/** * @file adc_inputs.cpp * @brief Low level ADC code * * rusEfi uses two ADC devices on the same 16 pins at the moment. Two ADC devices are used in orde to distinguish between * fast and slow devices. The idea is that but only having few channels in 'fast' mode we can sample those faster? * * At the moment rusEfi does not allow to have more than 16 ADC channels combined. At the moment there is no flexibility to use * any ADC pins, only the hardcoded choice of 16 pins. * * Slow ADC group is used for IAT, CLT, AFR, VBATT etc - this one is currently sampled at 20Hz * * Fast ADC group is used for TPS, MAP, MAF HIP - this one is currently sampled at 10KHz * We need frequent MAP for map_averaging.cpp * We need frequent TPS for better TPS/TPS enrichment and better ETB control * * 10KHz equals one measurement every 3.6 degrees at 6000 RPM * * @date Jan 14, 2013 * @author Andrey Belomutskiy, (c) 2012-2018 */ #include "global.h" #if HAL_USE_ADC #include "os_access.h" #include "engine.h" #include "adc_inputs.h" #include "adc_subscription.h" #include "AdcConfiguration.h" #include "mpu_util.h" #include "pin_repository.h" #include "engine_math.h" #include "engine_controller.h" #include "maf.h" #include "perf_trace.h" /* Depth of the conversion buffer, channels are sampled X times each.*/ #define ADC_BUF_DEPTH_SLOW 8 #define ADC_BUF_DEPTH_FAST 4 //static Biquad biq[ADC_MAX_CHANNELS_COUNT]; static adc_channel_mode_e adcHwChannelEnabled[HW_MAX_ADC_INDEX]; static const char * adcHwChannelUsage[HW_MAX_ADC_INDEX]; EXTERN_ENGINE; // Board voltage, with divider coefficient accounted for float getVoltageDivided(const char *msg, adc_channel_e hwChannel DECLARE_ENGINE_PARAMETER_SUFFIX) { return getVoltage(msg, hwChannel PASS_ENGINE_PARAMETER_SUFFIX) * engineConfiguration->analogInputDividerCoefficient; } // voltage in MCU universe, from zero to VDD float getVoltage(const char *msg, adc_channel_e hwChannel DECLARE_ENGINE_PARAMETER_SUFFIX) { return adcToVolts(getAdcValue(msg, hwChannel)); } AdcDevice::AdcDevice(ADCConversionGroup* hwConfig) { this->hwConfig = hwConfig; channelCount = 0; conversionCount = 0; errorsCount = 0; hwConfig->sqr1 = 0; hwConfig->sqr2 = 0; hwConfig->sqr3 = 0; memset(hardwareIndexByIndernalAdcIndex, 0, sizeof(hardwareIndexByIndernalAdcIndex)); memset(internalAdcIndexByHardwareIndex, 0xFFFFFFFF, sizeof(internalAdcIndexByHardwareIndex)); } #if !defined(PWM_FREQ_SLOW) || !defined(PWM_PERIOD_SLOW) // todo: migrate from hardware timer to software ADC conversion triggering // todo: I guess we would have to use ChibiOS timer and not our own timer because // todo: adcStartConversionI requires OS lock. currently slow ADC is 20Hz #define PWM_FREQ_SLOW 5000 /* PWM clock frequency. I wonder what does this setting mean? */ #define PWM_PERIOD_SLOW 25 /* PWM period (in PWM ticks). */ #endif /* PWM_FREQ_SLOW PWM_PERIOD_SLOW */ #if !defined(PWM_FREQ_FAST) || !defined(PWM_PERIOD_FAST) /** * 8000 RPM is 133Hz * If we want to sample MAP once per 5 degrees we need 133Hz * (360 / 5) = 9576Hz of fast ADC */ // todo: migrate to continues ADC mode? probably not - we cannot afford the callback in // todo: continues mode. todo: look into our options #define PWM_FREQ_FAST 100000 /* PWM clock frequency. I wonder what does this setting mean? */ #define PWM_PERIOD_FAST 10 /* PWM period (in PWM ticks). */ #endif /* PWM_FREQ_FAST PWM_PERIOD_FAST */ // is there a reason