/**
* @file electronic_throttle.cpp
* @brief Electronic Throttle driver
*
* @see test test_etb.cpp
*
*
* Limited user documentation at https://github.com/rusefi/rusefi/wiki/HOWTO_electronic_throttle_body
*
* todo: make this more universal if/when we get other hardware options
*
* May 2020 two vehicles have driver 500 miles each
* Sep 2019 two-wire TLE9201 official driving around the block! https://www.youtube.com/watch?v=1vCeICQnbzI
* by the way 9201 does not like getting above 8khz - it starts to get warm
* May 2019 two-wire TLE7209 now behaves same as three-wire VNH2SP30 "eBay red board" on BOSCH 0280750009
* Apr 2019 two-wire TLE7209 support added
* Mar 2019 best results so far achieved with three-wire H-bridges like VNH2SP30 on BOSCH 0280750009
* Jan 2019 actually driven around the block but still need some work.
* Jan 2017 status:
* Electronic throttle body with it's spring is definitely not linear - both P and I factors of PID are required to get any results
* PID implementation tested on a bench only
* it is believed that more than just PID would be needed, as is this is probably
* not usable on a real vehicle. Needs to be tested :)
*
* https://raw.githubusercontent.com/wiki/rusefi/rusefi_documentation/oem_docs/VAG/Bosch_0280750009_pinout.jpg
*
* ETB is controlled according to pedal position input (pedal position sensor is a potentiometer)
* pedal 0% means pedal not pressed / idle
* pedal 100% means pedal all the way down
* (not TPS - not the one you can calibrate in TunerStudio)
*
*
* See also pid.cpp
*
* Relevant console commands:
*
* ETB_BENCH_ENGINE
* set engine_type 58
*
* enable verbose_etb
* disable verbose_etb
* ethinfo
* set mock_pedal_position X
*
*
* set debug_mode 17
* for PID outputs
*
* set etb_p X
* set etb_i X
* set etb_d X
* set etb_o X
*
* set_etb_duty X
*
* http://rusefi.com/forum/viewtopic.php?f=5&t=592
*
* @date Dec 7, 2013
* @author Andrey Belomutskiy, (c) 2012-2020
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see .
*/
#include "global.h"
#if EFI_ELECTRONIC_THROTTLE_BODY
#include "electronic_throttle_impl.h"
#include "engine.h"
#include "tps.h"
#include "sensor.h"
#include "dc_motor.h"
#include "dc_motors.h"
#include "pid_auto_tune.h"
#include "thread_priority.h"
#if defined(HAS_OS_ACCESS)
#error "Unexpected OS ACCESS HERE"
#endif
#ifndef ETB_MAX_COUNT
#define ETB_MAX_COUNT 2
#endif /* ETB_MAX_COUNT */
static pedal2tps_t pedal2tpsMap;
EXTERN_ENGINE;
constexpr float etbPeriodSeconds = 1.0f / ETB_LOOP_FREQUENCY;
static bool startupPositionError = false;
#define STARTUP_NEUTRAL_POSITION_ERROR_THRESHOLD 5
static const float hardCodedetbHitachiBiasBins[8] = {0.0, 19.0, 21.0, 22.0, 23.0, 25.0, 30.0, 100.0};
static const float hardCodedetbHitachiBiasValues[8] = {-18.0, -17.0, -15.0, 0.0, 16.0, 20.0, 20.0, 20.0};
/* Generated by TS2C on Thu Aug 20 21:10:02 EDT 2020*/
void setHitachiEtbBiasBins(DECLARE_CONFIG_PARAMETER_SIGNATURE) {
copyArray(engineConfiguration->etbBiasBins, hardCodedetbHitachiBiasBins);
copyArray(engineConfiguration->etbBiasValues, hardCodedetbHitachiBiasValues);
}
static SensorType functionToPositionSensor(etb_function_e func) {
switch(func) {
case ETB_Throttle1: return SensorType::Tps1;
case ETB_Throttle2: return SensorType::Tps2;
case ETB_IdleValve: return SensorType::IdlePosition;
case ETB_Wastegate: return SensorType::WastegatePosition;
default: return SensorType::Invalid;
}
}
static SensorType functionToTpsSensorPrimary(etb_function_e func) {
switch(func) {
case ETB_Throttle1: return SensorType::Tps1Primary;
default: return SensorType::Tps2Primary;
}
}
static SensorType functionToTpsSensorSecondary(etb_function_e func) {
switch(func) {
case ETB_Throttle1: return SensorType::Tps1Secondary;
default: return SensorType::Tps2Secondary;
}
}
#if EFI_TUNER_STUDIO
static TsCalMode functionToCalModePriMin(etb_function_e func) {
