRelayPin))) mainRelayLogic = sysPool.parseExpression(MAIN_RELAY_LOGIC); #endif /* EFI_MAIN_RELAY_CONTROL */ if (isBrainPinValid(CONFIG(starterRelayDisablePin))) starterRelayDisableLogic = sysPool.parseExpression(STARTER_RELAY_LOGIC); #if EFI_PROD_CODE for (int i = 0; i < FSIO_COMMAND_COUNT; i++) { brain_pin_e brainPin = CONFIG(fsioOutputPins)[i]; if (isBrainPinValid(brainPin)) { int frequency = CONFIG(fsioFrequency)[i]; if (frequency == 0) { enginePins.fsioOutputs[i].initPin(getGpioPinName(i), CONFIG(fsioOutputPins)[i]); } else { startSimplePwmExt(&fsioPwm[i], "FSIOpwm", &engine->executor, brainPin, &enginePins.fsioOutputs[i], frequency, 0.5f); } } } for (int i = 0; i < FSIO_COMMAND_COUNT; i++) { brain_pin_e inputPin = CONFIG(fsioDigitalInputs)[i]; if (isBrainPinValid(inputPin)) { efiSetPadMode("FSIO input", inputPin, getInputMode(engineConfiguration->fsioInputModes[i])); } } addConsoleActionSS("set_fsio_pid_output_pin", (VoidCharPtrCharPtr) setFsioPidOutputPin); addConsoleActionSS("set_fsio_output_pin", (VoidCharPtrCharPtr) setFsioOutputPin); addConsoleActionII("set_fsio_output_frequency", (VoidIntInt) setFsioFrequency); addConsoleActionSS("set_fsio_digital_input_pin", (VoidCharPtrCharPtr) setFsioDigitalInputPin); addConsoleActionSS("set_fsio_analog_input_pin", (VoidCharPtrCharPtr) setFsioAnalogInputPin); #endif /* EFI_PROD_CODE */ #if EFI_PROD_CODE || EFI_SIMULATOR addConsoleActionSS("set_rpn_expression", applyFsioExpression); addConsoleActionFF("set_fsio_setting", setFsioSetting); addConsoleAction("fsioinfo", showFsioInfo); #endif /* EFI_PROD_CODE || EFI_SIMULATOR */ fsioTable1.init(config->fsioTable1, config->fsioTable1LoadBins, config->fsioTable1RpmBins); fsioTable2.init(config->fsioTable2, config->fsioTable2LoadBins, config->fsioTable2RpmBins); fsioTable3.init(config->fsioTable3, config->fsioTable3LoadBins, config->fsioTable3RpmBins); fsioTable4.init(config->fsioTable4, config->fsioTable4LoadBins, config->fsioTable4RpmBins); } #else /* !EFI_FSIO */ // "Limp-mode" implementation for some RAM-limited configs without FSIO void runHardcodedFsio(DECLARE_ENGINE_PARAMETER_SIGNATURE) { #if EFI_PROD_CODE if (isRunningBenchTest()) { return; // let's not mess with bench testing } #endif /* EFI_PROD_CODE */ // see MAIN_RELAY_LOGIC if (isBrainPinValid(CONFIG(mainRelayPin))) { enginePins.mainRelay.setValue((getTimeNowSeconds() < 2) || (Sensor::get(SensorType::BatteryVoltage).value_or(0) > LOW_VBATT) || engine->isInShutdownMode()); } // see STARTER_RELAY_LOGIC if (isBrainPinValid(CONFIG(starterRelayDisablePin))) { enginePins.starterRelayDisable.setValue(engine->rpmCalculator.getRpm() < engineConfiguration->cranking.rpm); } // see FUEL_PUMP_LOGIC if (isBrainPinValid(CONFIG(fuelPumpPin))) { enginePins.fuelPumpRelay.setValue((getTimeNowSeconds() < engine->triggerActivitySecond + engineConfiguration->startUpFuelPumpDuration) || (engine->rpmCalculator.getRpm() > 0)); } enginePins.o2heater.setValue(engine->rpmCalculator.isRunning()); } #endif /* EFI_FSIO */