/** * @file rpm_calculator.cpp * @brief RPM calculator * * Here we listen to position sensor events in order to figure our if engine is currently running or not. * Actual getRpm() is calculated once per crankshaft revolution, based on the amount of time passed * since the start of previous shaft revolution. * * @date Jan 1, 2013 * @author Andrey Belomutskiy, (c) 2012-2017 */ #include "main.h" #include "rpm_calculator.h" #if EFI_SHAFT_POSITION_INPUT || defined(__DOXYGEN__) #include "trigger_central.h" #include "engine_configuration.h" #include "engine_math.h" #if EFI_PROD_CODE #include "rfiutil.h" #include "engine.h" #endif #if EFI_SENSOR_CHART || defined(__DOXYGEN__) #include "sensor_chart.h" #endif #include "efilib2.h" #if EFI_ENGINE_SNIFFER #include "engine_sniffer.h" extern WaveChart waveChart; #endif /* EFI_ENGINE_SNIFFER */ EXTERN_ENGINE ; efitime_t notRunnintNow; efitime_t notRunningPrev; extern bool hasFirmwareErrorFlag; static Logging * logger; int revolutionCounterSinceBootForUnitTest = 0; RpmCalculator::RpmCalculator() { #if !EFI_PROD_CODE mockRpm = MOCK_UNDEFINED; #endif rpmValue = 0; assignRpmValue(0); // we need this initial to have not_running at first invocation lastRpmEventTimeNt = (efitime_t) -10 * US2NT(US_PER_SECOND_LL); revolutionCounterSinceStart = 0; revolutionCounterSinceBootForUnitTest = revolutionCounterSinceBoot = 0; lastRpmEventTimeNt = 0; oneDegreeUs = NAN; } bool RpmCalculator::isStopped(DECLARE_ENGINE_PARAMETER_SIGNATURE) { return false; } bool RpmCalculator::isCranking(DECLARE_ENGINE_PARAMETER_SIGNATURE) { return ((rpmValue) > 0 && (rpmValue) < CONFIG(cranking.rpm)); } //bool RpmCalculator::isRunning() { // return false; //} /** * @return true if there was a full shaft revolution within the last second */ bool RpmCalculator::isRunning(DECLARE_ENGINE_PARAMETER_SIGNATURE) { efitick_t nowNt = getTimeNowNt(); if (ENGINE(stopEngineRequestTimeNt) != 0) { if (nowNt - ENGINE(stopEngineRequestTimeNt) < 3 * US2NT(US_PER_SECOND_LL)) { return false; } } if (lastRpmEventTimeNt == 0) { // here we assume 64 bit time does not overflow, zero value is the default meaning no events so far return false; } /** * note that the result of this subtraction could be negative, that would happen if * we have a trigger event between the time we've invoked 'getTimeNow' and here */ bool result = nowNt - lastRpmEventTimeNt < US2NT(2 * US_PER_SECOND_LL); // Anything below 60 rpm is not running if (!result) { notRunnintNow = nowNt; notRunningPrev = lastRpmEventTimeNt; } return result; } // private method void RpmCalculator::assignRpmValue(int value) { previousRpmValue = rpmValue; rpmValue = value; if (rpmValue <= 0) { oneDegreeUs = NAN; } else { oneDegreeUs = getOneDegreeTimeUs(rpmValue); } } void RpmCalculator::setRpmValue(int value DECLARE_ENGINE_PARAMETER_SUFFIX) { assignRpmValue(value); if (previousRpmValue == 0 && rpmValue > 0) { /** * this would make sure that we have good numbers for first cranking revolution * #275 cranking could be improved */ ENGINE(periodicFastCallback(PASS_ENGINE_PARAMETER_SIGNATURE)); } } void RpmCalculator::onNewEngineCycle() { revolutionCounterSinceBoot++; revolutionCounterSinceStart++; #if EFI_UNIT_TEST revolutionCounterSinceBootForUnitTest = revolutionCounterSinceBoot; #endif /* EFI_UNIT_TEST */ } uint32_t RpmCalculator::getRevolutionCounter(void) { return revolutionCounterSinceBoot; } uint32_t RpmCalculator::getRevolutionCounterSinceStart(void) { return revolutionCounterSinceStart; } float RpmCalculator::getRpmAcceleration() { return 1.0 * previousRpmValue / rpmValue; } /** * WARNING: this is a heavy method because 'getRpm()' is relatively heavy * * @return -1 in case of isNoisySignal(), current RPM otherwise */ // todo: migrate to float return result or add a float version? this would have with calculations // todo: add a version which does not check time & saves time? need to profile int RpmCalculator::getRpm(DECLARE_ENGINE_PARAMETER_SIGNATURE) { #if !EFI_PROD_CODE if (mockRpm != MOCK_UNDEFINED) return mockRpm; #endif if (!isRunning(PASS_ENGINE_PARAMETER_SIGNATURE)) { revolutionCounterSinceStart = 0; if (rpmValue != 0) { rpmValue = 0; scheduleMsg(logger, "templog rpm=0 since not running [%x][%x] [%x][%x]", (int) (notRunnintNow >> 32), (int) notRunnintNow, (int) (notRunningPrev >> 32), (int) notRunningPrev); } } return rpmValue; } #if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__) bool isCrankingOrInitialE(Engine *engine) { int rpm = getRpmE(engine); return ENGINE(rpmCalculator).isCranking(PASS_ENGINE_PARAMETER_SIGNATURE) || (rpm == 0); } #endif /** * @brief Shaft position callback used by RPM calculation logic. * * This callback should always be the first of trigger callbacks