switch (func) {
case ETB_Throttle1: return TsCalMode::Tps1Min;
default: return TsCalMode::Tps2Min;
}
}
static TsCalMode functionToCalModePriMax(etb_function_e func) {
switch (func) {
case ETB_Throttle1: return TsCalMode::Tps1Max;
default: return TsCalMode::Tps2Max;
}
}
static TsCalMode functionToCalModeSecMin(etb_function_e func) {
switch (func) {
case ETB_Throttle1: return TsCalMode::Tps1SecondaryMin;
default: return TsCalMode::Tps2SecondaryMin;
}
}
static TsCalMode functionToCalModeSecMax(etb_function_e func) {
switch (func) {
case ETB_Throttle1: return TsCalMode::Tps1SecondaryMax;
default: return TsCalMode::Tps2SecondaryMax;
}
}
#endif // EFI_TUNER_STUDIO
static percent_t directPwmValue = NAN;
static percent_t currentEtbDuty;
#define ETB_DUTY_LIMIT 0.9
// this macro clamps both positive and negative percentages from about -100% to 100%
#define ETB_PERCENT_TO_DUTY(x) (clampF(-ETB_DUTY_LIMIT, 0.01f * (x), ETB_DUTY_LIMIT))
bool EtbController::init(etb_function_e function, DcMotor *motor, pid_s *pidParameters, const ValueProvider3D* pedalMap, bool initializeThrottles) {
if (function == ETB_None) {
// if not configured, don't init.
return false;
}
m_function = function;
m_positionSensor = functionToPositionSensor(function);
// If we are a throttle, require redundant TPS sensor
if (function == ETB_Throttle1 || function == ETB_Throttle2) {
// We don't need to init throttles, so nothing to do here.
if (!initializeThrottles) {
return false;
}
if (!Sensor::isRedundant(m_positionSensor)) {
firmwareError(
OBD_Throttle_Position_Sensor_Circuit_Malfunction,
"Use of electronic throttle requires %s to be redundant.",
Sensor::getSensorName(m_positionSensor)
);
return false;
}
if (!Sensor::isRedundant(SensorType::AcceleratorPedal)) {
firmwareError(
OBD_Throttle_Position_Sensor_Circuit_Malfunction,
"Use of electronic throttle requires accelerator pedal to be redundant."
);
return false;
}
}
m_motor = motor;
m_pid.initPidClass(pidParameters);
m_pedalMap = pedalMap;
// Ignore 3% position error before complaining
m_errorAccumulator.init(3.0f, etbPeriodSeconds);
reset();
return true;
}
void EtbController::reset() {
m_shouldResetPid = true;
}
void EtbController::onConfigurationChange(pid_s* previousConfiguration) {
if (m_motor && !m_pid.isSame(previousConfiguration)) {
m_shouldResetPid = true;
}
}
void EtbController::showStatus() {
m_pid.showPidStatus("ETB");
}
expected EtbController::observePlant() const {
return Sensor::get(m_positionSensor);
}
void EtbController::setIdlePosition(percent_t pos) {
m_idlePosition = pos;
}
void EtbController::setWastegatePosition(percent_t pos) {
m_wastegatePosition = pos;
}
expected EtbController::getSetpoint() const {
switch (m_function) {
case ETB_Throttle1:
case ETB_Throttle2:
return getSetpointEtb();
case ETB_IdleValve:
return getSetpointIdleValve();
case ETB_Wastegate:
return getSetpointWastegate();
default:
return unexpected;
}
}
expected EtbController::getSetpointIdleValve() const {
// VW ETB idle mode uses an ETB only for idle (a mini-ETB sets the lower stop, and a normal cable
// can pull the throttle up off the stop.), so we directly control the throttle with the idle position.
#if EFI_TUNER_STUDIO
tsOutputChannels.etbTarget = m_idlePosition;
#endif // EFI_TUNER_STUDIO
return clampF(0, m_idlePosition, 100);
}
expected EtbController::getSetpointWastegate() const {
return clampF(0, m_wastegatePosition, 100);
}
expected EtbController::getSetpointEtb() const {
// Autotune runs with 50% target position
if (m_isAutotune) {
return 50.0f;
}
// A few extra preconditions if throttle control is invalid
if (startupPositionError) {
return unexpected;
}
// If the pedal map hasn't been set, we can't provide a setpoint.
if (!m_pedalMap) {
return unexpected;
}
auto pedalPosition = Sensor::get(SensorType::AcceleratorPedal);
// If the pedal has failed, just use 0 position.
