/** * @file engine_math.cpp * @brief * * @date Jul 13, 2013 * @author Andrey Belomutskiy, (c) 2012-2017 * * This file is part of rusEfi - see http://rusefi.com * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . */ #include "main.h" #include "engine_math.h" #include "engine_configuration.h" #include "interpolation.h" #include "allsensors.h" #include "io_pins.h" #include "trigger_decoder.h" #include "event_registry.h" #include "efiGpio.h" #include "fuel_math.h" #include "advance_map.h" EXTERN_ENGINE ; extern EnginePins enginePins; floatms_t getEngineCycleDuration(int rpm DECLARE_ENGINE_PARAMETER_S) { return getCrankshaftRevolutionTimeMs(rpm) * (engineConfiguration->operationMode == TWO_STROKE ? 1 : 2); } /** * @return number of milliseconds in one crank shaft revolution */ floatms_t getCrankshaftRevolutionTimeMs(int rpm) { if (rpm == 0) { return NAN; } return 360 * getOneDegreeTimeMs(rpm); } /** * @brief Returns engine load according to selected engine_load_mode * */ float getEngineLoadT(DECLARE_ENGINE_PARAMETER_F) { efiAssert(engine!=NULL, "engine 2NULL", NAN); efiAssert(engineConfiguration!=NULL, "engineConfiguration 2NULL", NAN); switch (engineConfiguration->fuelAlgorithm) { case LM_PLAIN_MAF: if (!hasMafSensor(PASS_ENGINE_PARAMETER_F)) { warning(CUSTOM_OBD_17, "MAF sensor needed for current fuel algorithm"); return NAN; } return getMafT(engineConfiguration); case LM_SPEED_DENSITY: // SD engine load is used for timing lookup but not for fuel calculation case LM_MAP: return getMap(); case LM_ALPHA_N: return getTPS(PASS_ENGINE_PARAMETER_F); case LM_REAL_MAF: { return getRealMaf(PASS_ENGINE_PARAMETER_F); } default: warning(CUSTOM_UNKNOWN_ALGORITHM, "Unexpected engine load parameter: %d", engineConfiguration->fuelAlgorithm); return -1; } } void setSingleCoilDwell(engine_configuration_s *engineConfiguration) { for (int i = 0; i < DWELL_CURVE_SIZE; i++) { engineConfiguration->sparkDwellRpmBins[i] = i + 1; engineConfiguration->sparkDwellValues[i] = 4; } engineConfiguration->sparkDwellRpmBins[5] = 10; engineConfiguration->sparkDwellValues[5] = 4; engineConfiguration->sparkDwellRpmBins[6] = 4500; engineConfiguration->sparkDwellValues[6] = 4; engineConfiguration->sparkDwellRpmBins[7] = 12500; engineConfiguration->sparkDwellValues[7] = 0; } #if EFI_ENGINE_CONTROL || defined(__DOXYGEN__) FuelSchedule::FuelSchedule() { clear(); } void FuelSchedule::clear() { isReady = false; } /** * @returns false in case of error, true if success */ bool FuelSchedule::addFuelEventsForCylinder(int i DECLARE_ENGINE_PARAMETER_S) { efiAssert(engine!=NULL, "engine is NULL", false); if (cisnan(engine->rpmCalculator.oneDegreeUs)) { // in order to have fuel schedule we need to have current RPM // wonder if this line slows engine startup? return false; } /** * injection phase is scheduled by injection end, so we need to step the angle back * for the duration of the injection * * todo: since this method is not invoked within trigger event handler and * engineState.injectionOffset is calculated from the same utility timer should we