to have this configurable at runtime? #ifndef ADC_SLOW_DEVICE #define ADC_SLOW_DEVICE ADCD1 #endif /* ADC_SLOW_DEVICE */ // is there a reason to have this configurable at runtime? #ifndef ADC_FAST_DEVICE #define ADC_FAST_DEVICE ADCD2 #endif /* ADC_FAST_DEVICE */ static volatile int slowAdcCounter = 0; static LoggingWithStorage logger("ADC"); // todo: move this flag to Engine god object static int adcDebugReporting = false; EXTERN_ENGINE; static adcsample_t getAvgAdcValue(int index, adcsample_t *samples, int bufDepth, int numChannels) { adcsample_t result = 0; for (int i = 0; i < bufDepth; i++) { result += samples[index]; index += numChannels; } return result / bufDepth; } static void adc_callback_slow(ADCDriver *adcp, adcsample_t *buffer, size_t n); // See https://github.com/rusefi/rusefi/issues/976 for discussion on these values #define ADC_SAMPLING_SLOW ADC_SAMPLE_56 #define ADC_SAMPLING_FAST ADC_SAMPLE_28 /* * ADC conversion group. */ static ADCConversionGroup adcgrpcfgSlow = { FALSE, 0, adc_callback_slow, NULL, /* HW dependent part.*/ ADC_TwoSamplingDelay_20Cycles, // cr1 ADC_CR2_SWSTART, // cr2 /** * here we configure all possible channels for slow mode. Some channels would not actually * be used hopefully that's fine to configure all possible channels. */ ADC_SMPR1_SMP_AN10(ADC_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN11(ADC_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN12(ADC_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN13(ADC_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN14(ADC_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN15(ADC_SAMPLING_SLOW) | ADC_SMPR1_SMP_SENSOR(ADC_SAMPLE_144) , // sample times for channels 10...18 ADC_SMPR2_SMP_AN0(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN1(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN2(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN3(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN4(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN5(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN6(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN7(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN8(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN9(ADC_SAMPLING_SLOW) , // In this field must be specified the sample times for channels 0...9 0, 0, 0, // Conversion group sequence 13...16 + sequence length 0, // Conversion group sequence 7...12 0 // Conversion group sequence 1...6 }; AdcDevice slowAdc(&adcgrpcfgSlow); void adc_callback_fast(ADCDriver *adcp, adcsample_t *buffer, size_t n); static ADCConversionGroup adcgrpcfg_fast = { FALSE, 0 /* num_channels */, adc_callback_fast, NULL, /* HW dependent part.*/ ADC_TwoSamplingDelay_5Cycles, // cr1 ADC_CR2_SWSTART, // cr2 /** * here we configure all possible channels for fast mode. Some channels would not actually * be used hopefully that's fine to configure all possible channels. * */ ADC_SMPR1_SMP_AN10(ADC_SAMPLING_FAST) | ADC_SMPR1_SMP_AN11(ADC_SAMPLING_FAST) | ADC_SMPR1_SMP_AN12(ADC_SAMPLING_FAST) | ADC_SMPR1_SMP_AN13(ADC_SAMPLING_FAST) | ADC_SMPR1_SMP_AN14(ADC_SAMPLING_FAST) | ADC_SMPR1_SMP_AN15(ADC_SAMPLING_FAST) , // sample times for channels 10...18 ADC_SMPR2_SMP_AN0(ADC_SAMPLING_FAST) | ADC_SMPR2_SMP_AN1(ADC_SAMPLING_FAST) | ADC_SMPR2_SMP_AN2(ADC_SAMPLING_FAST) | ADC_SMPR2_SMP_AN3(ADC_SAMPLING_FAST) | ADC_SMPR2_SMP_AN4(ADC_SAMPLING_FAST) | ADC_SMPR2_SMP_AN5(ADC_SAMPLING_FAST) | ADC_SMPR2_SMP_AN6(ADC_SAMPLING_FAST) | ADC_SMPR2_SMP_AN7(ADC_SAMPLING_FAST) | ADC_SMPR2_SMP_AN8(ADC_SAMPLING_FAST) | ADC_SMPR2_SMP_AN9(ADC_SAMPLING_FAST), // In