503 lines
17 KiB
C++
503 lines
17 KiB
C++
/**
|
|
* @file fuel_math.cpp
|
|
* @brief Fuel amount calculation logic
|
|
*
|
|
*
|
|
* @date May 27, 2013
|
|
* @author Andrey Belomutskiy, (c) 2012-2020
|
|
*
|
|
* This file is part of rusEfi - see http://rusefi.com
|
|
*
|
|
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
|
|
* the GNU General Public License as published by the Free Software Foundation; either
|
|
* version 3 of the License, or (at your option) any later version.
|
|
*
|
|
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
|
|
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with this program.
|
|
* If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
#include "global.h"
|
|
#include "airmass.h"
|
|
#include "maf_airmass.h"
|
|
#include "speed_density_airmass.h"
|
|
#include "fuel_math.h"
|
|
#include "interpolation.h"
|
|
#include "engine_configuration.h"
|
|
#include "allsensors.h"
|
|
#include "engine_math.h"
|
|
#include "rpm_calculator.h"
|
|
#include "speed_density.h"
|
|
#include "perf_trace.h"
|
|
#include "sensor.h"
|
|
#include "speed_density_base.h"
|
|
|
|
EXTERN_ENGINE;
|
|
|
|
fuel_Map3D_t fuelMap("fuel");
|
|
fuel_Map3D_t fuelPhaseMap("fl ph");
|
|
extern fuel_Map3D_t veMap;
|
|
extern afr_Map3D_t afrMap;
|
|
extern baroCorr_Map3D_t baroCorrMap;
|
|
|
|
#if EFI_ENGINE_CONTROL
|
|
|
|
DISPLAY_STATE(Engine)
|
|
|
|
DISPLAY(DISPLAY_FIELD(sparkDwell))
|
|
DISPLAY(DISPLAY_FIELD(dwellAngle))
|
|
DISPLAY(DISPLAY_FIELD(cltTimingCorrection))
|
|
DISPLAY_TEXT(eol);
|
|
|
|
DISPLAY(DISPLAY_IF(isCrankingState)) floatms_t getCrankingFuel3(
|
|
floatms_t baseFuel,
|
|
uint32_t revolutionCounterSinceStart DECLARE_ENGINE_PARAMETER_SUFFIX) {
|
|
// these magic constants are in Celsius
|
|
float baseCrankingFuel;
|
|
if (engineConfiguration->useRunningMathForCranking) {
|
|
baseCrankingFuel = baseFuel;
|
|
} else {
|
|
baseCrankingFuel = engineConfiguration->cranking.baseFuel;
|
|
}
|
|
/**
|
|
* Cranking fuel changes over time
|
|
*/
|
|
DISPLAY_TEXT(Duration_coef);
|
|
engine->engineState.DISPLAY_PREFIX(cranking).DISPLAY_FIELD(durationCoefficient) = interpolate2d("crank", revolutionCounterSinceStart, config->crankingCycleBins,
|
|
config->crankingCycleCoef);
|
|
DISPLAY_TEXT(eol);
|
|
|
|
/**
|
|
* Cranking fuel is different depending on engine coolant temperature
|
|
* If the sensor is failed, use 20 deg C
|
|
*/
|
|
auto clt = Sensor::get(SensorType::Clt);
|
|
DISPLAY_TEXT(Coolant_coef);
|
|
engine->engineState.DISPLAY_PREFIX(cranking).DISPLAY_FIELD(coolantTemperatureCoefficient) =
|
|
interpolate2d("crank", clt.value_or(20), config->crankingFuelBins, config->crankingFuelCoef);
|
|
DISPLAY_SENSOR(CLT);
|
|
DISPLAY_TEXT(eol);
|
|
|
|
auto tps = Sensor::get(SensorType::DriverThrottleIntent);
|
|
|
|
DISPLAY_TEXT(TPS_coef);
|
|
engine->engineState.DISPLAY_PREFIX(cranking).DISPLAY_FIELD(tpsCoefficient) = tps.Valid ? 1 : interpolate2d("crankTps", tps.Value, engineConfiguration->crankingTpsBins,
|
|
engineConfiguration->crankingTpsCoef);
|
|
|
|
|
|
/*
|
|
engine->engineState.DISPLAY_PREFIX(cranking).DISPLAY_FIELD(tpsCoefficient) =
|
|
tps.Valid
|
|
