/** * @file status_loop.cpp * @brief Human-readable protocol status messages * * http://rusefi.com/forum/viewtopic.php?t=263 rusEfi console overview * http://rusefi.com/forum/viewtopic.php?t=210 Commands overview * * * @date Mar 15, 2013 * @author Andrey Belomutskiy, (c) 2012-2018 * * This file is part of rusEfi - see http://rusefi.com * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . * */ #include "global.h" #include "status_loop.h" #include "hip9011_logic.h" #include "engine_controller.h" #include "adc_inputs.h" #if EFI_WAVE_ANALYZER #include "wave_analyzer.h" #endif /* EFI_WAVE_ANALYZER */ #include "trigger_central.h" #include "allsensors.h" #include "io_pins.h" #include "efi_gpio.h" #include "mmc_card.h" #include "console_io.h" #include "malfunction_central.h" #include "speed_density.h" #include "advance_map.h" #include "tunerstudio.h" #include "fuel_math.h" #include "main_trigger_callback.h" #include "engine_math.h" #include "spark_logic.h" #include "idle_thread.h" #include "engine_configuration.h" #include "rfiutil.h" #include "svnversion.h" #include "engine.h" #include "lcd_controller.h" #include "settings.h" #include "can_hw.h" #include "periodic_controller.h" #include "cdm_ion_sense.h" extern afr_Map3D_t afrMap; extern bool main_loop_started; #if EFI_PROD_CODE // todo: move this logic to algo folder! #include "rtc_helper.h" #include "lcd_HD44780.h" #include "rusefi.h" #include "pin_repository.h" #include "flash_main.h" #include "max31855.h" #include "vehicle_speed.h" #include "single_timer_executor.h" #endif /* EFI_PROD_CODE */ #if EFI_CJ125 #include "cj125.h" #endif /* EFI_CJ125 */ #if EFI_MAP_AVERAGING #include "map_averaging.h" #endif #if EFI_FSIO #include "fsio_impl.h" #endif /* EFI_FSIO */ // this 'true' value is needed for simulator static volatile bool fullLog = true; int warningEnabled = true; //int warningEnabled = FALSE; #if EFI_TUNER_STUDIO extern TunerStudioOutputChannels tsOutputChannels; extern tunerstudio_counters_s tsState; #endif extern bool hasFirmwareErrorFlag; extern int maxTriggerReentraint; extern uint32_t maxLockedDuration; #define FULL_LOGGING_KEY "fl" #if !defined(STATUS_LOGGING_BUFFER_SIZE) #define STATUS_LOGGING_BUFFER_SIZE 1800 #endif /* STATUS_LOGGING_BUFFER_SIZE */ static char LOGGING_BUFFER[STATUS_LOGGING_BUFFER_SIZE] CCM_OPTIONAL; static Logging logger("status loop", LOGGING_BUFFER, sizeof(LOGGING_BUFFER)); static void setWarningEnabled(int value) { warningEnabled = value; } #if EFI_FILE_LOGGING // this one needs to be in main ram so that SD card SPI DMA works fine static char FILE_LOGGER[1000] MAIN_RAM; static Logging fileLogger("file logger", FILE_LOGGER, sizeof(FILE_LOGGER)); #endif /* EFI_FILE_LOGGING */ static int logFileLineIndex = 0; #define TAB "\t" static void reportSensorF(Logging *log, bool isLogFileFormatting, const char *caption, const char *units, float value, int precision) { if (!isLogFileFormatting) { #if EFI_PROD_CODE || EFI_SIMULATOR debugFloat(log, caption, value, precision); #endif /* EFI_PROD_CODE || EFI_SIMULATOR */ } else { #if EFI_FILE_LOGGING if (logFileLineIndex == 0) { append(log, caption); append(log, TAB); } else if (logFileLineIndex == 1) { append(log, units); append(log, TAB); } else { appendFloat(log, value, precision); append(log, TAB); } #endif /* EFI_FILE_LOGGING */ } } static void reportSensorI(Logging *log, bool fileFormat, const char *caption, const char *units, int value) { if (!fileFormat) { #if EFI_PROD_CODE || EFI_SIMULATOR debugInt(log, caption, value); #endif /* EFI_PROD_CODE || EFI_SIMULATOR */ } else { #if EFI_FILE_LOGGING if (logFileLineIndex == 0) { append(log, caption); append(log, TAB); } else if (logFileLineIndex == 1) { append(log, units); append(log, TAB); } else { appendPrintf(log, "%d%s", value, TAB); } #endif /* EFI_FILE_LOGGING */ } } EXTERN_ENGINE ; static char buf[6]; /** * This is useful if we are changing engine mode dynamically * For example http://rusefi.com/forum/viewtopic.php?f=5&t=1085 */ static int packEngineMode(DECLARE_ENGINE_PARAMETER_SIGNATURE) { return (engineConfiguration->fuelAlgorithm << 4) + (engineConfiguration->injectionMode << 2) + engineConfiguration->ignitionMode; } static void printSensors(Logging *log, bool fileFormat) { // current time, in milliseconds int nowMs = currentTimeMillis(); float sec = ((float) nowMs) / 