// This is safer than disabling throttle control - we can at least push the throttle closed
// and let the engine idle.
float sanitizedPedal = clampF(0, pedalPosition.value_or(0), 100);
float rpm = GET_RPM();
float targetFromTable = m_pedalMap->getValue(rpm / RPM_1_BYTE_PACKING_MULT, sanitizedPedal);
engine->engineState.targetFromTable = targetFromTable;
percent_t etbIdlePosition = clampF(
0,
CONFIG(useETBforIdleControl) ? m_idlePosition : 0,
100
);
percent_t etbIdleAddition = 0.01f * CONFIG(etbIdleThrottleRange) * etbIdlePosition;
// Interpolate so that the idle adder just "compresses" the throttle's range upward.
// [0, 100] -> [idle, 100]
// 0% target from table -> idle position as target
// 100% target from table -> 100% target position
percent_t targetPosition = interpolateClamped(0, etbIdleAddition, 100, 100, targetFromTable);
#if EFI_TUNER_STUDIO
if (m_function == ETB_Throttle1) {
tsOutputChannels.etbTarget = targetPosition;
}
#endif // EFI_TUNER_STUDIO
return targetPosition;
}
expected EtbController::getOpenLoop(percent_t target) const {
float ff = 0;
// Don't apply open loop for wastegate/idle valve, only real ETB
if (m_function != ETB_Wastegate
&& m_function != ETB_IdleValve) {
ff = interpolate2d(target, engineConfiguration->etbBiasBins, engineConfiguration->etbBiasValues);
}
engine->engineState.etbFeedForward = ff;
return ff;
}
expected EtbController::getClosedLoopAutotune(percent_t target, percent_t actualThrottlePosition) {
// Estimate gain at current position - this should be well away from the spring and in the linear region
// GetSetpoint sets this to 50%
bool isPositive = actualThrottlePosition > target;
float autotuneAmplitude = 20;
// End of cycle - record & reset
if (!isPositive && m_lastIsPositive) {
efitick_t now = getTimeNowNt();
// Determine period
float tu = NT2US((float)(now - m_cycleStartTime)) / 1e6;
m_cycleStartTime = now;
// Determine amplitude
float a = m_maxCycleTps - m_minCycleTps;
// Filter - it's pretty noisy since the ultimate period is not very many loop periods
constexpr float alpha = 0.05;
m_a = alpha * a + (1 - alpha) * m_a;
m_tu = alpha * tu + (1 - alpha) * m_tu;
// Reset bounds
m_minCycleTps = 100;
m_maxCycleTps = 0;
// Math is for Åström–Hägglund (relay) auto tuning
// https://warwick.ac.uk/fac/cross_fac/iatl/reinvention/archive/volume5issue2/hornsey
// Publish to TS state
#if EFI_TUNER_STUDIO
// Amplitude of input (duty cycle %)
float b = 2 * autotuneAmplitude;
// Ultimate gain per A-H relay tuning rule
float ku = 4 * b / (3.14159f * m_a);
// The multipliers below are somewhere near the "no overshoot"
// and "some overshoot" flavors of the Ziegler-Nichols method
// Kp
float kp = 0.35f * ku;
float ki = 0.25f * ku / m_tu;
float kd = 0.08f * ku * m_tu;
// Every 5 cycles (of the throttle), cycle to the next value
if (m_autotuneCounter == 5) {
m_autotuneCounter = 0;
m_autotuneCurrentParam++;
if (m_autotuneCurrentParam >= 3) {
m_autotuneCurrentParam = 0;
}
}
m_autotuneCounter++;
// Multiplex 3 signals on to the {mode, value} format
tsOutputChannels.calibrationMode = static_cast(m_autotuneCurrentParam + 3);
switch (m_autotuneCurrentParam) {
case 0:
tsOutputChannels.calibrationValue = kp;
break;
case 1:
tsOutputChannels.calibrationValue = ki;
break;
case 2:
tsOutputChannels.calibrationValue = kd;
break;
}
// Also output to debug channels if configured
if (engineConfiguration->debugMode == DBG_ETB_AUTOTUNE) {
// a - amplitude of output (TPS %)
tsOutputChannels.debugFloatField1 = m_a;
// b - amplitude of input (Duty cycle %)
