custom-board-bundle-sample-.../firmware/controllers/trigger/trigger_central.cpp

696 lines
24 KiB
C++

/*
* @file trigger_central.cpp
* Here we have a bunch of higher-level methods which are not directly related to actual signal decoding
*
* @date Feb 23, 2014
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#include "global.h"
#include "os_access.h"
#include "trigger_central.h"
#include "trigger_decoder.h"
#include "main_trigger_callback.h"
#include "engine_configuration.h"
#include "listener_array.h"
#include "data_buffer.h"
#include "pwm_generator_logic.h"
#include "tooth_logger.h"
#include "settings.h"
#include "engine_math.h"
#include "local_version_holder.h"
#include "trigger_simulator.h"
#include "rpm_calculator.h"
#include "perf_trace.h"
#if EFI_PROD_CODE
#include "pin_repository.h"
#endif /* EFI_PROD_CODE */
#if EFI_TUNER_STUDIO
#include "tunerstudio.h"
#endif /* EFI_TUNER_STUDIO */
#if EFI_ENGINE_SNIFFER
#include "engine_sniffer.h"
WaveChart waveChart;
#endif /* EFI_ENGINE_SNIFFER */
trigger_central_s::trigger_central_s() : hwEventCounters() {
}
TriggerCentral::TriggerCentral() : trigger_central_s() {
clearCallbacks(&triggerListeneres);
triggerState.resetTriggerState();
noiseFilter.resetAccumSignalData();
}
void TriggerNoiseFilter::resetAccumSignalData() {
memset(lastSignalTimes, 0xff, sizeof(lastSignalTimes)); // = -1
memset(accumSignalPeriods, 0, sizeof(accumSignalPeriods));
memset(accumSignalPrevPeriods, 0, sizeof(accumSignalPrevPeriods));
}
int TriggerCentral::getHwEventCounter(int index) const {
return hwEventCounters[index];
}
#if EFI_SHAFT_POSITION_INPUT
EXTERN_ENGINE;
static Logging *logger;
void TriggerCentral::addEventListener(ShaftPositionListener listener, const char *name, Engine *engine) {
print("registerCkpListener: %s\r\n", name);
triggerListeneres.registerCallback((VoidInt)(void*)listener, engine);
}
angle_t TriggerCentral::getVVTPosition() {
return vvtPosition;
}
/**
* @brief Adds a trigger event listener
*
* Trigger event listener would be invoked on each trigger event. For example, for a 60/2 wheel
* that would be 116 events: 58 SHAFT_PRIMARY_RISING and 58 SHAFT_PRIMARY_FALLING events.
*/
void addTriggerEventListener(ShaftPositionListener listener, const char *name, Engine *engine) {
engine->triggerCentral.addEventListener(listener, name, engine);
}
#define miataNb2VVTRatioFrom (8.50 * 0.75)
#define miataNb2VVTRatioTo (14)
#define miataNbIndex (0)
void hwHandleVvtCamSignal(trigger_value_e front, efitick_t nowNt DECLARE_ENGINE_PARAMETER_SUFFIX) {
TriggerCentral *tc = &engine->triggerCentral;
if (front == TV_RISE) {
tc->vvtEventRiseCounter++;
} else {
tc->vvtEventFallCounter++;
}
addEngineSnifferEvent(PROTOCOL_VVT_NAME, front == TV_RISE ? PROTOCOL_ES_UP : PROTOCOL_ES_DOWN);
if (CONFIG(vvtCamSensorUseRise) ^ (front != TV_FALL)) {
return;
}
floatus_t oneDegreeUs = engine->rpmCalculator.oneDegreeUs;
if (cisnan(oneDegreeUs)) {
// we are here if we are getting VVT position signals while engine is not running
// for example if crank position sensor is broken :)
return;
}
tc->vvtCamCounter++;
if (engineConfiguration->vvtMode == MIATA_NB2) {
uint32_t currentDuration = nowNt - tc->previousVvtCamTime;
float ratio = ((float) currentDuration) / tc->previousVvtCamDuration;
tc->previousVvtCamDuration = currentDuration;
tc->previousVvtCamTime = nowNt;