1000; reportSensorF(log, fileFormat, "time", "", sec, 3); // log column 1 int rpm = 0; #if EFI_SHAFT_POSITION_INPUT rpm = GET_RPM(); reportSensorI(log, fileFormat, "rpm", "RPM", rpm); // log column 2 #endif // why do we still send data into console in text mode? if (hasCltSensor()) { reportSensorF(log, fileFormat, "CLT", "C", getCoolantTemperature(PASS_ENGINE_PARAMETER_SIGNATURE), 2); // log column #4 } if (hasTpsSensor()) { reportSensorF(log, fileFormat, "TPS", "%", getTPS(PASS_ENGINE_PARAMETER_SIGNATURE), 2); // log column #5 } if (hasIatSensor()) { reportSensorF(log, fileFormat, "IAT", "C", getIntakeAirTemperature(PASS_ENGINE_PARAMETER_SIGNATURE), 2); // log column #7 } if (hasVBatt(PASS_ENGINE_PARAMETER_SIGNATURE)) { reportSensorF(log, fileFormat, GAUGE_NAME_VBAT, "V", getVBatt(PASS_ENGINE_PARAMETER_SIGNATURE), 2); // log column #6 } #if EFI_ANALOG_SENSORS if (hasMapSensor(PASS_ENGINE_PARAMETER_SIGNATURE)) { reportSensorF(log, fileFormat, "MAP", "kPa", getMap(PASS_ENGINE_PARAMETER_SIGNATURE), 2); // reportSensorF(log, fileFormat, "map_r", "V", getRawMap(), 2); } #endif /* EFI_ANALOG_SENSORS */ #if EFI_ANALOG_SENSORS if (hasBaroSensor()) { reportSensorF(log, fileFormat, "baro", "kPa", getBaroPressure(), 2); } #endif /* EFI_ANALOG_SENSORS */ if (!fileFormat) { return; } if (hasAfrSensor(PASS_ENGINE_PARAMETER_SIGNATURE)) { reportSensorF(log, fileFormat, GAUGE_NAME_AFR, "AFR", getAfr(PASS_ENGINE_PARAMETER_SIGNATURE), 2); } // below are the more advanced data points which only go into log file #if HAL_USE_ADC reportSensorF(log, fileFormat, GAUGE_NAME_CPU_TEMP, "C", getMCUInternalTemperature(), 2); // log column #3 #endif reportSensorI(log, fileFormat, "mode", "v", packEngineMode(PASS_ENGINE_PARAMETER_SIGNATURE)); // log column #3 reportSensorF(log, fileFormat, GAUGE_NAME_ACCEL_X, "G", engine->sensors.accelerometer.x, 3); reportSensorF(log, fileFormat, GAUGE_NAME_ACCEL_Y, "G", engine->sensors.accelerometer.y, 3); if (hasMafSensor()) { reportSensorF(log, fileFormat, "maf", "V", getMaf(PASS_ENGINE_PARAMETER_SIGNATURE), 2); reportSensorF(log, fileFormat, "mafr", "kg/hr", getRealMaf(PASS_ENGINE_PARAMETER_SIGNATURE), 2); } #if EFI_IDLE_CONTROL reportSensorF(log, fileFormat, GAUGE_NAME_IAC, "%", getIdlePosition(), 2); #endif /* EFI_IDLE_CONTROL */ #if EFI_ANALOG_SENSORS reportSensorF(log, fileFormat, GAUGE_NAME_TARGET_AFR, "AFR", engine->engineState.targetAFR, 2); #endif /* EFI_ANALOG_SENSORS */ #define DEBUG_F_PRECISION 6 #if EFI_TUNER_STUDIO reportSensorF(log, fileFormat, GAUGE_NAME_DEBUG_F1, "v", tsOutputChannels.debugFloatField1, DEBUG_F_PRECISION); reportSensorF(log, fileFormat, GAUGE_NAME_DEBUG_F1, "v", tsOutputChannels.debugFloatField2, DEBUG_F_PRECISION); reportSensorF(log, fileFormat, GAUGE_NAME_DEBUG_F1, "v", tsOutputChannels.debugFloatField3, DEBUG_F_PRECISION); reportSensorF(log, fileFormat, GAUGE_NAME_DEBUG_F1, "v", tsOutputChannels.debugFloatField4, DEBUG_F_PRECISION); reportSensorF(log, fileFormat, GAUGE_NAME_DEBUG_F1, "v", tsOutputChannels.debugFloatField5, DEBUG_F_PRECISION); reportSensorF(log, fileFormat, GAUGE_NAME_DEBUG_F1, "v", tsOutputChannels.debugFloatField6, DEBUG_F_PRECISION); reportSensorF(log, fileFormat, GAUGE_NAME_DEBUG_F1, "v", tsOutputChannels.debugFloatField7, DEBUG_F_PRECISION); reportSensorI(log, fileFormat, GAUGE_NAME_DEBUG_I1, "v", tsOutputChannels.debugIntField1); reportSensorI(log, fileFormat, GAUGE_NAME_DEBUG_I2, "v", tsOutputChannels.debugIntField2); reportSensorI(log, fileFormat, GAUGE_NAME_DEBUG_I3, "v", tsOutputChannels.debugIntField3); #endif /* EFI_TUNER_STUDIO */ reportSensorF(log, fileFormat, GAUGE_NAME_TCHARGE, "K", engine->engineState.tChargeK, 2); // log column #8 if (hasMapSensor(PASS_ENGINE_PARAMETER_SIGNATURE)) { reportSensorF(log, fileFormat, GAUGE_NAME_FUEL_VE, "%", engine->engineState.currentBaroCorrectedVE * PERCENT_MULT, 2); } reportSensorF(log, fileFormat, GAUGE_NAME_VVT, "deg", engine->triggerCentral.vvtPosition, 1); float engineLoad = getEngineLoadT(PASS_ENGINE_PARAMETER_SIGNATURE); reportSensorF(log, fileFormat, GAUGE_NAME_ENGINE_LOAD, "x", engineLoad, 2); reportSensorF(log, fileFormat, GAUGE_COIL_DWELL_TIME, "ms", ENGINE(engineState.sparkDwell), 2); reportSensorF(log, fileFormat, GAUGE_NAME_TIMING_ADVANCE, "deg", engine->engineState.timingAdvance, 2); floatms_t fuelBase = getBaseFuel(rpm