? interpolate2d("crankTps", tps.Value, engineConfiguration->crankingTpsBins, engineConfiguration->crankingTpsCoef)
|
|
: 1; // in case of failed TPS, don't correct.*/
|
|
DISPLAY_SENSOR(TPS);
|
|
DISPLAY_TEXT(eol);
|
|
|
|
floatms_t crankingFuel = baseCrankingFuel
|
|
* engine->engineState.cranking.durationCoefficient
|
|
* engine->engineState.cranking.coolantTemperatureCoefficient
|
|
* engine->engineState.cranking.tpsCoefficient;
|
|
|
|
DISPLAY_TEXT(Cranking_fuel);
|
|
engine->engineState.DISPLAY_PREFIX(cranking).DISPLAY_FIELD(fuel) = crankingFuel;
|
|
|
|
if (crankingFuel <= 0) {
|
|
warning(CUSTOM_ERR_ZERO_CRANKING_FUEL, "Cranking fuel value %f", crankingFuel);
|
|
}
|
|
return crankingFuel;
|
|
}
|
|
|
|
/* DISPLAY_ELSE */
|
|
|
|
floatms_t getRunningFuel(floatms_t baseFuel DECLARE_ENGINE_PARAMETER_SUFFIX) {
|
|
ScopePerf perf(PE::GetRunningFuel);
|
|
|
|
DISPLAY_TEXT(Base_fuel);
|
|
ENGINE(engineState.DISPLAY_PREFIX(running).DISPLAY_FIELD(baseFuel)) = baseFuel;
|
|
DISPLAY_TEXT(eol);
|
|
|
|
|
|
DISPLAY_TEXT(Intake_coef);
|
|
float iatCorrection = ENGINE(engineState.DISPLAY_PREFIX(running).DISPLAY_FIELD(intakeTemperatureCoefficient));
|
|
DISPLAY_SENSOR(IAT);
|
|
DISPLAY_TEXT(eol);
|
|
|
|
DISPLAY_TEXT(Coolant_coef);
|
|
float cltCorrection = ENGINE(engineState.DISPLAY_PREFIX(running).DISPLAY_FIELD(coolantTemperatureCoefficient));
|
|
DISPLAY_SENSOR(CLT);
|
|
DISPLAY_TEXT(eol);
|
|
|
|
DISPLAY_TEXT(Post_cranking_coef);
|
|
float postCrankingFuelCorrection = ENGINE(engineState.DISPLAY_PREFIX(running).DISPLAY_FIELD(postCrankingFuelCorrection));
|
|
DISPLAY_TEXT(eol);
|
|
|
|
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(iatCorrection), "NaN iatCorrection", 0);
|
|
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(cltCorrection), "NaN cltCorrection", 0);
|
|
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(postCrankingFuelCorrection), "NaN postCrankingFuelCorrection", 0);
|
|
|
|
floatms_t runningFuel = baseFuel * iatCorrection * cltCorrection * postCrankingFuelCorrection * ENGINE(engineState.running.pidCorrection);
|
|
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(runningFuel), "NaN runningFuel", 0);
|
|
DISPLAY_TEXT(eol);
|
|
|
|
DISPLAY_TEXT(Running_fuel);
|
|
ENGINE(engineState.DISPLAY_PREFIX(running).DISPLAY_FIELD(fuel)) = runningFuel;
|
|
DISPLAY_TEXT(eol);
|
|
|
|
DISPLAY_TEXT(Injector_lag);
|
|
DISPLAY(DISPLAY_PREFIX(running).DISPLAY_FIELD(injectorLag));
|
|
DISPLAY_SENSOR(VBATT);
|
|
return runningFuel;
|
|
}
|
|
|
|
/* DISPLAY_ENDIF */
|
|
|
|
constexpr float convertToGramsPerSecond(float ccPerMinute) {
|
|
float ccPerSecond = ccPerMinute / 60;
|
|
return ccPerSecond * 0.72f; // 0.72g/cc fuel density
|
|
}
|
|
|
|
/**
|
|
* @return per cylinder injection time, in seconds
|
|
*/
|
|
float getInjectionDurationForAirmass(float airMass, float afr DECLARE_ENGINE_PARAMETER_SUFFIX) {
|
|
float gPerSec = convertToGramsPerSecond(CONFIG(injector.flow));
|
|
|
|
return airMass / (afr * gPerSec);
|
|
}
|
|
|
|
static SpeedDensityAirmass sdAirmass(veMap);
|
|
static MafAirmass mafAirmass(veMap);
|
|
|
|
AirmassModelBase* getAirmassModel(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
|
|
switch (CONFIG(fuelAlgorithm)) {
|
|
case LM_SPEED_DENSITY: return &sdAirmass;