if (engineConfiguration->verboseTriggerSynchDetails) {
scheduleMsg(logger, "vvt ratio %.2f", ratio);
}
if (ratio < miataNb2VVTRatioFrom || ratio > miataNb2VVTRatioTo) {
return;
}
if (engineConfiguration->verboseTriggerSynchDetails) {
scheduleMsg(logger, "looks good: vvt ratio %.2f", ratio);
}
if (engineConfiguration->debugMode == DBG_VVT) {
#if EFI_TUNER_STUDIO
tsOutputChannels.debugIntField1++;
#endif /* EFI_TUNER_STUDIO */
}
}
efitick_t offsetNt = nowNt - tc->timeAtVirtualZeroNt;
angle_t vvtPosition = NT2US(offsetNt) / oneDegreeUs;
// convert engine cycle angle into trigger cycle angle
vvtPosition -= tdcPosition();
fixAngle(vvtPosition, "vvtPosition", CUSTOM_ERR_6558);
tc->vvtPosition = (engineConfiguration->vvtDisplayInverted ? -vvtPosition : vvtPosition) + engineConfiguration->vvtOffset;
if (engineConfiguration->vvtMode == VVT_FIRST_HALF) {
bool isEven = tc->triggerState.isEvenRevolution();
if (!isEven) {
/**
* we are here if we've detected the cam sensor within the wrong crank phase
* let's increase the trigger event counter, that would adjust the state of
* virtual crank-based trigger
*/
tc->triggerState.incrementTotalEventCounter();
if (engineConfiguration->debugMode == DBG_VVT) {
#if EFI_TUNER_STUDIO
tsOutputChannels.debugIntField1++;
#endif /* EFI_TUNER_STUDIO */
}
}
} else if (engineConfiguration->vvtMode == VVT_SECOND_HALF) {
bool isEven = tc->triggerState.isEvenRevolution();
if (isEven) {
// see above comment
tc->triggerState.incrementTotalEventCounter();
if (engineConfiguration->debugMode == DBG_VVT) {
#if EFI_TUNER_STUDIO
tsOutputChannels.debugIntField1++;
#endif /* EFI_TUNER_STUDIO */
}
}
} else if (engineConfiguration->vvtMode == MIATA_NB2) {
/**
* NB2 is a symmetrical crank, there are four phases total
*/
while (tc->triggerState.getTotalRevolutionCounter() % 4 != miataNbIndex) {
tc->triggerState.incrementTotalEventCounter();
}
}
}
#if EFI_PROD_CODE || EFI_SIMULATOR
int triggerReentraint = 0;
int maxTriggerReentraint = 0;
uint32_t triggerDuration;
uint32_t triggerMaxDuration = 0;
void hwHandleShaftSignal(trigger_event_e signal, efitick_t timestamp) {
ScopePerf perf(PE::HandleShaftSignal, static_cast<uint8_t>(signal));
#if EFI_TOOTH_LOGGER
// Log to the Tunerstudio tooth logger
// We want to do this before anything else as we
// actually want to capture any noise/jitter that may be occurring
LogTriggerTooth(signal, timestamp);
#endif /* EFI_TOOTH_LOGGER */
// for effective noise filtering, we need both signal edges,
// so we pass them to handleShaftSignal() and defer this test
if (!CONFIG(useNoiselessTriggerDecoder)) {
if (!isUsefulSignal(signal PASS_CONFIG_PARAMETER_SUFFIX)) {
return;
}
}
uint32_t triggerHandlerEntryTime = getTimeNowLowerNt();
if (triggerReentraint > maxTriggerReentraint)
maxTriggerReentraint = triggerReentraint;
triggerReentraint++;
efiAssertVoid(CUSTOM_ERR_6636, getCurrentRemainingStack() > 128, "lowstck#8");
engine->triggerCentral.handleShaftSignal(signal, timestamp PASS_ENGINE_PARAMETER_SUFFIX);
triggerReentraint--;
triggerDuration = getTimeNowLowerNt() - triggerHandlerEntryTime;
if (triggerDuration > triggerMaxDuration)
triggerMaxDuration = triggerDuration;
}
#endif /* EFI_PROD_CODE */
void TriggerCentral::resetCounters() {
memset(hwEventCounters, 0, sizeof(hwEventCounters));
}
static char shaft_signal_msg_index[15];