more that logic here? */ angle_t injectionDuration = MS2US(ENGINE(fuelMs)) / ENGINE(rpmCalculator.oneDegreeUs); angle_t baseAngle = ENGINE(engineState.injectionOffset) - injectionDuration; int index; injection_mode_e mode = engine->getCurrentInjectionMode(PASS_ENGINE_PARAMETER_F); if (mode == IM_SIMULTANEOUS) { index = 0; } else if (mode == IM_SEQUENTIAL) { index = getCylinderId(i PASS_ENGINE_PARAMETER) - 1; } else if (mode == IM_BATCH) { // does not look exactly right, not too consistent with IM_SEQUENTIAL index = i % (engineConfiguration->specs.cylindersCount / 2); } else { warning(CUSTOM_OBD_UNEXPECTED_INJECTION_MODE, "Unexpected injection mode %d", mode); index = 0; } bool isSimultanious = mode == IM_SIMULTANEOUS; assertAngleRange(baseAngle, "addFbaseAngle"); int cylindersCount = CONFIG(specs.cylindersCount); if (cylindersCount < 1) { warning(CUSTOM_OBD_ZERO_CYLINDER_COUNT, "temp cylindersCount %d", cylindersCount); return false; } float angle = baseAngle + i * ENGINE(engineCycle) / cylindersCount; InjectorOutputPin *secondOutput; if (mode == IM_BATCH && CONFIG(twoWireBatchInjection)) { /** * also fire the 2nd half of the injectors so that we can implement a batch mode on individual wires */ int secondIndex = index + (CONFIG(specs.cylindersCount) / 2); secondOutput = &enginePins.injectors[secondIndex]; } else { secondOutput = NULL; } InjectorOutputPin *output = &enginePins.injectors[index]; if (!isSimultanious && !isPinAssigned(output)) { // todo: extract method for this index math warning(CUSTOM_OBD_INJECTION_NO_PIN_ASSIGNED, "no_pin_inj #%s", output->name); } InjectionEvent *ev = &elements[i]; ev->ownIndex = i; #if EFI_UNIT_TEST || defined(__DOXYGEN__) ev->engine = engine; #endif fixAngle(angle, "addFuel#1"); ev->outputs[0] = output; ev->outputs[1] = secondOutput; ev->isSimultanious = isSimultanious; if (TRIGGER_SHAPE(getSize()) < 1) { warning(CUSTOM_ERR_6111, "uninitialized TriggerShape"); return false; } TRIGGER_SHAPE(findTriggerPosition(&ev->injectionStart, angle PASS_ENGINE_PARAMETER)); #if EFI_UNIT_TEST || defined(__DOXYGEN__) printf("registerInjectionEvent angle=%f trgIndex=%d inj %d\r\n", angle, ev->injectionStart.eventIndex, index); #endif return true; } void FuelSchedule::addFuelEvents(DECLARE_ENGINE_PARAMETER_F) { clear(); for (int i = 0; i < CONFIG(specs.cylindersCount); i++) { InjectionEvent *ev = &elements[i]; ev->ownIndex = i; bool result = addFuelEventsForCylinder(i PASS_ENGINE_PARAMETER); if (!result) return; } isReady = true; } #endif floatms_t getCrankingSparkDwell(int rpm DECLARE_ENGINE_PARAMETER_S) { if (engineConfiguration->useConstantDwellDuringCranking) { return engineConfiguration->ignitionDwellForCrankingMs; } else { // technically this could be implemented via interpolate2d float angle = engineConfiguration->crankingChargeAngle; return getOneDegreeTimeMs(rpm) * angle; } } /** * @return Spark dwell time, in milliseconds. */ floatms_t getSparkDwell(int rpm DECLARE_ENGINE_PARAMETER_S) { float dwellMs; if (isCrankingR(rpm)) { dwellMs = getCrankingSparkDwell(rpm