this field must be specified the sample times for channels 0...9 0, 0, 0, // Conversion group sequence 13...16 + sequence length 0, // Conversion group sequence 7...12 0 // Conversion group sequence 1...6 }; AdcDevice fastAdc(&adcgrpcfg_fast); void doSlowAdc(void) { efiAssertVoid(CUSTOM_ERR_6658, getCurrentRemainingStack()> 32, "lwStAdcSlow"); #if EFI_INTERNAL_ADC /* Starts an asynchronous ADC conversion operation, the conversion will be executed in parallel to the current PWM cycle and will terminate before the next PWM cycle.*/ slowAdc.conversionCount++; chSysLockFromISR() ; if (ADC_SLOW_DEVICE.state != ADC_READY && ADC_SLOW_DEVICE.state != ADC_COMPLETE && ADC_SLOW_DEVICE.state != ADC_ERROR) { // todo: why and when does this happen? firmwareError(OBD_PCM_Processor_Fault, "ADC slow not ready?"); slowAdc.errorsCount++; chSysUnlockFromISR() ; return; } adcStartConversionI(&ADC_SLOW_DEVICE, &adcgrpcfgSlow, slowAdc.samples, ADC_BUF_DEPTH_SLOW); chSysUnlockFromISR() ; #endif /* EFI_INTERNAL_ADC */ } #if HAL_USE_PWM static void pwmpcb_slow(PWMDriver *pwmp) { (void) pwmp; doSlowAdc(); } static void pwmpcb_fast(PWMDriver *pwmp) { efiAssertVoid(CUSTOM_ERR_6659, getCurrentRemainingStack()> 32, "lwStAdcFast"); #if EFI_INTERNAL_ADC (void) pwmp; /* * Starts an asynchronous ADC conversion operation, the conversion * will be executed in parallel to the current PWM cycle and will * terminate before the next PWM cycle. */ chSysLockFromISR() ; if (ADC_FAST_DEVICE.state != ADC_READY && ADC_FAST_DEVICE.state != ADC_COMPLETE && ADC_FAST_DEVICE.state != ADC_ERROR) { fastAdc.errorsCount++; // todo: when? why? firmwareError(OBD_PCM_Processor_Fault, "ADC fast not ready?"); chSysUnlockFromISR() ; return; } adcStartConversionI(&ADC_FAST_DEVICE, &adcgrpcfg_fast, fastAdc.samples, ADC_BUF_DEPTH_FAST); chSysUnlockFromISR() ; fastAdc.conversionCount++; #endif /* EFI_INTERNAL_ADC */ } #endif /* HAL_USE_PWM */ float getMCUInternalTemperature(void) { #if defined(ADC_CHANNEL_SENSOR) float TemperatureValue = adcToVolts(slowAdc.getAdcValueByHwChannel(ADC_CHANNEL_SENSOR)); TemperatureValue -= 0.760; // Subtract the reference voltage at 25 deg C TemperatureValue /= .0025; // Divide by slope 2.5mV TemperatureValue += 25.0; // Add the 25 deg C return TemperatureValue; #else return 0; #endif /* ADC_CHANNEL_SENSOR */ } int getInternalAdcValue(const char *msg, adc_channel_e hwChannel) { if (hwChannel == EFI_ADC_NONE) { warning(CUSTOM_OBD_ANALOG_INPUT_NOT_CONFIGURED, "ADC: %s input is not configured", msg); return -1; } #if EFI_ENABLE_MOCK_ADC if (engine->engineState.mockAdcState.hasMockAdc[hwChannel]) return engine->engineState.mockAdcState.getMockAdcValue(hwChannel); #endif /* EFI_ENABLE_MOCK_ADC */ if (adcHwChannelEnabled[hwChannel] == ADC_FAST) { int internalIndex = fastAdc.internalAdcIndexByHardwareIndex[hwChannel]; // todo if ADC_BUF_DEPTH_FAST EQ 1 // return fastAdc.samples[internalIndex]; int value = getAvgAdcValue(internalIndex, fastAdc.samples, ADC_BUF_DEPTH_FAST, fastAdc.size()); return value; } if (adcHwChannelEnabled[hwChannel] != ADC_SLOW) { warning(CUSTOM_OBD_WRONG_ADC_MODE, "ADC is off [%s] index=%d", msg, hwChannel); } return slowAdc.getAdcValueByHwChannel(hwChannel); } #if HAL_USE_PWM static PWMConfig pwmcfg_slow = { PWM_FREQ_SLOW, PWM_PERIOD_SLOW, pwmpcb_slow, { { PWM_OUTPUT_DISABLED, NULL }, { PWM_OUTPUT_DISABLED, NULL }, { PWM_OUTPUT_DISABLED, NULL }, { PWM_OUTPUT_DISABLED, NULL } }, /* HW dependent part.