static const bool isUpEvent[6] = { false, true, false, true, false, true };
static const char *eventId[6] = { PROTOCOL_CRANK1, PROTOCOL_CRANK1, PROTOCOL_CRANK2, PROTOCOL_CRANK2, PROTOCOL_CRANK3, PROTOCOL_CRANK3 };
static ALWAYS_INLINE void reportEventToWaveChart(trigger_event_e ckpSignalType, int index DECLARE_ENGINE_PARAMETER_SUFFIX) {
if (!ENGINE(isEngineChartEnabled)) { // this is here just as a shortcut so that we avoid engine sniffer as soon as possible
return; // engineSnifferRpmThreshold is accounted for inside ENGINE(isEngineChartEnabled)
}
itoa10(&shaft_signal_msg_index[2], index);
bool isUp = isUpEvent[(int) ckpSignalType];
shaft_signal_msg_index[0] = isUp ? 'u' : 'd';
addEngineSnifferEvent(eventId[(int )ckpSignalType], (char* ) shaft_signal_msg_index);
if (engineConfiguration->useOnlyRisingEdgeForTrigger) {
// let's add the opposite event right away
shaft_signal_msg_index[0] = isUp ? 'd' : 'u';
addEngineSnifferEvent(eventId[(int )ckpSignalType], (char* ) shaft_signal_msg_index);
}
}
/**
* This is used to filter noise spikes (interference) in trigger signal. See
* The basic idea is to use not just edges, but the average amount of time the signal stays in '0' or '1'.
* So we update 'accumulated periods' to track where the signal is.
* And then compare between the current period and previous, with some tolerance (allowing for the wheel speed change).
* @return true if the signal is passed through.
*/
bool TriggerNoiseFilter::noiseFilter(efitick_t nowNt,
TriggerState * triggerState,
trigger_event_e signal DECLARE_ENGINE_PARAMETER_SUFFIX) {
// todo: find a better place for these defs
static const trigger_event_e opposite[6] = { SHAFT_PRIMARY_RISING, SHAFT_PRIMARY_FALLING, SHAFT_SECONDARY_RISING, SHAFT_SECONDARY_FALLING,
SHAFT_3RD_RISING, SHAFT_3RD_FALLING };
static const trigger_wheel_e triggerIdx[6] = { T_PRIMARY, T_PRIMARY, T_SECONDARY, T_SECONDARY, T_CHANNEL_3, T_CHANNEL_3 };
// we process all trigger channels independently
trigger_wheel_e ti = triggerIdx[signal];
// falling is opposite to rising, and vise versa
trigger_event_e os = opposite[signal];
// todo: currently only primary channel is filtered, because there are some weird trigger types on other channels
if (ti != T_PRIMARY)
return true;
// update period accumulator: for rising signal, we update '0' accumulator, and for falling - '1'
if (lastSignalTimes[signal] != -1)
accumSignalPeriods[signal] += nowNt - lastSignalTimes[signal];
// save current time for this trigger channel
lastSignalTimes[signal] = nowNt;
// now we want to compare current accumulated period to the stored one
efitick_t currentPeriod = accumSignalPeriods[signal];
// the trick is to compare between different
efitick_t allowedPeriod = accumSignalPrevPeriods[os];
// but first check if we're expecting a gap
bool isGapExpected = TRIGGER_WAVEFORM(isSynchronizationNeeded) && triggerState->shaft_is_synchronized &&
(triggerState->currentCycle.eventCount[ti] + 1) == TRIGGER_WAVEFORM(expectedEventCount[ti]);
if (isGapExpected) {
// usually we need to extend the period for gaps, based on the trigger info
allowedPeriod *= TRIGGER_WAVEFORM(syncRatioAvg);
}
// also we need some margin for rapidly changing trigger-wheel speed,
// that's why we expect the period to be no less than 2/3 of the previous period (this is just an empirical 'magic' coef.)