PASS_ENGINE_PARAMETER); } else { efiAssert(!cisnan(rpm), "invalid rpm", NAN); dwellMs = interpolate2d(rpm, engineConfiguration->sparkDwellRpmBins, engineConfiguration->sparkDwellValues, DWELL_CURVE_SIZE); } if (cisnan(dwellMs) || dwellMs < 0) { firmwareError(CUSTOM_ERR_DWELL_DURATION, "invalid dwell: %f at rpm=%d", dwellMs, rpm); } return dwellMs; } /** * this method is only used on initialization */ int TriggerShape::findAngleIndex(float target DECLARE_ENGINE_PARAMETER_S) { int engineCycleEventCount = TRIGGER_SHAPE(getLength()); efiAssert(engineCycleEventCount > 0, "engineCycleEventCount", 0); uint32_t left = 0; uint32_t right = engineCycleEventCount - 1; /** * Let's find the last trigger angle which is less or equal to the desired angle * todo: extract binary search as template method? */ while (left <= right) { int middle = (left + right) / 2; angle_t eventAngle = TRIGGER_SHAPE(eventAngles[middle]); if (eventAngle < target) { left = middle + 1; } else if (eventAngle > target) { right = middle - 1; } else { // Values are equal return middle; // Key found } } return left - 1; } void TriggerShape::findTriggerPosition(event_trigger_position_s *position, angle_t angleOffset DECLARE_ENGINE_PARAMETER_S) { // convert engine cycle angle into trigger cycle angle angleOffset += tdcPosition(); fixAngle(angleOffset, "addFuel#2"); int index = triggerIndexByAngle[(int)angleOffset]; angle_t eventAngle = eventAngles[index]; if (angleOffset < eventAngle) { warning(CUSTOM_OBD_ANGLE_CONSTRAINT_VIOLATION, "angle constraint violation in findTriggerPosition(): %f/%f", angleOffset, eventAngle); return; } position->eventIndex = index; position->eventAngle = eventAngle; position->angleOffset = angleOffset - eventAngle; } static int order_1_2[] = {1, 2}; static int order_1_2_3[] = {1, 2, 3}; // 4 cylinder static int order_1_THEN_3_THEN_4_THEN2[] = { 1, 3, 4, 2 }; static int order_1_THEN_2_THEN_4_THEN3[] = { 1, 2, 4, 3 }; static int order_1_THEN_3_THEN_2_THEN4[] = { 1, 3, 2, 4 }; // 5 cylinder static int order_1_2_4_5_3[] = {1, 2, 4, 5, 3}; // 6 cylinder static int order_1_THEN_5_THEN_3_THEN_6_THEN_2_THEN_4[] = { 1, 5, 3, 6, 2, 4 }; static int order_1_THEN_4_THEN_2_THEN_5_THEN_3_THEN_6[] = { 1, 4, 2, 5, 3, 6 }; static int order_1_THEN_2_THEN_3_THEN_4_THEN_5_THEN_6[] = { 1, 2, 3, 4, 5, 6 }; static int order_1_6_3_2_5_4[] = {1, 6, 3, 2, 5, 4}; // 8 cylinder static int order_1_8_4_3_6_5_7_2[] = { 1, 8, 4, 3, 6, 5, 7, 2 }; static int order_1_8_7_2_6_5_4_3[] = { 1, 8, 7, 2, 6, 5, 4, 3 }; static int order_1_5_4_2_6_3_7_8[] = { 1, 5, 4, 2, 6, 3, 7, 8 }; // 10 cylinder static int order_1_10_9_4_3_6_5_8_7_2[] = {1, 10, 9, 4, 3, 6, 5, 8, 7, 2}; // 12 cyliner static int order_1_7_5_11_3_9_6_12_2_8_4_10[] = {1, 7, 5, 11, 3, 9, 6, 12, 2, 8, 4, 10}; static int getFiringOrderLength(DECLARE_ENGINE_PARAMETER_F) { switch (CONFIG(specs.firingOrder)) { case FO_1: return 1; // 2 cylinder case FO_1_2: return 2; // 3 cylinder case FO_1_2_3: return 3; // 4 cylinder case FO_1_3_4_2: case FO_1_2_4_3: case FO_1_3_2_4: return 4; // 5 cylinder case FO_1_2_4_5_3: return 