PASS_ENGINE_PARAMETER_SUFFIX); reportSensorF(log, fileFormat, GAUGE_NAME_FUEL_BASE, "ms", fuelBase, 2); reportSensorF(log, fileFormat, GAUGE_NAME_FUEL_LAST_INJECTION, "ms", ENGINE(actualLastInjection), 2); reportSensorF(log, fileFormat, GAUGE_NAME_INJECTOR_LAG, "ms", engine->engineState.injectorLag, 2); reportSensorF(log, fileFormat, GAUGE_NAME_FUEL_RUNNING, "ms", ENGINE(engineState.runningFuel), 2); reportSensorF(log, fileFormat, GAUGE_NAME_FUEL_PID_CORR, "ms", ENGINE(engineState.fuelPidCorrection), 2); reportSensorF(log, fileFormat, GAUGE_NAME_FUEL_WALL_AMOUNT, "v", ENGINE(wallFuel).getWallFuel(0), 2); reportSensorF(log, fileFormat, GAUGE_NAME_FUEL_WALL_CORRECTION, "v", ENGINE(wallFuelCorrection), 2); reportSensorI(log, fileFormat, GAUGE_NAME_VERSION, "#", getRusEfiVersion()); #if EFI_VEHICLE_SPEED if (hasVehicleSpeedSensor()) { float vehicleSpeed = getVehicleSpeed(); reportSensorF(log, fileFormat, GAUGE_NAME_VVS, "kph", vehicleSpeed, 2); float sp2rpm = rpm == 0 ? 0 : vehicleSpeed / rpm; reportSensorF(log, fileFormat, "sp2rpm", "x", sp2rpm, 2); } #endif /* EFI_PROD_CODE */ reportSensorF(log, fileFormat, GAUGE_NAME_KNOCK_COUNTER, "count", engine->knockCount, 0); reportSensorF(log, fileFormat, GAUGE_NAME_KNOCK_LEVEL, "v", engine->knockVolts, 2); // reportSensorF(log, fileFormat, "vref", "V", getVRef(engineConfiguration), 2); reportSensorF(log, fileFormat, "f: tps delta", "v", engine->tpsAccelEnrichment.getMaxDelta(), 2); reportSensorF(log, fileFormat, GAUGE_NAME_FUEL_TPS_EXTRA, "ms", engine->engineState.tpsAccelEnrich, 2); reportSensorF(log, fileFormat, "f: el delta", "v", engine->engineLoadAccelEnrichment.getMaxDelta(), 2); if (hasMapSensor(PASS_ENGINE_PARAMETER_SIGNATURE)) { reportSensorF(log, fileFormat, "f: el fuel", "v", engine->engineLoadAccelEnrichment.getEngineLoadEnrichment(PASS_ENGINE_PARAMETER_SIGNATURE) * 100 / getMap(PASS_ENGINE_PARAMETER_SIGNATURE), 2); } reportSensorF(log, fileFormat, GAUGE_NAME_FUEL_INJ_DUTY, "%", getInjectorDutyCycle(rpm PASS_ENGINE_PARAMETER_SUFFIX), 2); reportSensorF(log, fileFormat, GAUGE_NAME_DWELL_DUTY, "%", getCoilDutyCycle(rpm PASS_ENGINE_PARAMETER_SUFFIX), 2); // debugFloat(&logger, "tch", getTCharge1(tps), 2); for (int i = 0;ifsioAdc[i] != EFI_ADC_NONE) { strcpy(buf, "adcX"); buf[3] = '0' + i; reportSensorF(log, fileFormat, buf, "", getVoltage("fsio", engineConfiguration->fsioAdc[i]), 2); } } reportSensorI(log, fileFormat, GAUGE_NAME_WARNING_COUNTER, "count", engine->engineState.warnings.warningCounter); reportSensorI(log, fileFormat, GAUGE_NAME_WARNING_LAST, "code", engine->engineState.warnings.lastErrorCode); reportSensorI(log, fileFormat, INDICATOR_NAME_CLUTCH_UP, "bool", engine->clutchUpState); reportSensorI(log, fileFormat, INDICATOR_NAME_CLUTCH_DOWN, "bool", engine->clutchDownState); reportSensorI(log, fileFormat, INDICATOR_NAME_BRAKE_DOWN, "bool", engine->brakePedalState); } void writeLogLine(void) { #if EFI_FILE_LOGGING if (!main_loop_started) return; resetLogging(&fileLogger); printSensors(&fileLogger, true); if (isSdCardAlive()) { appendPrintf(&fileLogger, "\r\n"); appendToLog(fileLogger.buffer); logFileLineIndex++; } #endif /* EFI_FILE_LOGGING */ } #define INITIAL_FULL_LOG TRUE //#define INITIAL_FULL_LOG FALSE volatile int needToReportStatus = FALSE; static int prevCkpEventCounter = -1; static LoggingWithStorage logger2("main event handler"); static void printStatus(void) { needToReportStatus = TRUE; } /** * Time when the firmware version was reported last time, in seconds * TODO: implement a request/response instead of just constantly sending this out */ static systime_t timeOfPreviousPrintVersion = (systime_t) -1; #if EFI_PROD_CODE static void printOutPin(const char *pinName, brain_pin_e hwPin) { if (hwPin != GPIO_UNASSIGNED) { appendPrintf(&logger, "outpin%s%s@%s%s", DELIMETER, pinName, hwPortname(hwPin), DELIMETER); } } #endif /* EFI_PROD_CODE */ void printOverallStatus(systime_t nowSeconds) { /** * we report the version every 4 seconds - this way the console does not need to * request it and we will display it pretty soon */ if (overflowDiff(nowSeconds, timeOfPreviousPrintVersion) < 4) { return; } timeOfPreviousPrintVersion = nowSeconds; int seconds = getTimeNowSeconds(); printCurrentState(&logger, seconds, getConfigurationName(engineConfiguration->engineType)); #if EFI_PROD_CODE