efitick_t minAllowedPeriod = 2 * allowedPeriod / 3;
// but no longer than 5/4 of the previous 'normal' period
efitick_t maxAllowedPeriod = 5 * allowedPeriod / 4;
// above all, check if the signal comes not too early
if (currentPeriod >= minAllowedPeriod) {
// now we store this period as a reference for the next time,
// BUT we store only 'normal' periods, and ignore too long periods (i.e. gaps)
if (!isGapExpected && (maxAllowedPeriod == 0 || currentPeriod <= maxAllowedPeriod)) {
accumSignalPrevPeriods[signal] = currentPeriod;
}
// reset accumulator
accumSignalPeriods[signal] = 0;
return true;
}
// all premature or extra-long events are ignored - treated as interference
return false;
}
void TriggerCentral::handleShaftSignal(trigger_event_e signal, efitick_t timestamp DECLARE_ENGINE_PARAMETER_SUFFIX) {
efiAssertVoid(CUSTOM_CONF_NULL, engine!=NULL, "configuration");
if (triggerShape.shapeDefinitionError) {
// trigger is broken, we cannot do anything here
warning(CUSTOM_ERR_UNEXPECTED_SHAFT_EVENT, "Shaft event while trigger is mis-configured");
// magic value to indicate a problem
hwEventCounters[0] = 155;
return;
}
// This code gathers some statistics on signals and compares accumulated periods to filter interference
if (CONFIG(useNoiselessTriggerDecoder)) {
if (!noiseFilter.noiseFilter(timestamp, &triggerState, signal PASS_ENGINE_PARAMETER_SUFFIX)) {
return;
}
// moved here from hwHandleShaftSignal()
if (!isUsefulSignal(signal PASS_CONFIG_PARAMETER_SUFFIX)) {
return;
}
}
engine->onTriggerSignalEvent(timestamp);
int eventIndex = (int) signal;
efiAssertVoid(CUSTOM_TRIGGER_EVENT_TYPE, eventIndex >= 0 && eventIndex < HW_EVENT_TYPES, "signal type");
hwEventCounters[eventIndex]++;
/**
* This invocation changes the state of triggerState
*/
triggerState.decodeTriggerEvent(&triggerShape,
nullptr, engine, signal, timestamp PASS_CONFIG_PARAMETER_SUFFIX);
/**
* If we only have a crank position sensor with four stroke, here we are extending crank revolutions with a 360 degree
* cycle into a four stroke, 720 degrees cycle.