5; // 6 cylinder case FO_1_5_3_6_2_4: case FO_1_4_2_5_3_6: case FO_1_2_3_4_5_6: case FO_1_6_3_2_5_4: return 6; // 8 cylinder case FO_1_8_4_3_6_5_7_2: case FO_1_8_7_2_6_5_4_3: case FO_1_5_4_2_6_3_7_8: return 8; // 10 cylinder case FO_1_10_9_4_3_6_5_8_7_2: return 10; // 12 cylinder case FO_1_7_5_11_3_9_6_12_2_8_4_10: return 12; default: warning(CUSTOM_OBD_UNKNOWN_FIRING_ORDER, "getCylinderId not supported for %d", CONFIG(specs.firingOrder)); } return 1; } /** * @param index from zero to cylindersCount - 1 * @return cylinderId from one to cylindersCount */ int getCylinderId(int index DECLARE_ENGINE_PARAMETER_S) { const int foLength = getFiringOrderLength(PASS_ENGINE_PARAMETER_F); if (engineConfiguration->specs.cylindersCount != foLength) { warning(CUSTOM_OBD_WRONG_FIRING_ORDER, "Wrong firing order %d/%d", engineConfiguration->specs.cylindersCount, foLength); return 1; } switch (CONFIG(specs.firingOrder)) { case FO_1: return 1; // 2 cylinder case FO_1_2: return order_1_2[index]; // 3 cylinder case FO_1_2_3: return order_1_2_3[index]; // 4 cylinder case FO_1_3_4_2: return order_1_THEN_3_THEN_4_THEN2[index]; case FO_1_2_4_3: return order_1_THEN_2_THEN_4_THEN3[index]; case FO_1_3_2_4: return order_1_THEN_3_THEN_2_THEN4[index]; // 5 cylinder case FO_1_2_4_5_3: return order_1_2_4_5_3[index]; // 6 cylinder case FO_1_5_3_6_2_4: return order_1_THEN_5_THEN_3_THEN_6_THEN_2_THEN_4[index]; case FO_1_4_2_5_3_6: return order_1_THEN_4_THEN_2_THEN_5_THEN_3_THEN_6[index]; case FO_1_2_3_4_5_6: return order_1_THEN_2_THEN_3_THEN_4_THEN_5_THEN_6[index]; case FO_1_6_3_2_5_4: return order_1_6_3_2_5_4[index]; // 8 cylinder case FO_1_8_4_3_6_5_7_2: return order_1_8_4_3_6_5_7_2[index]; case FO_1_8_7_2_6_5_4_3: return order_1_8_7_2_6_5_4_3[index]; case FO_1_5_4_2_6_3_7_8: return order_1_5_4_2_6_3_7_8[index]; // 10 cylinder case FO_1_10_9_4_3_6_5_8_7_2: return order_1_10_9_4_3_6_5_8_7_2[index]; // 12 cylinder case FO_1_7_5_11_3_9_6_12_2_8_4_10: return order_1_7_5_11_3_9_6_12_2_8_4_10[index]; default: warning(CUSTOM_OBD_UNKNOWN_FIRING_ORDER, "getCylinderId not supported for %d", CONFIG(specs.firingOrder)); } return 1; } static int getIgnitionPinForIndex(int i DECLARE_ENGINE_PARAMETER_S) { switch (CONFIG(ignitionMode)) { case IM_ONE_COIL: return 0; break; case IM_WASTED_SPARK: { return i % (CONFIG(specs.cylindersCount) / 2); } break; case IM_INDIVIDUAL_COILS: return i; break; default: warning(CUSTOM_OBD_25, "unsupported ignitionMode %d in initializeIgnitionActions()", engineConfiguration->ignitionMode); return 0; } } void TriggerShape::prepareShape(DECLARE_ENGINE_PARAMETER_F) { int engineCycleInt = (int) getEngineCycle(CONFIG(operationMode)); for (int angle = 0; angle < engineCycleInt; angle++) { int triggerShapeIndex = findAngleIndex(angle PASS_ENGINE_PARAMETER); if (engineConfiguration->useOnlyRisingEdgeForTrigger) { // we need even index for front_only mode - so if odd indexes are rounded down triggerShapeIndex = triggerShapeIndex & 0xFFFFFFFE; } triggerIndexByAngle[angle] = triggerShapeIndex; } } #if EFI_ENGINE_CONTROL || defined(__DOXYGEN__) /** * This heavy method is only invoked in case of a configuration change or initialization. */ void prepareOutputSignals(DECLARE_ENGINE_PARAMETER_F) { ENGINE(engineCycle) = getEngineCycle(CONFIG(operationMode)); angle_t maxTimingCorrMap = -720.0f; angle_t maxTimingMap = -720.0f; for (int rpmIndex = 0;rpmIndexignitionIatCorrTable[l][rpmIndex]); maxTimingMap = maxF(maxTimingMap, config->ignitionTable[l][rpmIndex]); } } #if EFI_UNIT_TEST floatms_t crankingDwell = getCrankingSparkDwell(CONFIG(cranking.rpm) PASS_ENGINE_PARAMETER); // dwell at cranking is constant angle or constant time, dwell at cranking threshold is the highest angle duration // lower RPM angle duration goes up angle_t maxDwellAngle = crankingDwell / getOneDegreeTimeMs(CONFIG(cranking.rpm)); printf("cranking angle %f\r\n", maxDwellAngle); for (int i = 0;isparkDwellRpmBins[i]; floatms_t dwell = engineConfiguration->sparkDwellValues[i]; angle_t dwellAngle = dwell / getOneDegreeTimeMs(rpm); printf("dwell angle %f at %d\r\n", dwellAngle, rpm); maxDwellAngle = maxF(maxDwellAngle, dwellAngle); } angle_t maxIatAdvanceCorr = -720; for (int r = 0;rignitionIatCorrTable[l][r]); } } angle_t maxAdvance = -720; for (int r = 0;rignitionTable[l][r]); } } printf("max dwell angle %f/%d/%d\r\n", maxDwellAngle, (int)maxAdvance, (int)maxIatAdvanceCorr); #endif #if EFI_UNIT_TEST printf("prepareOutputSignals %d onlyEdge=%s %s\r\n", engineConfiguration->trigger.type, boolToString(engineConfiguration->useOnlyRisingEdgeForTrigger), getIgnition_mode_e(engineConfiguration->ignitionMode)); #endif for (int i = 0; i < CONFIG(specs.cylindersCount); i++) { ENGINE(angleExtra[i])= ENGINE(engineCycle) * i / CONFIG(specs.cylindersCount); ENGINE(ignitionPin[i]) = getIgnitionPinForIndex(i PASS_ENGINE_PARAMETER); } TRIGGER_SHAPE(prepareShape(PASS_ENGINE_PARAMETER_F)); } #endif void setFuelRpmBin(float from, float to DECLARE_ENGINE_PARAMETER_S) { setTableBin(config->fuelRpmBins, FUEL_RPM_COUNT, from, to); } void setFuelLoadBin(float from, float to DECLARE_ENGINE_PARAMETER_S) { setTableBin(config->fuelLoadBins, FUEL_LOAD_COUNT, from, to); } void setTimingRpmBin(float from, float to DECLARE_ENGINE_PARAMETER_S) { setRpmBin(config->ignitionRpmBins, IGN_RPM_COUNT, from, to); } void setTimingLoadBin(float from, float to DECLARE_ENGINE_PARAMETER_S) { setTableBin(config->ignitionLoadBins, IGN_LOAD_COUNT, from, to); } /** * this method sets algorithm and ignition table scale */ void setAlgorithm(engine_load_mode_e algo DECLARE_ENGINE_PARAMETER_S) { engineConfiguration->fuelAlgorithm = algo; if (algo == LM_ALPHA_N) { setTimingLoadBin(20, 120 PASS_ENGINE_PARAMETER); } else if (algo == LM_SPEED_DENSITY) { setTableBin2(config->ignitionLoadBins, IGN_LOAD_COUNT, 20, 120, 3); buildTimingMap(35 PASS_ENGINE_PARAMETER); } } void setInjectorLag(float value DECLARE_ENGINE_PARAMETER_S) { setArrayValues(engineConfiguration->injector.battLagCorr, VBAT_INJECTOR_CURVE_SIZE, value); } void assertEngineReference(DECLARE_ENGINE_PARAMETER_F) { efiAssertVoid(engine != NULL, "engine is NULL"); }