|
|
case LM_REAL_MAF: return &mafAirmass;
|
|
default: return nullptr;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* per-cylinder fuel amount
|
|
* todo: rename this method since it's now base+TPSaccel
|
|
*/
|
|
floatms_t getBaseFuel(int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) {
|
|
ScopePerf perf(PE::GetBaseFuel);
|
|
|
|
floatms_t tpsAccelEnrich = ENGINE(tpsAccelEnrichment.getTpsEnrichment(PASS_ENGINE_PARAMETER_SIGNATURE));
|
|
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(tpsAccelEnrich), "NaN tpsAccelEnrich", 0);
|
|
ENGINE(engineState.tpsAccelEnrich) = tpsAccelEnrich;
|
|
|
|
floatms_t baseFuel;
|
|
|
|
if ((CONFIG(fuelAlgorithm) == LM_SPEED_DENSITY) || (engineConfiguration->fuelAlgorithm == LM_REAL_MAF)) {
|
|
// airmass modes - get airmass first, then convert to fuel
|
|
auto model = getAirmassModel(PASS_ENGINE_PARAMETER_SIGNATURE);
|
|
efiAssert(CUSTOM_ERR_ASSERT, model != nullptr, "Invalid airmass mode", 0.0f);
|
|
|
|
auto airmass = model->getAirmass(rpm);
|
|
|
|
// The airmass mode will tell us how to look up AFR - use the provided Y axis value
|
|
float targetAfr = afrMap.getValue(rpm, airmass.EngineLoadPercent);
|
|
|
|
// Plop some state for others to read
|
|
ENGINE(engineState.targetAFR) = targetAfr;
|
|
ENGINE(engineState.sd.airMassInOneCylinder) = airmass.CylinderAirmass;
|
|
ENGINE(engineState.fuelingLoad) = airmass.EngineLoadPercent;
|
|
// TODO: independently selectable ignition load mode
|
|
ENGINE(engineState.ignitionLoad) = airmass.EngineLoadPercent;
|
|
|
|
baseFuel = getInjectionDurationForAirmass(airmass.CylinderAirmass, targetAfr PASS_ENGINE_PARAMETER_SUFFIX) * 1000;
|
|
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(baseFuel), "NaN baseFuel", 0);
|
|
} else {
|
|
float tps = Sensor::get(SensorType::Tps1).value_or(0);
|
|
ENGINE(engineState.fuelingLoad) = tps;
|
|
// TODO: independently selectable ignition load mode
|
|
ENGINE(engineState.ignitionLoad) = tps;
|
|
|
|
baseFuel = getBaseTableFuel(rpm, getEngineLoadT(PASS_ENGINE_PARAMETER_SIGNATURE));
|
|
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(baseFuel), "NaN bt baseFuel", 0);
|
|
}
|
|
|
|
engine->engineState.baseFuel = baseFuel;
|
|
|
|
return tpsAccelEnrich + baseFuel;
|
|
}
|
|
|
|
angle_t getInjectionOffset(float rpm, float load DECLARE_ENGINE_PARAMETER_SUFFIX) {
|
|
if (cisnan(rpm)) {
|
|
return 0; // error already reported
|
|
}
|
|
|
|
if (cisnan(load)) {
|
|
return 0; // error already reported
|
|
}
|
|
|
|
angle_t value = fuelPhaseMap.getValue(rpm, load);
|
|
|
|
if (cisnan(value)) {
|
|
// we could be here while resetting configuration for example
|
|
warning(CUSTOM_ERR_6569, "phase map not ready");
|
|
return 0;
|
|
}
|
|
|
|
angle_t result = value + CONFIG(extraInjectionOffset);
|
|
fixAngle(result, "inj offset#2", CUSTOM_ERR_6553);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Number of injections using each injector per engine cycle
|
|
* @see getNumberOfSparks
|
|
*/
|
|
int getNumberOfInjections(injection_mode_e mode DECLARE_ENGINE_PARAMETER_SUFFIX) {
|
|
switch (mode) {
|
|
case IM_SIMULTANEOUS:
|
|
case IM_SINGLE_POINT:
|
|
return engineConfiguration->specs.cylindersCount;