tsOutputChannels.debugFloatField2 = b;
// Tu - oscillation period (seconds)
tsOutputChannels.debugFloatField3 = m_tu;
tsOutputChannels.debugFloatField4 = ku;
tsOutputChannels.debugFloatField5 = kp;
tsOutputChannels.debugFloatField6 = ki;
tsOutputChannels.debugFloatField7 = kd;
}
#endif
}
m_lastIsPositive = isPositive;
// Find the min/max of each cycle
if (actualThrottlePosition < m_minCycleTps) {
m_minCycleTps = actualThrottlePosition;
}
if (actualThrottlePosition > m_maxCycleTps) {
m_maxCycleTps = actualThrottlePosition;
}
// Bang-bang control the output to induce oscillation
return autotuneAmplitude * (isPositive ? -1 : 1);
}
expected EtbController::getClosedLoop(percent_t target, percent_t observation) {
if (m_shouldResetPid) {
m_pid.reset();
m_shouldResetPid = false;
}
// Only report the 0th throttle
if (m_function == ETB_Throttle1) {
#if EFI_TUNER_STUDIO
// Error is positive if the throttle needs to open further
tsOutputChannels.etb1Error = target - observation;
#endif /* EFI_TUNER_STUDIO */
}
// Only allow autotune with stopped engine, and on the first throttle
if (m_isAutotune) {
return getClosedLoopAutotune(target, observation);
} else {
// Check that we're not over the error limit
float errorIntegral = m_errorAccumulator.accumulate(target - observation);
#if EFI_TUNER_STUDIO
if (m_function == ETB_Throttle1 && CONFIG(debugMode) == DBG_ETB_LOGIC) {
tsOutputChannels.debugFloatField3 = errorIntegral;
}
#endif // EFI_TUNER_STUDIO
// Allow up to 10 percent-seconds of error
if (errorIntegral > 10.0f) {
// TODO: figure out how to handle uncalibrated ETB
//ENGINE(limpManager).etbProblem();
}
// Normal case - use PID to compute closed loop part
return m_pid.getOutput(target, observation, etbPeriodSeconds);
}
}
void EtbController::setOutput(expected outputValue) {
#if EFI_TUNER_STUDIO
// Only report first-throttle stats
if (m_function == ETB_Throttle1) {
tsOutputChannels.etb1DutyCycle = outputValue.value_or(0);
}
#endif
if (!m_motor) return;
// If ETB is allowed, output is valid, and we aren't paused, output to motor.
if (ENGINE(limpManager).allowElectronicThrottle()
&& outputValue
&& !engineConfiguration->pauseEtbControl) {
m_motor->enable();
m_motor->set(ETB_PERCENT_TO_DUTY(outputValue.Value));
} else {
// Otherwise disable the motor.
m_motor->disable();
}
}
void EtbController::update() {
// If we didn't get initialized, fail fast
if (!m_motor) {
return;
}
#if EFI_TUNER_STUDIO
// Only debug throttle #1
if (m_function == ETB_Throttle1) {
// set debug_mode 17
if (engineConfiguration->debugMode == DBG_ELECTRONIC_THROTTLE_PID) {
m_pid.postState(&tsOutputChannels);
tsOutputChannels.debugIntField5 = engine->engineState.etbFeedForward;
} else if (engineConfiguration->debugMode == DBG_ELECTRONIC_THROTTLE_EXTRA) {
// set debug_mode 29
tsOutputChannels.debugFloatField1 = directPwmValue;
}
}
#endif /* EFI_TUNER_STUDIO */
if (!cisnan(directPwmValue)) {
m_motor->set(directPwmValue);
return;
}
if (CONFIG(disableEtbWhenEngineStopped)) {
if (engine->triggerCentral.getTimeSinceTriggerEvent(getTimeNowNt()) > 1) {
// If engine is stopped and so configured, skip the ETB update entirely
// This is quieter and pulls less power than leaving it on all the time
m_motor->disable();
return;
}
}
#if EFI_TUNER_STUDIO
if (engineConfiguration->debugMode == DBG_ETB_LOGIC) {
tsOutputChannels.debugFloatField1 = engine->engineState.targetFromTable;
tsOutputChannels.debugFloatField2 = engine->engineState.idle.etbIdleAddition;
}
#endif
m_pid.iTermMin = engineConfiguration->etb_iTermMin;
m_pid.iTermMax = engineConfiguration->etb_iTermMax;