because other callbacks depend of values * updated here. * This callback is invoked on interrupt thread. */ void rpmShaftPositionCallback(trigger_event_e ckpSignalType, uint32_t index DECLARE_ENGINE_PARAMETER_SUFFIX) { efitick_t nowNt = getTimeNowNt(); #if EFI_PROD_CODE efiAssertVoid(getRemainingStack(chThdGetSelfX()) > 256, "lowstckRCL"); #endif if (index == 0) { ENGINE(m.beforeRpmCb) = GET_TIMESTAMP(); RpmCalculator *rpmState = &engine->rpmCalculator; bool hadRpmRecently = rpmState->isRunning(PASS_ENGINE_PARAMETER_SIGNATURE); if (hadRpmRecently) { efitime_t diffNt = nowNt - rpmState->lastRpmEventTimeNt; /** * Four stroke cycle is two crankshaft revolutions * * We always do '* 2' because the event signal is already adjusted to 'per engine cycle' * and each revolution of crankshaft consists of two engine cycles revolutions * */ if (diffNt == 0) { rpmState->setRpmValue(NOISY_RPM PASS_ENGINE_PARAMETER_SUFFIX); } else { int mult = (int)getEngineCycle(engineConfiguration->operationMode) / 360; int rpm = (int) (60 * US2NT(US_PER_SECOND_LL) * mult / diffNt); rpmState->setRpmValue(rpm > UNREALISTIC_RPM ? NOISY_RPM : rpm PASS_ENGINE_PARAMETER_SUFFIX); } } rpmState->onNewEngineCycle(); rpmState->lastRpmEventTimeNt = nowNt; ENGINE(m.rpmCbTime) = GET_TIMESTAMP() - ENGINE(m.beforeRpmCb); } #if EFI_SENSOR_CHART || defined(__DOXYGEN__) // this 'index==0' case is here so that it happens after cycle callback so // it goes into sniffer report into the first position if (ENGINE(sensorChartMode) == SC_TRIGGER) { angle_t crankAngle = getCrankshaftAngleNt(nowNt PASS_ENGINE_PARAMETER_SUFFIX); int signal = 1000 * ckpSignalType + index; scAddData(crankAngle, signal); } #endif } static scheduling_s tdcScheduler[2]; static char rpmBuffer[_MAX_FILLER]; #if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__) /** * This callback has nothing to do with actual engine control, it just sends a Top Dead Center mark to the dev console * digital sniffer. */ static void onTdcCallback(void) { itoa10(rpmBuffer, getRpmE(engine)); addEngineSniffferEvent(TOP_DEAD_CENTER_MESSAGE, (char* ) rpmBuffer); } /** * This trigger callback schedules the actual physical TDC callback in relation to trigger synchronization point. */ static void tdcMarkCallback(trigger_event_e ckpSignalType, uint32_t index0 DECLARE_ENGINE_PARAMETER_SUFFIX) { (void) ckpSignalType; bool isTriggerSynchronizationPoint = index0 == 0; if (isTriggerSynchronizationPoint && ENGINE(isEngineChartEnabled)) { int revIndex2 = engine->rpmCalculator.getRevolutionCounter() % 2; int rpm = ENGINE(rpmCalculator.getRpm(PASS_ENGINE_PARAMETER_SIGNATURE)); // todo: use event-based scheduling, not just time-based scheduling if (isValidRpm(rpm)) { scheduleByAngle(rpm, &tdcScheduler[revIndex2], tdcPosition(), (schfunc_t) onTdcCallback, NULL, &engine->rpmCalculator); } } } #endif #if EFI_PROD_CODE || EFI_SIMULATOR int getRevolutionCounter() { return engine->rpmCalculator.getRevolutionCounter(); } #endif /** * @return Current crankshaft angle, 0 to 720 for four-stroke */ float getCrankshaftAngleNt(efitime_t timeNt DECLARE_ENGINE_PARAMETER_SUFFIX) { efitime_t timeSinceZeroAngleNt = timeNt - engine->rpmCalculator.lastRpmEventTimeNt; /** * even if we use 'getOneDegreeTimeUs' macros here, it looks like the * compiler is not smart enough to figure out that "A / ( B / C)" could be optimized into * "A * C / B" in order to replace a slower division with a faster multiplication. */ int rpm = engine->rpmCalculator.getRpm(PASS_ENGINE_PARAMETER_SIGNATURE); return rpm == 0 ? NAN : timeSinceZeroAngleNt / getOneDegreeTimeNt(rpm); } void initRpmCalculator(Logging *sharedLogger, Engine *engine) { logger = sharedLogger; if (hasFirmwareError()) { return; } #if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__) // tdcScheduler[0].name = "tdc0"; // tdcScheduler[1].name = "tdc1"; addTriggerEventListener(tdcMarkCallback, "chart TDC mark", engine); #endif addTriggerEventListener(rpmShaftPositionCallback, "rpm reporter", engine); } #if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__) /** * Schedules a callback 'angle' degree of crankshaft from now. * The callback would be executed once after the duration of time which * it takes the crankshaft to rotate to the specified angle. */ void scheduleByAngle(int rpm, scheduling_s *timer, angle_t angle, schfunc_t callback, void *param, RpmCalculator *calc) { efiAssertVoid(!cisnan(angle), "NaN angle?"); efiAssertVoid(isValidRpm(rpm), "RPM check expected"); float delayUs = calc->oneDegreeUs * angle; efiAssertVoid(!cisnan(delayUs), "NaN delay?"); scheduleTask(timer, (int) delayUs, callback, param); } #endif #else RpmCalculator::RpmCalculator() { } #endif /* EFI_SHAFT_POSITION_INPUT */