|
|
case IM_BATCH:
|
|
return 2;
|
|
case IM_SEQUENTIAL:
|
|
return 1;
|
|
default:
|
|
firmwareError(CUSTOM_ERR_INVALID_INJECTION_MODE, "Unexpected injection_mode_e %d", mode);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This is more like MOSFET duty cycle since durations include injector lag
|
|
* @see getCoilDutyCycle
|
|
*/
|
|
percent_t getInjectorDutyCycle(int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) {
|
|
floatms_t totalInjectiorAmountPerCycle = ENGINE(injectionDuration) * getNumberOfInjections(engineConfiguration->injectionMode PASS_ENGINE_PARAMETER_SUFFIX);
|
|
floatms_t engineCycleDuration = getEngineCycleDuration(rpm PASS_ENGINE_PARAMETER_SUFFIX);
|
|
return 100 * totalInjectiorAmountPerCycle / engineCycleDuration;
|
|
}
|
|
|
|
static floatms_t getFuel(bool isCranking, floatms_t baseFuel DECLARE_ENGINE_PARAMETER_SUFFIX) {
|
|
if (isCranking) {
|
|
return getCrankingFuel(baseFuel PASS_ENGINE_PARAMETER_SUFFIX);
|
|
} else {
|
|
return getRunningFuel(baseFuel PASS_ENGINE_PARAMETER_SUFFIX);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @returns Length of each individual fuel injection, in milliseconds
|
|
* in case of single point injection mode the amount of fuel into all cylinders, otherwise the amount for one cylinder
|
|
*/
|
|
floatms_t getInjectionDuration(int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) {
|
|
ScopePerf perf(PE::GetInjectionDuration);
|
|
|
|
#if EFI_SHAFT_POSITION_INPUT
|
|
bool isCranking = ENGINE(rpmCalculator).isCranking(PASS_ENGINE_PARAMETER_SIGNATURE);
|
|
injection_mode_e mode = ENGINE(getCurrentInjectionMode(PASS_ENGINE_PARAMETER_SIGNATURE));
|
|
int numberOfInjections = getNumberOfInjections(mode PASS_ENGINE_PARAMETER_SUFFIX);
|
|
if (numberOfInjections == 0) {
|
|
warning(CUSTOM_CONFIG_NOT_READY, "config not ready");
|
|
return 0; // we can end up here during configuration reset
|
|
}
|
|
|
|
// Always update base fuel - some cranking modes use it
|
|
floatms_t baseFuel = getBaseFuel(rpm PASS_ENGINE_PARAMETER_SUFFIX);
|
|
|
|
floatms_t fuelPerCycle = getFuel(isCranking, baseFuel PASS_ENGINE_PARAMETER_SUFFIX);
|
|
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(fuelPerCycle), "NaN fuelPerCycle", 0);
|
|
|
|
if (mode == IM_SINGLE_POINT) {
|
|
// here we convert per-cylinder fuel amount into total engine amount since the single injector serves all cylinders
|
|
fuelPerCycle *= engineConfiguration->specs.cylindersCount;
|
|
}
|
|
// Fuel cut-off isn't just 0 or 1, it can be tapered
|
|
fuelPerCycle *= ENGINE(engineState.fuelCutoffCorrection);
|
|
// If no fuel, don't add injector lag
|
|
if (fuelPerCycle == 0.0f)
|
|
return 0;
|
|
|
|
floatms_t theoreticalInjectionLength = fuelPerCycle / numberOfInjections;
|
|
floatms_t injectorLag = ENGINE(engineState.running.injectorLag);
|
|
if (cisnan(injectorLag)) {
|
|
warning(CUSTOM_ERR_INJECTOR_LAG, "injectorLag not ready");
|
|
return 0; // we can end up here during configuration reset
|
|
}
|
|
return theoreticalInjectionLength * engineConfiguration->globalFuelCorrection + injectorLag;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @brief Injector lag correction
|
|
* @param vBatt Battery voltage.