if (engineConfiguration->isVerboseETB) {
m_pid.showPidStatus("ETB");
}
// Update local state about autotune
m_isAutotune = GET_RPM() == 0
&& engine->etbAutoTune
&& m_function == ETB_Throttle1;
ClosedLoopController::update();
DISPLAY_STATE(Engine)
DISPLAY(DISPLAY_IF(1))
DISPLAY_TEXT(Electronic_Throttle);
DISPLAY_SENSOR(TPS)
DISPLAY_TEXT(eol);
DISPLAY_TEXT(Pedal);
DISPLAY_SENSOR(PPS);
DISPLAY(DISPLAY_CONFIG(throttlePedalPositionAdcChannel));
DISPLAY_TEXT(eol);
DISPLAY_TEXT(Feed_forward);
DISPLAY(DISPLAY_FIELD(etbFeedForward));
DISPLAY_TEXT(eol);
DISPLAY_STATE(ETB_pid)
DISPLAY_TEXT(input);
DISPLAY(DISPLAY_FIELD(input));
DISPLAY_TEXT(Output);
DISPLAY(DISPLAY_FIELD(output));
DISPLAY_TEXT(iTerm);
DISPLAY(DISPLAY_FIELD(iTerm));
DISPLAY_TEXT(eol);
DISPLAY(DISPLAY_FIELD(errorAmplificationCoef));
DISPLAY(DISPLAY_FIELD(previousError));
DISPLAY_TEXT(eol);
DISPLAY_TEXT(Settings);
DISPLAY(DISPLAY_CONFIG(ETB_PFACTOR));
DISPLAY(DISPLAY_CONFIG(ETB_IFACTOR));
DISPLAY(DISPLAY_CONFIG(ETB_DFACTOR));
DISPLAY_TEXT(eol);
DISPLAY(DISPLAY_CONFIG(ETB_OFFSET));
DISPLAY(DISPLAY_CONFIG(ETB_PERIODMS));
DISPLAY_TEXT(eol);
DISPLAY(DISPLAY_CONFIG(ETB_MINVALUE));
DISPLAY(DISPLAY_CONFIG(ETB_MAXVALUE));
/* DISPLAY_ELSE */
DISPLAY_TEXT(No_Pedal_Sensor);
/* DISPLAY_ENDIF */
}
void EtbController::autoCalibrateTps() {
// Only auto calibrate throttles
if (m_function == ETB_Throttle1 || m_function == ETB_Throttle2) {
m_isAutocal = true;
}
}
#if !EFI_UNIT_TEST
/**
* Things running on a timer (instead of a thread) don't participate it the RTOS's thread priority system,
* and operate essentially "first come first serve", which risks starvation.
* Since ETB is a safety critical device, we need the hard RTOS guarantee that it will be scheduled over other less important tasks.
*/
#include "periodic_thread_controller.h"
struct EtbImpl final : public EtbController {
void update() override {
#if EFI_TUNER_STUDIO
if (m_isAutocal) {
// Don't allow if engine is running!
if (GET_RPM() > 0) {
m_isAutocal = false;
return;
}
auto motor = getMotor();
if (!motor) {
m_isAutocal = false;
return;
}
auto myFunction = getFunction();
// First grab open
motor->set(0.5f);
motor->enable();
chThdSleepMilliseconds(1000);
float primaryMax = Sensor::getRaw(functionToTpsSensorPrimary(myFunction)) * TPS_TS_CONVERSION;
float secondaryMax = Sensor::getRaw(functionToTpsSensorSecondary(myFunction)) * TPS_TS_CONVERSION;
// Let it return
motor->set(0);
chThdSleepMilliseconds(200);
// Now grab closed
motor->set(-0.5f);
chThdSleepMilliseconds(1000);
float primaryMin = Sensor::getRaw(functionToTpsSensorPrimary(myFunction)) * TPS_TS_CONVERSION;
float secondaryMin = Sensor::getRaw(functionToTpsSensorSecondary(myFunction)) * TPS_TS_CONVERSION;
// Finally disable and reset state
motor->disable();
// Check that the calibrate actually moved the throttle
if (absF(primaryMax - primaryMin) < 0.5f) {
firmwareError(OBD_Throttle_Position_Sensor_Circuit_Malfunction, "Auto calibrate failed, check your wiring!\r\nClosed voltage: %.1fv Open voltage: %.1fv", primaryMin, primaryMax);
m_isAutocal = false;
return;
}
// Write out the learned values to TS, waiting briefly after setting each to let TS grab it
tsOutputChannels.calibrationMode = functionToCalModePriMax(myFunction);
tsOutputChannels.calibrationValue = primaryMax;
chThdSleepMilliseconds(500);
tsOutputChannels.calibrationMode = functionToCalModePriMin(myFunction);
tsOutputChannels.calibrationValue = primaryMin;
chThdSleepMilliseconds(500);
tsOutputChannels.calibrationMode = functionToCalModeSecMax(myFunction);