*/ 0, 0 }; static PWMConfig pwmcfg_fast = { PWM_FREQ_FAST, PWM_PERIOD_FAST, pwmpcb_fast, { { PWM_OUTPUT_DISABLED, NULL }, { PWM_OUTPUT_DISABLED, NULL }, { PWM_OUTPUT_DISABLED, NULL }, { PWM_OUTPUT_DISABLED, NULL } }, /* HW dependent part.*/ 0, 0 }; #endif /* HAL_USE_PWM */ static void initAdcPin(brain_pin_e pin, const char *msg) { UNUSED(msg); // todo: migrate to scheduleMsg if we want this back print("adc %s\r\n", msg); efiSetPadMode("adc input", pin, PAL_MODE_INPUT_ANALOG); } const char * getAdcMode(adc_channel_e hwChannel) { if (slowAdc.isHwUsed(hwChannel)) { return "slow"; } if (fastAdc.isHwUsed(hwChannel)) { return "fast"; } return "INACTIVE - need restart"; } static void initAdcHwChannel(adc_channel_e hwChannel) { brain_pin_e pin = getAdcChannelBrainPin("adc", hwChannel); initAdcPin(pin, "hw"); } int AdcDevice::size() const { return channelCount; } int AdcDevice::getAdcValueByHwChannel(int hwChannel) const { int internalIndex = internalAdcIndexByHardwareIndex[hwChannel]; return values.adc_data[internalIndex]; } int AdcDevice::getAdcValueByIndex(int internalIndex) const { return values.adc_data[internalIndex]; } void AdcDevice::invalidateSamplesCache() { #if defined(STM32F7XX) // The STM32F7xx has a data cache // DMA operations DO NOT invalidate cache lines, since the ARM m7 doesn't have // anything like a CCI that maintains coherency across multiple bus masters. // As a result, we have to manually invalidate the D-cache any time we (the CPU) // would like to read something that somebody else wrote (ADC via DMA, in this case) SCB_InvalidateDCache_by_Addr(reinterpret_cast(samples), sizeof(samples)); #endif } void AdcDevice::init(void) { hwConfig->num_channels = size(); hwConfig->sqr1 += ADC_SQR1_NUM_CH(size()); } bool AdcDevice::isHwUsed(adc_channel_e hwChannelIndex) const { for (int i = 0; i < channelCount; i++) { if (hardwareIndexByIndernalAdcIndex[i] == hwChannelIndex) { return true; } } return false; } void AdcDevice::enableChannel(adc_channel_e hwChannel) { int logicChannel = channelCount++; internalAdcIndexByHardwareIndex[hwChannel] = logicChannel; hardwareIndexByIndernalAdcIndex[logicChannel] = hwChannel; if (logicChannel < 6) { hwConfig->sqr3 += (hwChannel) << (5 * logicChannel); } else if (logicChannel < 12) { hwConfig->sqr2 += (hwChannel) << (5 * (logicChannel - 6)); } else { hwConfig->sqr1 += (hwChannel) << (5 * (logicChannel - 12)); } // todo: support for more then 12 channels? not sure how needed it would be } void AdcDevice::enableChannelAndPin(adc_channel_e hwChannel) { enableChannel(hwChannel); initAdcHwChannel(hwChannel); } static void printAdcValue(int channel) { int value = getAdcValue("print", (adc_channel_e)channel); float volts = adcToVoltsDivided(value); scheduleMsg(&logger, "adc voltage : %.2f", volts); } adc_channel_e AdcDevice::getAdcHardwareIndexByInternalIndex(int index) const { return hardwareIndexByIndernalAdcIndex[index]; } static void printFullAdcReport(Logging *logger) { scheduleMsg(logger, "fast %d slow %d", fastAdc.conversionCount, slowAdc.conversionCount); for (int index = 0; index < slowAdc.size(); index++) { appendMsgPrefix(logger); adc_channel_e hwIndex = slowAdc.getAdcHardwareIndexByInternalIndex(index); if (hwIndex != EFI_ADC_NONE && hwIndex != EFI_ADC_ERROR) { ioportid_t port = getAdcChannelPort("print", hwIndex); int pin = getAdcChannelPin(hwIndex); int adcValue = slowAdc.getAdcValueByIndex(index); appendPrintf(logger, " ch%d %s%d", index, portname(port), pin); appendPrintf(logger, " ADC%d 12bit=%d", hwIndex, adcValue); float volts = adcToVolts(adcValue); appendPrintf(logger, " v=%.2f", volts); appendMsgPostfix(logger); scheduleLogging(logger); } } } static void setAdcDebugReporting(int value) { adcDebugReporting = value; scheduleMsg(&logger, "adcDebug=%d", adcDebugReporting); } void waitForSlowAdc(int lastAdcCounter) { // we use slowAdcCounter instead of slowAdc.conversionCount because we need ADC_COMPLETE state // todo: use sync.objects? while (slowAdcCounter <= lastAdcCounter) { chThdSleepMilliseconds(1); } } int getSlowAdcCounter() { return slowAdcCounter; } static void adc_callback_slow(ADCDriver *adcp, adcsample_t *buffer, size_t n) { (void) buffer; (void) n; ScopePerf perf(PE::AdcCallbackSlow); /* Note, only in the ADC_COMPLETE state because the ADC driver fires * an intermediate callback when the buffer is half full. */ if (adcp->state == ADC_COMPLETE) { slowAdc.invalidateSamplesCache(); efiAssertVoid(CUSTOM_STACK_ADC_6671, getCurrentRemainingStack() > 128, "lowstck#9c"); /* Calculates the average values from the ADC samples.*/ for (int i = 0; i < slowAdc.size(); i++) { int value = getAvgAdcValue(i, slowAdc.samples, ADC_BUF_DEPTH_SLOW, slowAdc.size()); adcsample_t prev = slowAdc.values.adc_data[i]; float result = (slowAdcCounter == 0) ? value : CONFIG(slowAdcAlpha) * value + (1 - CONFIG(slowAdcAlpha)) * prev; slowAdc.values.adc_data[i] = (int)result; } slowAdcCounter++; AdcSubscription::UpdateSubscribers(); } } static char errorMsgBuff[_MAX_FILLER + 2]; void addChannel(const char *name, adc_channel_e setting, adc_channel_mode_e mode) { if (setting == EFI_ADC_NONE) { return; } if (/*type-limited (int)setting < 0 || */(int)setting>=HW_MAX_ADC_INDEX) { firmwareError(CUSTOM_INVALID_ADC, "Invalid ADC setting %s", name); return; } if (adcHwChannelEnabled[setting] != ADC_OFF) { getPinNameByAdcChannel(name, setting, errorMsgBuff); firmwareError(CUSTOM_ERR_ADC_USED, "ADC mapping error: input %s for %s already used by %s?", errorMsgBuff, name, adcHwChannelUsage[setting]); } adcHwChannelUsage[setting] = name; adcHwChannelEnabled[setting] = mode; } void removeChannel(const char *name, adc_channel_e setting) { (void)name; if (setting == EFI_ADC_NONE) { return; } adcHwChannelEnabled[setting] = ADC_OFF; } static void configureInputs(void) { memset(adcHwChannelEnabled, 0, sizeof(adcHwChannelEnabled)); memset(adcHwChannelUsage, 0, sizeof(adcHwChannelUsage)); addChannel("MAP", engineConfiguration->map.sensor.hwChannel, ADC_FAST); if (hasMafSensor()) { addChannel("MAF", engineConfiguration->mafAdcChannel, ADC_FAST); } addChannel("hip", engineConfiguration->hipOutputChannel, ADC_FAST); addChannel("baro", engineConfiguration->baroSensor.hwChannel, ADC_SLOW); addChannel("TPS", engineConfiguration->tps1_1AdcChannel, ADC_SLOW); if (engineConfiguration->tps2_1AdcChannel != EFI_ADC_0) { // allow EFI_ADC_0 next time we have an incompatible configuration change