*/
int triggerIndexForListeners;
operation_mode_e operationMode = engine->getOperationMode(PASS_ENGINE_PARAMETER_SIGNATURE);
if (operationMode == FOUR_STROKE_CAM_SENSOR || operationMode == TWO_STROKE) {
// That's easy - trigger cycle matches engine cycle
triggerIndexForListeners = triggerState.getCurrentIndex();
} else {
int crankDivider = operationMode == FOUR_STROKE_CRANK_SENSOR ? 2 : SYMMETRICAL_CRANK_SENSOR_DIVIDER;
int crankInternalIndex = triggerState.getTotalRevolutionCounter() % crankDivider;
triggerIndexForListeners = triggerState.getCurrentIndex() + (crankInternalIndex * getTriggerSize());
}
if (triggerIndexForListeners == 0) {
timeAtVirtualZeroNt = timestamp;
}
reportEventToWaveChart(signal, triggerIndexForListeners PASS_ENGINE_PARAMETER_SUFFIX);
if (!triggerState.shaft_is_synchronized) {
// we should not propagate event if we do not know where we are
return;
}
if (triggerState.isValidIndex(&ENGINE(triggerCentral.triggerShape))) {
ScopePerf perf(PE::ShaftPositionListeners);
#if TRIGGER_EXTREME_LOGGING
scheduleMsg(logger, "trigger %d %d %d", triggerIndexForListeners, getRevolutionCounter(), (int)getTimeNowUs());
#endif /* FUEL_MATH_EXTREME_LOGGING */
/**
* Here we invoke all the listeners - the main engine control logic is inside these listeners
*/
for (int i = 0; i < triggerListeneres.currentListenersCount; i++) {
ShaftPositionListener listener = (ShaftPositionListener) (void*) triggerListeneres.callbacks[i];
(listener)(signal, triggerIndexForListeners, timestamp PASS_ENGINE_PARAMETER_SUFFIX);
}
}
}
EXTERN_ENGINE;
static void triggerShapeInfo(void) {
#if EFI_PROD_CODE || EFI_SIMULATOR
TriggerWaveform *s = &engine->triggerCentral.triggerShape;
scheduleMsg(logger, "useRise=%s", boolToString(TRIGGER_WAVEFORM(useRiseEdge)));
scheduleMsg(logger, "gap from %.2f to %.2f", TRIGGER_WAVEFORM(syncronizationRatioFrom[0]), TRIGGER_WAVEFORM(syncronizationRatioTo[0]));
for (int i = 0; i < s->getSize(); i++) {
scheduleMsg(logger, "event %d %.2f", i, s->eventAngles[i]);
}
#endif
}
#if EFI_UNIT_TEST
#include <stdlib.h>
#define TRIGGERS_FILE_NAME "triggers.txt"
/**
* This is used to generate trigger info which is later used by TriggerImage java class
* to generate images for documentation
*/
extern bool printTriggerDebug;
void printAllTriggers() {
FILE * fp = fopen (TRIGGERS_FILE_NAME, "w+");
fprintf(fp, "# Generated by rusEfi unit test suite\n");
fprintf(fp, "# This file is used by TriggerImage tool\n");
fprintf(fp, "# See 'gen_trigger_images.bat'\n");
//printTriggerDebug = true;
for (int triggerId = 1; triggerId < TT_UNUSED; triggerId++) {
trigger_type_e tt = (trigger_type_e) triggerId;
printf("Exporting %s\r\n", getTrigger_type_e(tt));
persistent_config_s pc;
Engine e(&pc);
Engine *engine = &e;
persistent_config_s *config = &pc;
engine_configuration_s *engineConfiguration = &pc.engineConfiguration;
engineConfiguration->trigger.type = tt;
engineConfiguration->ambiguousOperationMode = FOUR_STROKE_CAM_SENSOR;
TriggerWaveform *s = &engine->triggerCentral.triggerShape;
engine->initializeTriggerWaveform(NULL PASS_ENGINE_PARAMETER_SUFFIX);
if (s->shapeDefinitionError) {
printf("Trigger error %d\r\n", triggerId);