tsOutputChannels.calibrationValue = secondaryMax;
chThdSleepMilliseconds(500);
tsOutputChannels.calibrationMode = functionToCalModeSecMin(myFunction);
tsOutputChannels.calibrationValue = secondaryMin;
chThdSleepMilliseconds(500);
tsOutputChannels.calibrationMode = TsCalMode::None;
m_isAutocal = false;
return;
}
#endif /* EFI_TUNER_STUDIO */
EtbController::update();
}
};
// real implementation (we mock for some unit tests)
static EtbImpl etbControllers[ETB_COUNT];
struct EtbThread final : public PeriodicController<512> {
EtbThread() : PeriodicController("ETB", PRIO_ETB, ETB_LOOP_FREQUENCY) {}
void PeriodicTask(efitick_t) override {
// Simply update all controllers
for (int i = 0 ; i < ETB_COUNT; i++) {
etbControllers[i].update();
}
}
};
static EtbThread etbThread CCM_OPTIONAL;
#endif
static void showEthInfo(void) {
#if EFI_PROD_CODE
efiPrintf("etbAutoTune=%d",
engine->etbAutoTune);
efiPrintf("TPS=%.2f", Sensor::get(SensorType::Tps1).value_or(0));
efiPrintf("etbControlPin=%s duty=%.2f freq=%d",
hwPortname(CONFIG(etbIo[0].controlPin)),
currentEtbDuty,
engineConfiguration->etbFreq);
for (int i = 0; i < ETB_COUNT; i++) {
efiPrintf("ETB%d", i);
efiPrintf(" dir1=%s", hwPortname(CONFIG(etbIo[i].directionPin1)));
efiPrintf(" dir2=%s", hwPortname(CONFIG(etbIo[i].directionPin2)));
efiPrintf(" control=%s", hwPortname(CONFIG(etbIo[i].controlPin)));
efiPrintf(" disable=%s", hwPortname(CONFIG(etbIo[i].disablePin)));
showDcMotorInfo(i);
}
#endif /* EFI_PROD_CODE */
}
static void etbPidReset(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
for (int i = 0 ; i < ETB_COUNT; i++) {
if (auto controller = engine->etbControllers[i]) {
controller->reset();
}
}
}
#if !EFI_UNIT_TEST
/**
* At the moment there are TWO ways to use this
* set_etb_duty X
* set etb X
* manual duty cycle control without PID. Percent value from 0 to 100
*/
void setThrottleDutyCycle(percent_t level) {
efiPrintf("setting ETB duty=%f%%", level);
if (cisnan(level)) {
directPwmValue = NAN;
return;
}
float dc = ETB_PERCENT_TO_DUTY(level);
directPwmValue = dc;
for (int i = 0 ; i < ETB_COUNT; i++) {
setDcMotorDuty(i, dc);
}
efiPrintf("duty ETB duty=%f", dc);
}
static void setEtbFrequency(int frequency) {
engineConfiguration->etbFreq = frequency;
for (int i = 0 ; i < ETB_COUNT; i++) {
setDcMotorFrequency(i, frequency);
}
}
static void etbReset() {
efiPrintf("etbReset");
for (int i = 0 ; i < ETB_COUNT; i++) {
setDcMotorDuty(i, 0);
}
etbPidReset();
}
#endif /* EFI_PROD_CODE */
#if !EFI_UNIT_TEST
/**
* set etb_p X
*/
void setEtbPFactor(float value) {
engineConfiguration->etb.pFactor = value;
etbPidReset();
showEthInfo();
}
/**
* set etb_i X
*/
void setEtbIFactor(float value) {
engineConfiguration->etb.iFactor = value;
etbPidReset();
showEthInfo();
}
/**
* set etb_d X
*/
void setEtbDFactor(float value) {
engineConfiguration->etb.dFactor = value;
etbPidReset();
showEthInfo();
}
/**
* set etb_o X
*/
void setEtbOffset(int value) {
engineConfiguration->etb.offset = value;
etbPidReset();
showEthInfo();
}
void etbAutocal(size_t throttleIndex) {
if (throttleIndex >= ETB_COUNT) {
return;
}
if (auto etb = engine->etbControllers[throttleIndex]) {
etb->autoCalibrateTps();
}
}
#endif /* !EFI_UNIT_TEST */
/**
* This specific throttle has default position of about 7% open
*/
static const float boschBiasBins[] = {
0, 1, 5, 7, 14, 65, 66, 100
};
static const float boschBiasValues[] = {
-15, -15, -10, 0, 19, 20, 26, 28
};
void setBoschVNH2SP30Curve(DECLARE_CONFIG_PARAMETER_SIGNATURE) {
copyArray(CONFIG(etbBiasBins), boschBiasBins);