addChannel("TPS2", engineConfiguration->tps2_1AdcChannel, ADC_SLOW); } addChannel("fuel", engineConfiguration->fuelLevelSensor, ADC_SLOW); addChannel("pPS", engineConfiguration->throttlePedalPositionAdcChannel, ADC_SLOW); addChannel("VBatt", engineConfiguration->vbattAdcChannel, ADC_SLOW); // not currently used addChannel("Vref", engineConfiguration->vRefAdcChannel, ADC_SLOW); addChannel("CLT", engineConfiguration->clt.adcChannel, ADC_SLOW); addChannel("IAT", engineConfiguration->iat.adcChannel, ADC_SLOW); addChannel("AUXT#1", engineConfiguration->auxTempSensor1.adcChannel, ADC_SLOW); addChannel("AUXT#2", engineConfiguration->auxTempSensor2.adcChannel, ADC_SLOW); if (engineConfiguration->bc.auxFastSensor1_adcChannel != EFI_ADC_0) { // allow EFI_ADC_0 next time we have an incompatible configuration change addChannel("AUXF#1", engineConfiguration->bc.auxFastSensor1_adcChannel, ADC_FAST); } addChannel("AFR", engineConfiguration->afr.hwChannel, ADC_SLOW); addChannel("OilP", engineConfiguration->oilPressure.hwChannel, ADC_SLOW); addChannel("AC", engineConfiguration->acSwitchAdc, ADC_SLOW); if (engineConfiguration->high_fuel_pressure_sensor_1 != INCOMPATIBLE_CONFIG_CHANGE) addChannel("HFP1", engineConfiguration->high_fuel_pressure_sensor_1, ADC_SLOW); if (engineConfiguration->high_fuel_pressure_sensor_2 != INCOMPATIBLE_CONFIG_CHANGE) addChannel("HFP2", engineConfiguration->high_fuel_pressure_sensor_2, ADC_SLOW); if (CONFIGB(isCJ125Enabled)) { addChannel("cj125ur", engineConfiguration->cj125ur, ADC_SLOW); addChannel("cj125ua", engineConfiguration->cj125ua, ADC_SLOW); } for (int i = 0; i < FSIO_ANALOG_INPUT_COUNT ; i++) { addChannel("FSIOadc", engineConfiguration->fsioAdc[i], ADC_SLOW); } setAdcChannelOverrides(); } void initAdcInputs() { printMsg(&logger, "initAdcInputs()"); if (ADC_BUF_DEPTH_FAST > MAX_ADC_GRP_BUF_DEPTH) firmwareError(CUSTOM_ERR_ADC_DEPTH_FAST, "ADC_BUF_DEPTH_FAST too high"); if (ADC_BUF_DEPTH_SLOW > MAX_ADC_GRP_BUF_DEPTH) firmwareError(CUSTOM_ERR_ADC_DEPTH_SLOW, "ADC_BUF_DEPTH_SLOW too high"); configureInputs(); // migrate to 'enable adcdebug' addConsoleActionI("adcdebug", &setAdcDebugReporting); #if EFI_INTERNAL_ADC /* * Initializes the ADC driver. */ adcStart(&ADC_SLOW_DEVICE, NULL); adcStart(&ADC_FAST_DEVICE, NULL); adcSTM32EnableTSVREFE(); // Internal temperature sensor for (int adc = 0; adc < HW_MAX_ADC_INDEX; adc++) { adc_channel_mode_e mode = adcHwChannelEnabled[adc]; /** * in board test mode all currently enabled ADC channels are running in slow mode */ if (mode == ADC_SLOW) { slowAdc.enableChannelAndPin((adc_channel_e) (ADC_CHANNEL_IN0 + adc)); } else if (mode == ADC_FAST) { fastAdc.enableChannelAndPin((adc_channel_e) (ADC_CHANNEL_IN0 + adc)); } } #if defined(ADC_CHANNEL_SENSOR) // Internal temperature sensor, Available on ADC1 only slowAdc.enableChannel((adc_channel_e)ADC_CHANNEL_SENSOR); #endif /* ADC_CHANNEL_SENSOR */ slowAdc.init(); #if HAL_USE_PWM pwmStart(EFI_INTERNAL_SLOW_ADC_PWM, &pwmcfg_slow); pwmEnablePeriodicNotification(EFI_INTERNAL_SLOW_ADC_PWM); #endif /* HAL_USE_PWM */ if (CONFIGB(isFastAdcEnabled)) { fastAdc.init(); /* * Initializes the PWM driver. */ #if HAL_USE_PWM pwmStart(EFI_INTERNAL_FAST_ADC_PWM, &pwmcfg_fast); pwmEnablePeriodicNotification(EFI_INTERNAL_FAST_ADC_PWM); #endif /* HAL_USE_PWM */ } addConsoleActionI("adc", (VoidInt) printAdcValue); #else printMsg(&logger, "ADC disabled"); #endif } void printFullAdcReportIfNeeded(Logging *logger) { if (!adcDebugReporting) return; printFullAdcReport(logger); } #endif /* HAL_USE_ADC */