|
|
* @return Time in ms for injection opening time based on current battery voltage
|
|
*/
|
|
floatms_t getInjectorLag(float vBatt DECLARE_ENGINE_PARAMETER_SUFFIX) {
|
|
if (cisnan(vBatt)) {
|
|
warning(OBD_System_Voltage_Malfunction, "vBatt=%.2f", vBatt);
|
|
return 0;
|
|
}
|
|
|
|
return interpolate2d("lag", vBatt, engineConfiguration->injector.battLagCorrBins, engineConfiguration->injector.battLagCorr);
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize fuel map data structure
|
|
* @note this method has nothing to do with fuel map VALUES - it's job
|
|
* is to prepare the fuel map data structure for 3d interpolation
|
|
*/
|
|
void initFuelMap(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
|
|
INJECT_ENGINE_REFERENCE(&sdAirmass);
|
|
INJECT_ENGINE_REFERENCE(&mafAirmass);
|
|
|
|
fuelMap.init(config->fuelTable, config->fuelLoadBins, config->fuelRpmBins);
|
|
#if (IGN_LOAD_COUNT == FUEL_LOAD_COUNT) && (IGN_RPM_COUNT == FUEL_RPM_COUNT)
|
|
fuelPhaseMap.init(config->injectionPhase, config->injPhaseLoadBins, config->injPhaseRpmBins);
|
|
#endif /* (IGN_LOAD_COUNT == FUEL_LOAD_COUNT) && (IGN_RPM_COUNT == FUEL_RPM_COUNT) */
|
|
}
|
|
|
|
/**
|
|
* @brief Engine warm-up fuel correction.
|
|
*/
|
|
float getCltFuelCorrection(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
|
|
const auto [valid, clt] = Sensor::get(SensorType::Clt);
|
|
|
|
if (!valid)
|
|
return 1; // this error should be already reported somewhere else, let's just handle it
|
|
|
|
return interpolate2d("cltf", clt, config->cltFuelCorrBins, config->cltFuelCorr);
|
|
}
|
|
|
|
angle_t getCltTimingCorrection(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
|
|
const auto [valid, clt] = Sensor::get(SensorType::Clt);
|
|
|
|
if (!valid)
|
|
return 0; // this error should be already reported somewhere else, let's just handle it
|
|
|
|
return interpolate2d("timc", clt, engineConfiguration->cltTimingBins, engineConfiguration->cltTimingExtra);
|
|
}
|
|
|
|
float getIatFuelCorrection(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
|
|
const auto [valid, iat] = Sensor::get(SensorType::Iat);
|
|
|
|
if (!valid)
|
|
return 1; // this error should be already reported somewhere else, let's just handle it
|
|
|
|
return interpolate2d("iatc", iat, config->iatFuelCorrBins, config->iatFuelCorr);
|
|
}
|
|
|
|
/**
|
|
* @brief Called from EngineState::periodicFastCallback to update the state.
|
|
* @note The returned value is float, not boolean - to implement taper (smoothed correction).
|
|
* @return Fuel duration correction for fuel cut-off control (ex. if coasting). No correction if 1.0
|
|
*/
|
|
float getFuelCutOffCorrection(efitick_t nowNt, int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) {
|
|
// no corrections by default
|
|
float fuelCorr = 1.0f;
|
|
|
|
// coasting fuel cut-off correction
|
|
if (CONFIG(coastingFuelCutEnabled)) {
|
|
auto [tpsValid, tpsPos] = Sensor::get(SensorType::Tps1);
|
|
if (!tpsValid) {
|
|
return 1.0f;
|
|
}
|
|
|
|
const auto [cltValid, clt] = Sensor::get(SensorType::Clt);
|
|
if (!cltValid) {
|
|
return 1.0f;
|
|
}
|
|
|
|
float map = getMap(PASS_ENGINE_PARAMETER_SIGNATURE);
|
|
|
|
// gather events
|
|
bool mapDeactivate = (map >= CONFIG(coastingFuelCutMap));
|
|
bool tpsDeactivate = (tpsPos >= CONFIG(coastingFuelCutTps));
|
|
// If no CLT sensor (or broken), don't allow DFCO
|
|
bool cltDeactivate = clt < (float)CONFIG(coastingFuelCutClt);
|
|
bool rpmDeactivate = (rpm < CONFIG(coastingFuelCutRpmLow));
|
|
bool rpmActivate = (rpm > CONFIG(coastingFuelCutRpmHigh));
|
|
|
|
// state machine (coastingFuelCutStartTime is also used as a flag)
|
|
if (!mapDeactivate && !tpsDeactivate && !cltDeactivate && rpmActivate) {
|
|
ENGINE(engineState.coastingFuelCutStartTime) = nowNt;
|
|
} else if (mapDeactivate || tpsDeactivate || rpmDeactivate || cltDeactivate) {
|
|
ENGINE(engineState.coastingFuelCutStartTime) = 0;
|
|
}
|
|
// enable fuelcut?