printOutPin(CRANK1, CONFIGB(triggerInputPins)[0]); printOutPin(CRANK2, CONFIGB(triggerInputPins)[1]); printOutPin(VVT_NAME, engineConfiguration->camInput); printOutPin(HIP_NAME, CONFIGB(hip9011IntHoldPin)); printOutPin(TACH_NAME, CONFIGB(tachOutputPin)); printOutPin(DIZZY_NAME, engineConfiguration->dizzySparkOutputPin); #if EFI_WAVE_ANALYZER printOutPin(WA_CHANNEL_1, CONFIGB(logicAnalyzerPins)[0]); printOutPin(WA_CHANNEL_2, CONFIGB(logicAnalyzerPins)[1]); #endif /* EFI_WAVE_ANALYZER */ for (int i = 0; i < engineConfiguration->specs.cylindersCount; i++) { printOutPin(enginePins.coils[i].name, CONFIGB(ignitionPins)[i]); printOutPin(enginePins.injectors[i].name, CONFIGB(injectionPins)[i]); } for (int i = 0; i < AUX_DIGITAL_VALVE_COUNT;i++) { printOutPin(enginePins.auxValve[i].name, engineConfiguration->auxValves[i]); } #endif /* EFI_PROD_CODE */ scheduleLogging(&logger); } static systime_t timeOfPreviousReport = (systime_t) -1; /** * @brief Sends all pending data to rusEfi console * * This method is periodically invoked by the main loop */ void updateDevConsoleState(void) { // todo: make SWO work // char *msg = "hello\r\n"; // for(int i=0;itriggerCentral.triggerState.getTotalEventCounter(); if (prevCkpEventCounter == currentCkpEventCounter && timeOfPreviousReport == nowSeconds) { return; } timeOfPreviousReport = nowSeconds; prevCkpEventCounter = currentCkpEventCounter; #else chThdSleepMilliseconds(200); #endif #if EFI_WAVE_ANALYZER printWave(&logger); #endif scheduleLogging(&logger); } /* * command example: * sfm 3500 400 * that would be 'show fuel for rpm 3500 maf 4.0' */ static void showFuelInfo2(float rpm, float engineLoad) { float baseFuelMs = getBaseTableFuel((int) rpm, engineLoad); float magicAir = getCylinderAirMass(1, 100, convertCelsiusToKelvin(20) PASS_ENGINE_PARAMETER_SUFFIX); scheduleMsg(&logger, "SD magic fuel %.2f", sdMath(magicAir, 14.7 PASS_ENGINE_PARAMETER_SUFFIX)); scheduleMsg(&logger, "inj flow %.2fcc/min displacement %.2fL", engineConfiguration->injector.flow, engineConfiguration->specs.displacement); scheduleMsg(&logger2, "algo=%s/pump=%s", getEngine_load_mode_e(engineConfiguration->fuelAlgorithm), boolToString(enginePins.fuelPumpRelay.getLogicValue())); scheduleMsg(&logger2, "injection phase=%.2f/global fuel correction=%.2f", getInjectionOffset(rpm), engineConfiguration->globalFuelCorrection); scheduleMsg(&logger2, "baro correction=%.2f", engine->engineState.baroCorrection); #if EFI_ENGINE_CONTROL scheduleMsg(&logger, "base cranking fuel %.2f", engineConfiguration->cranking.baseFuel); scheduleMsg(&logger2, "cranking fuel: %.2f", getCrankingFuel(PASS_ENGINE_PARAMETER_SIGNATURE)); if (!engine->rpmCalculator.isStopped(PASS_ENGINE_PARAMETER_SIGNATURE)) { float iatCorrection = engine->engineState.iatFuelCorrection; float cltCorrection = engine->engineState.cltFuelCorrection; floatms_t injectorLag = engine->engineState.injectorLag; scheduleMsg(&logger2, "rpm=%.2f engineLoad=%.2f", rpm, engineLoad); scheduleMsg(&logger2, "baseFuel=%.2f", baseFuelMs); scheduleMsg(&logger2, "iatCorrection=%.2f cltCorrection=%.2f injectorLag=%.2f", iatCorrection, cltCorrection, injectorLag); float value = getRunningFuel(baseFuelMs PASS_ENGINE_PARAMETER_SUFFIX); scheduleMsg(&logger2, "injection pulse width: %.2f", value); } #endif } #if EFI_ENGINE_CONTROL static void showFuelInfo(void) { showFuelInfo2((float) GET_RPM(), getEngineLoadT(PASS_ENGINE_PARAMETER_SIGNATURE)); } #endif /** * blinking thread to show that we are alive * that's a trivial task - a smaller stack should work */ static THD_WORKING_AREA(blinkingStack, 128); static OutputPin *leds[] = { &enginePins.warningLedPin, &enginePins.runningLedPin, &enginePins.checkEnginePin, &enginePins.errorLedPin, &enginePins.communicationLedPin, &enginePins.checkEnginePin }; static void initStatusLeds(void) { enginePins.communicationLedPin.initPin("led: comm status", engineConfiguration->communicationLedPin); // we initialize this here so that we can blink it on start-up enginePins.checkEnginePin.initPin("MalfunctionIndicator", CONFIGB(malfunctionIndicatorPin), &CONFIGB(malfunctionIndicatorPinMode)); enginePins.warningLedPin.initPin("led: warning status", engineConfiguration->warningLedPin); enginePins.runningLedPin.initPin("led: running status", engineConfiguration->runningLedPin); } /** * This method would blink all the LEDs just to test them */ static void initialLedsBlink(void) { if (hasFirmwareError()) { // make sure we do not turn the fatal LED off if already have // fatal error by now return; } int size = sizeof(leds) / sizeof(leds[0]); for (int i = 0; i < size && !hasFirmwareError(); i++) leds[i]->setValue(1); chThdSleepMilliseconds(100); // re-checking in case the error has happened while we were sleeping for (int i = 0; i < size && !hasFirmwareError(); i++) leds[i]->setValue(0); } static int blinkingPeriodMs = 33; /** * this is useful to test connectivity */ static void setBlinkingPeriod(int value) { if (value > 0) blinkingPeriodMs = value; } #if EFI_PROD_CODE static bool isTriggerErrorNow() { #if EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT // todo: WAT? how is communication LED blinkingPeriodMs part of trigger error condition?! bool justHadError = (getTimeNowNt() - engine->triggerCentral.triggerState.lastDecodingErrorTime) < US2NT(2 * 1000 * 3 * blinkingPeriodMs); return justHadError || isTriggerDecoderError(); #else return false; #endif /* EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT */ } extern bool consoleByteArrived; /** * this thread has a lower-then-usual stack size so we cannot afford *print* methods here */ static void blinkingThread(void *arg) { (void) arg; chRegSetThreadName("communication blinking"); initialLedsBlink(); while (true) { int onTimeMs = is_usb_serial_ready() ? 3 * blinkingPeriodMs : blinkingPeriodMs; #if EFI_INTERNAL_FLASH if (getNeedToWriteConfiguration()) { onTimeMs = 2 * onTimeMs; } #endif int offTimeMs = onTimeMs; if (hasFirmwareError()) { // special behavior in case of fatal error - not equal on/off time // this special behaviour helps to notice that something is not right, also // differentiates software firmware error from fatal interrupt error with CPU halt. offTimeMs = 50; onTimeMs = 450; } enginePins.communicationLedPin.setValue(0); enginePins.warningLedPin.setValue(0); chThdSleepMilliseconds(offTimeMs); enginePins.communicationLedPin.setValue(1); #if EFI_ENGINE_CONTROL if (isTriggerErrorNow() || isIgnitionTimingError() || consoleByteArrived) { consoleByteArrived = false; enginePins.warningLedPin.setValue(1); } #endif /* EFI_ENGINE_CONTROL */ chThdSleepMilliseconds(onTimeMs); } } #endif /* EFI_PROD_CODE */ #if EFI_LCD class LcdController : public PeriodicController { public: LcdController() : PeriodicController("BenchThread") { } private: void PeriodicTask(efitime_t nowNt) override { UNUSED(nowNt); setPeriod(NOT_TOO_OFTEN(10 /* ms */, engineConfiguration->bc.lcdThreadPeriodMs)); if (engineConfiguration->bc.useLcdScreen) { #if EFI_HD44780_LCD updateHD44780lcd(); #endif } } }; static LcdController lcdInstance; #endif /* EFI_LCD */ #if EFI_HIP_9011 extern HIP9011 instance; #endif /* EFI_HIP_9011 */ #if EFI_TUNER_STUDIO void updateTunerStudioState(TunerStudioOutputChannels *tsOutputChannels DECLARE_ENGINE_PARAMETER_SUFFIX) { #if EFI_SHAFT_POSITION_INPUT int rpm = GET_RPM(); #else /* EFI_SHAFT_POSITION_INPUT */ int rpm = 0; #endif /* EFI_SHAFT_POSITION_INPUT */ #if EFI_PROD_CODE executorStatistics(); #endif /* EFI_PROD_CODE */ float tps = getTPS(PASS_ENGINE_PARAMETER_SIGNATURE); float coolant = getCoolantTemperature(PASS_ENGINE_PARAMETER_SIGNATURE); float intake = getIntakeAirTemperature(PASS_ENGINE_PARAMETER_SIGNATURE); float engineLoad = getEngineLoadT(PASS_ENGINE_PARAMETER_SIGNATURE); // header tsOutputChannels->tsConfigVersion = TS_FILE_VERSION; // engine state tsOutputChannels->rpm = rpm; tsOutputChannels->coolantTemperature = coolant; tsOutputChannels->intakeAirTemperature = intake; tsOutputChannels->throttlePositon = tps; tsOutputChannels->massAirFlowVoltage = hasMafSensor() ? getMaf(PASS_ENGINE_PARAMETER_SIGNATURE) : 0; // For air-interpolated tCharge mode, we calculate a decent massAirFlow approximation, so we can show it to users even without MAF sensor! tsOutputChannels->massAirFlow = hasMafSensor() ? getRealMaf(PASS_ENGINE_PARAMETER_SIGNATURE) : engine->engineState.airFlow; tsOutputChannels->oilPressure = engine->sensors.oilPressure; tsOutputChannels->injectionOffset = engine->engineState.injectionOffset; tsOutputChannels->accelerationX = engine->sensors.accelerometer.x; tsOutputChannels->accelerationY = engine->sensors.accelerometer.y; if (hasMapSensor(PASS_ENGINE_PARAMETER_SIGNATURE)) { float mapValue = getMap(PASS_ENGINE_PARAMETER_SIGNATURE); tsOutputChannels->veValue = engine->engineState.currentBaroCorrectedVE * PERCENT_MULT; // todo: bug here? target afr could work based on real MAF? tsOutputChannels->currentTargetAfr = afrMap.getValue(rpm, mapValue); tsOutputChannels->manifoldAirPressure = mapValue; } if (hasAfrSensor(PASS_ENGINE_PARAMETER_SIGNATURE)) { tsOutputChannels->airFuelRatio = getAfr(PASS_ENGINE_PARAMETER_SIGNATURE); } if (hasVBatt(PASS_ENGINE_PARAMETER_SIGNATURE)) { tsOutputChannels->vBatt = getVBatt(PASS_ENGINE_PARAMETER_SIGNATURE); } tsOutputChannels->tpsADC = getTPS12bitAdc(PASS_ENGINE_PARAMETER_SIGNATURE) / TPS_TS_CONVERSION; #if EFI_ANALOG_SENSORS tsOutputChannels->baroPressure = hasBaroSensor() ? getBaroPressure() : 0; #endif /* EFI_ANALOG_SENSORS */ tsOutputChannels->engineLoad = engineLoad; tsOutputChannels->triggerErrorsCounter = engine->triggerCentral.triggerState.totalTriggerErrorCounter; tsOutputChannels->baroCorrection = engine->engineState.baroCorrection; tsOutputChannels->pedalPosition = hasPedalPositionSensor(PASS_ENGINE_PARAMETER_SIGNATURE) ? getPedalPosition(PASS_ENGINE_PARAMETER_SIGNATURE) : 0; tsOutputChannels->knockCount = engine->knockCount; tsOutputChannels->knockLevel = engine->knockVolts; tsOutputChannels->fuelTankLevel = engine->sensors.fuelTankLevel; tsOutputChannels->hasFatalError = hasFirmwareError(); tsOutputChannels->totalTriggerErrorCounter = engine->triggerCentral.triggerState.totalTriggerErrorCounter; tsOutputChannels->injectorDutyCycle = getInjectorDutyCycle(rpm PASS_ENGINE_PARAMETER_SUFFIX); tsOutputChannels->fuelRunning = ENGINE(engineState.runningFuel); tsOutputChannels->fuelPidCorrection = ENGINE(engineState.fuelPidCorrection); tsOutputChannels->injectorLagMs = ENGINE(engineState.injectorLag); tsOutputChannels->fuelBase = engine->engineState.baseFuel; tsOutputChannels->actualLastInjection = ENGINE(actualLastInjection); tsOutputChannels->coilDutyCycle = getCoilDutyCycle(rpm PASS_ENGINE_PARAMETER_SUFFIX); efitimesec_t timeSeconds = getTimeNowSeconds(); tsOutputChannels->timeSeconds = timeSeconds; tsOutputChannels->firmwareVersion = getRusEfiVersion(); tsOutputChannels->isWarnNow = engine->engineState.warnings.isWarningNow(timeSeconds, true); tsOutputChannels->isCltBroken = engine->isCltBroken; #if EFI_HIP_9011 tsOutputChannels->isKnockChipOk = (instance.invalidHip9011ResponsesCount == 0); #endif /* EFI_HIP_9011 */ switch (engineConfiguration->debugMode) { case DBG_AUX_TEMPERATURE: tsOutputChannels->debugFloatField1 = engine->sensors.auxTemp1; tsOutputChannels->debugFloatField2 = engine->sensors.auxTemp2; break; case DBG_STATUS: tsOutputChannels->debugFloatField1 = timeSeconds; tsOutputChannels->debugIntField1 = atoi(VCS_VERSION); break; case DBG_METRICS: #if EFI_CLOCK_LOCKS tsOutputChannels->debugIntField1 = maxLockedDuration; tsOutputChannels->debugIntField2 = maxTriggerReentraint; #endif /* EFI_CLOCK_LOCKS */ break; case DBG_TPS_ACCEL: tsOutputChannels->debugIntField1 = engine->tpsAccelEnrichment.cb.getSize(); break; case DBG_SR5_PROTOCOL: { const int _10_6 = 100000; tsOutputChannels->debugIntField1 = tsState.textCommandCounter * _10_6 + tsState.totalCounter; tsOutputChannels->debugIntField2 = tsState.outputChannelsCommandCounter * _10_6 + tsState.writeValueCommandCounter; tsOutputChannels->debugIntField3 = tsState.readPageCommandsCounter * _10_6 + tsState.burnCommandCounter; break; } case DBG_AUX_VALVES: tsOutputChannels->debugFloatField1 = engine->engineState.auxValveStart; tsOutputChannels->debugFloatField2 = engine->engineState.auxValveEnd; break; case DBG_TRIGGER_INPUT: tsOutputChannels->debugIntField1 = engine->triggerCentral.getHwEventCounter((int)SHAFT_PRIMARY_FALLING); tsOutputChannels->debugIntField2 = engine->triggerCentral.getHwEventCounter((int)SHAFT_SECONDARY_FALLING); tsOutputChannels->debugIntField3 = engine->triggerCentral.getHwEventCounter((int)SHAFT_3RD_FALLING); tsOutputChannels->debugFloatField1 = engine->triggerCentral.getHwEventCounter((int)SHAFT_PRIMARY_RISING); tsOutputChannels->debugFloatField2 = engine->triggerCentral.getHwEventCounter((int)SHAFT_SECONDARY_RISING); tsOutputChannels->debugFloatField3 = engine->triggerCentral.getHwEventCounter((int)SHAFT_3RD_RISING); tsOutputChannels->debugFloatField4 = engine->rpmCalculator.getRpmAcceleration(); break; case DBG_FSIO_ADC: // todo: implement a proper loop if (engineConfiguration->fsioAdc[0] != EFI_ADC_NONE) { strcpy(buf, "adcX"); tsOutputChannels->debugFloatField1 = getVoltage("fsio", engineConfiguration->fsioAdc[0]); } break; case DBG_FSIO_EXPRESSION: #if EFI_PROD_CODE && EFI_FSIO tsOutputChannels->debugFloatField1 = getFsioOutputValue(0 PASS_ENGINE_PARAMETER_SUFFIX); tsOutputChannels->debugFloatField2 = getFsioOutputValue(1 PASS_ENGINE_PARAMETER_SUFFIX); tsOutputChannels->debugFloatField3 = getFsioOutputValue(2 PASS_ENGINE_PARAMETER_SUFFIX); tsOutputChannels->debugFloatField4 = getFsioOutputValue(3 PASS_ENGINE_PARAMETER_SUFFIX); tsOutputChannels->debugFloatField5 = getFsioOutputValue(4 PASS_ENGINE_PARAMETER_SUFFIX); tsOutputChannels->debugFloatField6 = getFsioOutputValue(5 PASS_ENGINE_PARAMETER_SUFFIX); tsOutputChannels->debugFloatField7 = getFsioOutputValue(6 PASS_ENGINE_PARAMETER_SUFFIX); #endif /* EFI_FSIO */ break; case DBG_VEHICLE_SPEED_SENSOR: tsOutputChannels->debugIntField1 = engine->engineState.vssEventCounter; break; case DBG_SD_CARD: tsOutputChannels->debugIntField1 = engine->engineState.totalLoggedBytes; break; case DBG_CRANKING_DETAILS: tsOutputChannels->debugIntField1 = engine->rpmCalculator.getRevolutionCounterSinceStart(); break; #if EFI_HIP_9011 case DBG_KNOCK: // todo: maybe extract hipPostState(tsOutputChannels); tsOutputChannels->debugIntField1 = instance.correctResponsesCount; tsOutputChannels->debugIntField2 = instance.invalidHip9011ResponsesCount; break; #endif /* EFI_HIP_9011 */ #if EFI_CJ125 && HAL_USE_SPI case DBG_CJ125: cjPostState(tsOutputChannels); break; #endif /* EFI_CJ125 && HAL_USE_SPI */ #if EFI_MAP_AVERAGING case DBG_MAP: postMapState(tsOutputChannels); break; #endif /* EFI_MAP_AVERAGING */ #if EFI_CAN_SUPPORT case DBG_CAN: postCanState(tsOutputChannels); break; #endif /* EFI_CAN_SUPPORT */ case DBG_ANALOG_INPUTS: tsOutputChannels->debugFloatField1 = (engineConfiguration->vbattAdcChannel != EFI_ADC_NONE) ? getVoltageDivided("vbatt", engineConfiguration->vbattAdcChannel) : 0.0f; tsOutputChannels->debugFloatField2 = (engineConfiguration->tps1_1AdcChannel != EFI_ADC_NONE) ? getVoltageDivided("tps", engineConfiguration->tps1_1AdcChannel) : 0.0f; tsOutputChannels->debugFloatField3 = (engineConfiguration->mafAdcChannel != EFI_ADC_NONE) ? getVoltageDivided("maf", engineConfiguration->mafAdcChannel) : 0.0f; tsOutputChannels->debugFloatField4 = (engineConfiguration->map.sensor.hwChannel != EFI_ADC_NONE) ? getVoltageDivided("map", engineConfiguration->map.sensor.hwChannel) : 0.0f; tsOutputChannels->debugFloatField5 = (engineConfiguration->clt.adcChannel != EFI_ADC_NONE) ? getVoltageDivided("clt", engineConfiguration->clt.adcChannel) : 0.0f; tsOutputChannels->debugFloatField6 = (engineConfiguration->iat.adcChannel != EFI_ADC_NONE) ? getVoltageDivided("iat", engineConfiguration->iat.adcChannel) : 0.0f; tsOutputChannels->debugFloatField7 = (engineConfiguration->afr.hwChannel != EFI_ADC_NONE) ? getVoltageDivided("ego", engineConfiguration->afr.hwChannel) : 0.0f; break; case DBG_ANALOG_INPUTS2: tsOutputChannels->debugFloatField4 = getVoltage("debug", engineConfiguration->throttlePedalPositionAdcChannel); break; case DBG_INSTANT_RPM: { float instantRpm = engine->triggerCentral.triggerState.instantRpm; tsOutputChannels->debugFloatField1 = instantRpm; tsOutputChannels->debugFloatField2 = instantRpm / GET_RPM_VALUE; } break; case DBG_ION: #if EFI_CDM_INTEGRATION ionPostState(tsOutputChannels); #endif /* EFI_CDM_INTEGRATION */ break; default: ; } tsOutputChannels->wallFuelAmount = ENGINE(wallFuel).getWallFuel(0); tsOutputChannels->wallFuelCorrection = ENGINE(wallFuelCorrection); // TPS acceleration tsOutputChannels->deltaTps = engine->tpsAccelEnrichment.getMaxDelta(); tsOutputChannels->tpsAccelFuel = engine->engineState.tpsAccelEnrich; // engine load acceleration if (hasMapSensor(PASS_ENGINE_PARAMETER_SIGNATURE)) { tsOutputChannels->engineLoadAccelExtra = engine->engineLoadAccelEnrichment.getEngineLoadEnrichment(PASS_ENGINE_PARAMETER_SIGNATURE) * 100 / getMap(PASS_ENGINE_PARAMETER_SIGNATURE); } tsOutputChannels->engineLoadDelta = engine->engineLoadAccelEnrichment.getMaxDelta(); tsOutputChannels->iatCorrection = ENGINE(engineState.iatFuelCorrection); tsOutputChannels->cltCorrection = ENGINE(engineState.cltFuelCorrection); tsOutputChannels->checkEngine = hasErrorCodes(); tsOutputChannels->vvtPosition = engine->triggerCentral.vvtPosition; tsOutputChannels->engineMode = packEngineMode(PASS_ENGINE_PARAMETER_SIGNATURE); #if HAL_USE_ADC tsOutputChannels->internalMcuTemperature = getMCUInternalTemperature(); #endif /* HAL_USE_ADC */ #if EFI_MAX_31855 for (int i = 0; i < EGT_CHANNEL_COUNT; i++) tsOutputChannels->egtValues.values[i] = getEgtValue(i); #endif /* EFI_MAX_31855 */ #if EFI_IDLE_CONTROL tsOutputChannels->idlePosition = getIdlePosition(); #endif #if EFI_PROD_CODE tsOutputChannels->isTriggerError = isTriggerErrorNow(); #if EFI_INTERNAL_FLASH tsOutputChannels->needBurn = getNeedToWriteConfiguration(); #endif /* EFI_INTERNAL_FLASH */ #if EFI_FILE_LOGGING tsOutputChannels->hasSdCard = isSdCardAlive(); #endif /* EFI_FILE_LOGGING */ tsOutputChannels->isFuelPumpOn = enginePins.fuelPumpRelay.getLogicValue(); tsOutputChannels->isFanOn = enginePins.fanRelay.getLogicValue(); tsOutputChannels->isO2HeaterOn = enginePins.o2heater.getLogicValue(); tsOutputChannels->isIgnitionEnabled = engineConfiguration->isIgnitionEnabled; tsOutputChannels->isInjectionEnabled = engineConfiguration->isInjectionEnabled; tsOutputChannels->isCylinderCleanupEnabled = engineConfiguration->isCylinderCleanupEnabled; tsOutputChannels->isCylinderCleanupActivated = engine->isCylinderCleanupMode; tsOutputChannels->secondTriggerChannelEnabled = engineConfiguration->secondTriggerChannelEnabled; #if EFI_VEHICLE_SPEED float vehicleSpeed = getVehicleSpeed(); tsOutputChannels->vehicleSpeedKph = vehicleSpeed; tsOutputChannels->speedToRpmRatio = vehicleSpeed / rpm; #endif /* EFI_VEHICLE_SPEED */ tsOutputChannels->isCltError = !isValidCoolantTemperature(getCoolantTemperature(PASS_ENGINE_PARAMETER_SIGNATURE)); tsOutputChannels->isIatError = !isValidIntakeAirTemperature(getIntakeAirTemperature(PASS_ENGINE_PARAMETER_SIGNATURE)); #endif /* EFI_PROD_CODE */ tsOutputChannels->fuelConsumptionPerHour = engine->engineState.fuelConsumption.perSecondConsumption; tsOutputChannels->warningCounter = engine->engineState.warnings.warningCounter; tsOutputChannels->lastErrorCode = engine->engineState.warnings.lastErrorCode; for (int i = 0; i < 8;i++) { tsOutputChannels->recentErrorCodes[i] = engine->engineState.warnings.recentWarnings.get(i); } tsOutputChannels->knockNowIndicator = engine->knockCount > 0; tsOutputChannels->knockEverIndicator = engine->knockEver; tsOutputChannels->clutchUpState = engine->clutchUpState; tsOutputChannels->clutchDownState = engine->clutchDownState; tsOutputChannels->brakePedalState = engine->brakePedalState; tsOutputChannels->acSwitchState = engine->acSwitchState; // tCharge depends on the previous state, so we should use the stored value. tsOutputChannels->tCharge = ENGINE(engineState.tCharge); float timing = engine->engineState.timingAdvance; tsOutputChannels->ignitionAdvance = timing > 360 ? timing - 720 : timing; tsOutputChannels->sparkDwell = ENGINE(engineState.sparkDwell); tsOutputChannels->crankingFuelMs = engine->isCylinderCleanupMode ? 0 : getCrankingFuel(PASS_ENGINE_PARAMETER_SIGNATURE); tsOutputChannels->chargeAirMass = engine->engineState.airMass; } extern TunerStudioOutputChannels tsOutputChannels; void prepareTunerStudioOutputs(void) { // sensor state for EFI Analytics Tuner Studio updateTunerStudioState(&tsOutputChannels PASS_ENGINE_PARAMETER_SUFFIX); } #endif /* EFI_TUNER_STUDIO */ void initStatusLoop(void) { setFullLog(INITIAL_FULL_LOG); addConsoleActionI(FULL_LOGGING_KEY, setFullLog); addConsoleActionI("warn", setWarningEnabled); #if EFI_ENGINE_CONTROL addConsoleActionFF("fuelinfo2", (VoidFloatFloat) showFuelInfo2); addConsoleAction("fuelinfo", showFuelInfo); #endif #if EFI_PROD_CODE addConsoleActionI("set_led_blinking_period", setBlinkingPeriod); addConsoleAction("status", printStatus); #endif /* EFI_PROD_CODE */ } void startStatusThreads(void) { // todo: refactoring needed, this file should probably be split into pieces #if EFI_PROD_CODE initStatusLeds(); chThdCreateStatic(blinkingStack, sizeof(blinkingStack), NORMALPRIO, (tfunc_t) blinkingThread, NULL); #endif /* EFI_PROD_CODE */ #if EFI_LCD lcdInstance.Start(); #endif /* EFI_LCD */ } void setFullLog(int value) { print("Setting full logging: %s\r\n", boolToString(value)); printMsg(&logger, "%s%d", FULL_LOGGING_KEY, value); fullLog = value; } bool getFullLog(void) { return fullLog; }