exit(-1);
}
fprintf(fp, "TRIGGERTYPE %d %d %s %.2f\n", triggerId, s->getLength(), getTrigger_type_e(tt), s->tdcPosition);
fprintf(fp, "# duty %.2f %.2f\n", s->expectedDutyCycle[0], s->expectedDutyCycle[1]);
for (int i = 0; i < s->getLength(); i++) {
int triggerDefinitionCoordinate = (s->getTriggerWaveformSynchPointIndex() + i) % s->getSize();
fprintf(fp, "event %d %d %.2f\n", i, s->triggerSignals[triggerDefinitionCoordinate], s->eventAngles[i]);
}
}
fclose(fp);
printf("All triggers exported to %s\n", TRIGGERS_FILE_NAME);
}
#endif
#if EFI_PROD_CODE
extern PwmConfig triggerSignal;
#endif /* #if EFI_PROD_CODE */
extern uint32_t hipLastExecutionCount;
extern uint32_t hwSetTimerDuration;
extern uint32_t maxLockedDuration;
extern uint32_t maxEventCallbackDuration;
extern int perSecondIrqDuration;
extern int perSecondIrqCounter;
#if EFI_PROD_CODE
extern uint32_t maxPrecisionCallbackDuration;
#endif /* EFI_PROD_CODE */
extern uint32_t maxSchedulingPrecisionLoss;
extern uint32_t *cyccnt;
void resetMaxValues() {
#if EFI_PROD_CODE || EFI_SIMULATOR
maxEventCallbackDuration = triggerMaxDuration = 0;
#endif /* EFI_PROD_CODE || EFI_SIMULATOR */
maxSchedulingPrecisionLoss = 0;
#if EFI_CLOCK_LOCKS
maxLockedDuration = 0;
#endif /* EFI_CLOCK_LOCKS */
#if EFI_PROD_CODE
maxPrecisionCallbackDuration = 0;
#endif /* EFI_PROD_CODE */
}
#if HAL_USE_ICU == TRUE
extern int icuRisingCallbackCounter;
extern int icuFallingCallbackCounter;
#endif /* HAL_USE_ICU */
void triggerInfo(void) {
#if EFI_PROD_CODE || EFI_SIMULATOR
TriggerWaveform *ts = &engine->triggerCentral.triggerShape;
#if (HAL_TRIGGER_USE_PAL == TRUE) && (PAL_USE_CALLBACKS == TRUE)
scheduleMsg(logger, "trigger PAL mode %d", engine->hwTriggerInputEnabled);
#else
#if HAL_USE_ICU == TRUE
scheduleMsg(logger, "trigger ICU hw: %d %d %d", icuRisingCallbackCounter, icuFallingCallbackCounter, engine->hwTriggerInputEnabled);
#endif /* HAL_USE_ICU */
#endif /* HAL_TRIGGER_USE_PAL */
scheduleMsg(logger, "Template %s (%d) trigger %s (%d) useRiseEdge=%s onlyFront=%s useOnlyFirstChannel=%s tdcOffset=%.2f",
getConfigurationName(engineConfiguration->engineType), engineConfiguration->engineType,
getTrigger_type_e(engineConfiguration->trigger.type), engineConfiguration->trigger.type,
boolToString(TRIGGER_WAVEFORM(useRiseEdge)), boolToString(engineConfiguration->useOnlyRisingEdgeForTrigger),
boolToString(engineConfiguration->trigger.useOnlyFirstChannel), TRIGGER_WAVEFORM(tdcPosition));
if (engineConfiguration->trigger.type == TT_TOOTHED_WHEEL) {
scheduleMsg(logger, "total %d/skipped %d", engineConfiguration->trigger.customTotalToothCount,
engineConfiguration->trigger.customSkippedToothCount);
}
scheduleMsg(logger, "trigger#1 event counters up=%d/down=%d", engine->triggerCentral.getHwEventCounter(0),
engine->triggerCentral.getHwEventCounter(1));
if (ts->needSecondTriggerInput) {
scheduleMsg(logger, "trigger#2 event counters up=%d/down=%d", engine->triggerCentral.getHwEventCounter(2),
engine->triggerCentral.getHwEventCounter(3));
}
scheduleMsg(logger, "expected cycle events %d/%d/%d", TRIGGER_WAVEFORM(expectedEventCount[0]),
TRIGGER_WAVEFORM(expectedEventCount[1]), TRIGGER_WAVEFORM(expectedEventCount[2]));