|
|
if (ENGINE(engineState.coastingFuelCutStartTime) != 0) {
|
|
// todo: add taper - interpolate using (nowNt - coastingFuelCutStartTime)?
|
|
fuelCorr = 0.0f;
|
|
}
|
|
}
|
|
|
|
// todo: add other fuel cut-off checks here (possibly cutFuelOnHardLimit?)
|
|
return fuelCorr;
|
|
}
|
|
|
|
/**
|
|
* @return Fuel injection duration injection as specified in the fuel map, in milliseconds
|
|
*/
|
|
floatms_t getBaseTableFuel(int rpm, float engineLoad) {
|
|
#if EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT
|
|
if (cisnan(engineLoad)) {
|
|
warning(CUSTOM_NAN_ENGINE_LOAD_2, "NaN engine load");
|
|
return 0;
|
|
}
|
|
floatms_t result = fuelMap.getValue(rpm, engineLoad);
|
|
if (cisnan(result)) {
|
|
// result could be NaN in case of invalid table, like during initialization
|
|
result = 0;
|
|
warning(CUSTOM_ERR_FUEL_TABLE_NOT_READY, "baseFuel table not ready");
|
|
}
|
|
return result;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
float getBaroCorrection(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
|
|
if (hasBaroSensor(PASS_ENGINE_PARAMETER_SIGNATURE)) {
|
|
float correction = baroCorrMap.getValue(GET_RPM(), getBaroPressure(PASS_ENGINE_PARAMETER_SIGNATURE));
|
|
if (cisnan(correction) || correction < 0.01) {
|
|
warning(OBD_Barometric_Press_Circ_Range_Perf, "Invalid baro correction %f", correction);
|
|
return 1;
|
|
}
|
|
return correction;
|
|
} else {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
#if EFI_ENGINE_CONTROL
|
|
/**
|
|
* @return Duration of fuel injection while craning
|
|
*/
|
|
floatms_t getCrankingFuel(float baseFuel DECLARE_ENGINE_PARAMETER_SUFFIX) {
|
|
return getCrankingFuel3(baseFuel, engine->rpmCalculator.getRevolutionCounterSinceStart() PASS_ENGINE_PARAMETER_SUFFIX);
|
|
}
|
|
|
|
float getStandardAirCharge(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
|
|
float totalDisplacement = CONFIG(specs.displacement);
|
|
float cylDisplacement = totalDisplacement / CONFIG(specs.cylindersCount);
|
|
|
|
// Calculation of 100% VE air mass in g/cyl - 1 cylinder filling at 1.204/L
|
|
// 101.325kpa, 20C
|
|
return idealGasLaw(cylDisplacement, 101.325f, 273.15f + 20.0f);
|
|
}
|
|
|
|
#endif
|
|
|
|
float getFuelRate(floatms_t totalInjDuration, efitick_t timePeriod DECLARE_ENGINE_PARAMETER_SUFFIX) {
|
|
if (timePeriod <= 0.0f)
|
|
return 0.0f;
|
|
float timePeriodMs = (float)NT2US(timePeriod) / 1000.0f;
|
|
float fuelRate = totalInjDuration / timePeriodMs;
|
|
const float cc_min_to_L_h = 60.0f / 1000.0f;
|
|
return fuelRate * CONFIG(injector.flow) * cc_min_to_L_h;
|
|
}
|
|
|
|
#endif
|