copyArray(CONFIG(etbBiasValues), boschBiasValues);
}
void setDefaultEtbParameters(DECLARE_CONFIG_PARAMETER_SIGNATURE) {
CONFIG(etbIdleThrottleRange) = 5;
setLinearCurve(config->pedalToTpsPedalBins, /*from*/0, /*to*/100, 1);
setLinearCurve(config->pedalToTpsRpmBins, /*from*/0, /*to*/8000 / RPM_1_BYTE_PACKING_MULT, 1);
for (int pedalIndex = 0;pedalIndexpedalToTpsTable[pedalIndex][rpmIndex] = config->pedalToTpsPedalBins[pedalIndex];
}
}
// Default is to run each throttle off its respective hbridge
engineConfiguration->etbFunctions[0] = ETB_Throttle1;
engineConfiguration->etbFunctions[1] = ETB_Throttle2;
engineConfiguration->etbFreq = DEFAULT_ETB_PWM_FREQUENCY;
// voltage, not ADC like with TPS
engineConfiguration->throttlePedalUpVoltage = 0;
engineConfiguration->throttlePedalWOTVoltage = 5;
engineConfiguration->etb = {
1, // Kp
10, // Ki
0.05, // Kd
0, // offset
0, // Update rate, unused
-100, 100 // min/max
};
engineConfiguration->etb_iTermMin = -30;
engineConfiguration->etb_iTermMax = 30;
}
void onConfigurationChangeElectronicThrottleCallback(engine_configuration_s *previousConfiguration) {
#if !EFI_UNIT_TEST
for (int i = 0; i < ETB_COUNT; i++) {
etbControllers[i].onConfigurationChange(&previousConfiguration->etb);
}
#endif
}
#if EFI_PROD_CODE && 0
static void setTempOutput(float value) {
autoTune.output = value;
}
/**
* set_etbat_step X
*/
static void setAutoStep(float value) {
autoTune.reset();
autoTune.SetOutputStep(value);
}
#endif /* EFI_PROD_CODE */
static const float defaultBiasBins[] = {
0, 1, 2, 4, 7, 98, 99, 100
};
static const float defaultBiasValues[] = {
-20, -18, -17, 0, 20, 21, 22, 25
};
void setDefaultEtbBiasCurve(DECLARE_CONFIG_PARAMETER_SIGNATURE) {
copyArray(CONFIG(etbBiasBins), defaultBiasBins);
copyArray(CONFIG(etbBiasValues), defaultBiasValues);
}
void unregisterEtbPins() {
// todo: we probably need an implementation here?!
}
static pid_s* getEtbPidForFunction(etb_function_e function DECLARE_ENGINE_PARAMETER_SUFFIX) {
switch (function) {
case ETB_Wastegate: return &CONFIG(etbWastegatePid);
default: return &CONFIG(etb);
}
}
void doInitElectronicThrottle(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
efiAssertVoid(OBD_PCM_Processor_Fault, engine->etbControllers != NULL, "etbControllers NULL");
#if EFI_PROD_CODE
addConsoleAction("ethinfo", showEthInfo);
addConsoleAction("etbreset", etbReset);
addConsoleActionI("etb_freq", setEtbFrequency);
#endif /* EFI_PROD_CODE */
pedal2tpsMap.init(config->pedalToTpsTable, config->pedalToTpsPedalBins, config->pedalToTpsRpmBins);
bool shouldInitThrottles = Sensor::hasSensor(SensorType::AcceleratorPedalPrimary);
bool anyEtbConfigured = false;
for (int i = 0 ; i < ETB_COUNT; i++) {
auto motor = initDcMotor(engineConfiguration->etbIo[i], i, CONFIG(etb_use_two_wires) PASS_ENGINE_PARAMETER_SUFFIX);
// If this motor is actually set up, init the etb
if (motor)
{
auto controller = engine->etbControllers[i];
if (!controller) {
continue;
}
auto func = CONFIG(etbFunctions[i]);
auto pid = getEtbPidForFunction(func PASS_ENGINE_PARAMETER_SUFFIX);
anyEtbConfigured |= controller->init(func, motor, pid, &pedal2tpsMap, shouldInitThrottles);
INJECT_ENGINE_REFERENCE(engine->etbControllers[i]);
}
}
if (!anyEtbConfigured) {
// It's not valid to have a PPS without any ETBs - check that at least one ETB was enabled along with the pedal
if (shouldInitThrottles) {
firmwareError(OBD_PCM_Processor_Fault, "A pedal position sensor was configured, but no electronic throttles are configured.");
}
// Don't start the thread if no throttles are in use.
return;
}
#if 0 && ! EFI_UNIT_TEST
percent_t startupThrottlePosition = getTPS(PASS_ENGINE_PARAMETER_SIGNATURE);
if (absF(startupThrottlePosition - engineConfiguration->etbNeutralPosition) > STARTUP_NEUTRAL_POSITION_ERROR_THRESHOLD) {
/**
* Unexpected electronic throttle start-up position is worth a critical error
*/
firmwareError(OBD_Throttle_Actuator_Control_Range_Performance_Bank_1, "startup ETB position %.2f not %d",
startupThrottlePosition,
engineConfiguration->etbNeutralPosition);
startupPositionError = true;
}
#endif /* EFI_UNIT_TEST */
#if !EFI_UNIT_TEST
etbThread.Start();
#endif
}
void initElectronicThrottle(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
if (hasFirmwareError()) {
return;
}
#if !EFI_UNIT_TEST
for (int i = 0; i < ETB_COUNT; i++) {
engine->etbControllers[i] = &etbControllers[i];
}
#endif
doInitElectronicThrottle(PASS_ENGINE_PARAMETER_SIGNATURE);
}
void setEtbIdlePosition(percent_t pos DECLARE_ENGINE_PARAMETER_SUFFIX) {
if (!Sensor::hasSensor(SensorType::AcceleratorPedal)) {
firmwareError(CUSTOM_NO_ETB_FOR_IDLE, "No ETB to use for idle");
return;
}
for (int i = 0; i < ETB_COUNT; i++) {
if (auto etb = engine->etbControllers[i]) {
etb->setIdlePosition(pos);
}
}
}
void setEtbWastegatePosition(percent_t pos DECLARE_ENGINE_PARAMETER_SUFFIX) {
for (int i = 0; i < ETB_COUNT; i++) {
if (auto etb = engine->etbControllers[i]) {
etb->setWastegatePosition(pos);
}
}
}
static void toyota89281_33010_pedal_position_sensor(DECLARE_CONFIG_PARAMETER_SIGNATURE) {
engineConfiguration->throttlePedalUpVoltage = 0;
engineConfiguration->throttlePedalWOTVoltage = 4.1;
engineConfiguration->throttlePedalSecondaryUpVoltage = 0.73;
engineConfiguration->throttlePedalSecondaryWOTVoltage = 4.9;
}
void setProteusHitachiEtbDefaults(DECLARE_CONFIG_PARAMETER_SIGNATURE) {
// EFI_ADC_12: "Analog Volt 3"
engineConfiguration->tps1_2AdcChannel = EFI_ADC_12;
// EFI_ADC_13: "Analog Volt 4"
engineConfiguration->tps2_1AdcChannel = EFI_ADC_13;
// EFI_ADC_0: "Analog Volt 5"
engineConfiguration->tps2_2AdcChannel = EFI_ADC_0;
// EFI_ADC_1: "Analog Volt 6"
engineConfiguration->throttlePedalPositionAdcChannel = EFI_ADC_1;
toyota89281_33010_pedal_position_sensor(PASS_CONFIG_PARAMETER_SIGNATURE);
// EFI_ADC_2: "Analog Volt 7"
engineConfiguration->throttlePedalPositionSecondAdcChannel = EFI_ADC_2;
setHitachiEtbBiasBins(PASS_CONFIG_PARAMETER_SIGNATURE);
engineConfiguration->etb.pFactor = 2.7999;
engineConfiguration->etb.iFactor = 25.5;
engineConfiguration->etb.dFactor = 0.053;
engineConfiguration->etb.offset = 0.0;
engineConfiguration->etb.periodMs = 5.0;
engineConfiguration->etb.minValue = -100.0;
engineConfiguration->etb.maxValue = 100.0;
// Nissan 60mm throttle
CONFIG(tpsMin) = CONFIG(tps2Min) = 113;
CONFIG(tpsMax) = CONFIG(tps2Max) = 846;
CONFIG(tps1SecondaryMin) = CONFIG(tps2SecondaryMin) = 897;
CONFIG(tps1SecondaryMax) = CONFIG(tps2SecondaryMax) = 161;
}
#endif /* EFI_ELECTRONIC_THROTTLE_BODY */