scheduleMsg(logger, "trigger type=%d/need2ndChannel=%s", engineConfiguration->trigger.type,
boolToString(TRIGGER_WAVEFORM(needSecondTriggerInput)));
scheduleMsg(logger, "expected duty #0=%.2f/#1=%.2f", TRIGGER_WAVEFORM(expectedDutyCycle[0]), TRIGGER_WAVEFORM(expectedDutyCycle[1]));
scheduleMsg(logger, "synchronizationNeeded=%s/isError=%s/total errors=%d ord_err=%d/total revolutions=%d/self=%s",
boolToString(ts->isSynchronizationNeeded),
boolToString(isTriggerDecoderError()), engine->triggerCentral.triggerState.totalTriggerErrorCounter,
engine->triggerCentral.triggerState.orderingErrorCounter, engine->triggerCentral.triggerState.getTotalRevolutionCounter(),
boolToString(engineConfiguration->directSelfStimulation));
if (TRIGGER_WAVEFORM(isSynchronizationNeeded)) {
scheduleMsg(logger, "gap from %.2f to %.2f", TRIGGER_WAVEFORM(syncronizationRatioFrom[0]), TRIGGER_WAVEFORM(syncronizationRatioTo[0]));
}
#endif /* EFI_PROD_CODE || EFI_SIMULATOR */
#if EFI_PROD_CODE
if (HAVE_CAM_INPUT()) {
scheduleMsg(logger, "VVT input: %s mode %s", hwPortname(engineConfiguration->camInputs[0]),
getVvt_mode_e(engineConfiguration->vvtMode));
scheduleMsg(logger, "VVT event counters: %d/%d", engine->triggerCentral.vvtEventRiseCounter, engine->triggerCentral.vvtEventFallCounter);
}
scheduleMsg(logger, "primary trigger input: %s", hwPortname(CONFIG(triggerInputPins)[0]));
scheduleMsg(logger, "primary trigger simulator: %s %s freq=%d",
hwPortname(CONFIG(triggerSimulatorPins)[0]),
getPin_output_mode_e(CONFIG(triggerSimulatorPinModes)[0]),
CONFIG(triggerSimulatorFrequency));
if (ts->needSecondTriggerInput) {
scheduleMsg(logger, "secondary trigger input: %s", hwPortname(CONFIG(triggerInputPins)[1]));
#if EFI_EMULATE_POSITION_SENSORS
scheduleMsg(logger, "secondary trigger simulator: %s %s phase=%d",
hwPortname(CONFIG(triggerSimulatorPins)[1]),
getPin_output_mode_e(CONFIG(triggerSimulatorPinModes)[1]), triggerSignal.safe.phaseIndex);
#endif /* EFI_EMULATE_POSITION_SENSORS */
}
// scheduleMsg(logger, "3rd trigger simulator: %s %s", hwPortname(CONFIG(triggerSimulatorPins)[2]),
// getPin_output_mode_e(CONFIG(triggerSimulatorPinModes)[2]));
scheduleMsg(logger, "trigger error extra LED: %s %s", hwPortname(CONFIG(triggerErrorPin)),
getPin_output_mode_e(CONFIG(triggerErrorPinMode)));
scheduleMsg(logger, "primary logic input: %s", hwPortname(CONFIG(logicAnalyzerPins)[0]));
scheduleMsg(logger, "secondary logic input: %s", hwPortname(CONFIG(logicAnalyzerPins)[1]));
scheduleMsg(logger, "maxSchedulingPrecisionLoss=%d", maxSchedulingPrecisionLoss);
#if EFI_CLOCK_LOCKS
scheduleMsg(logger, "maxLockedDuration=%d / maxTriggerReentraint=%d", maxLockedDuration, maxTriggerReentraint);
scheduleMsg(logger, "perSecondIrqDuration=%d ticks / perSecondIrqCounter=%d", perSecondIrqDuration, perSecondIrqCounter);
scheduleMsg(logger, "IRQ CPU utilization %f%%", perSecondIrqDuration / (float)CORE_CLOCK * 100);
#endif /* EFI_CLOCK_LOCKS */
scheduleMsg(logger, "maxEventCallbackDuration=%d", maxEventCallbackDuration);
#if EFI_HIP_9011
scheduleMsg(logger, "hipLastExecutionCount=%d", hipLastExecutionCount);
#endif /* EFI_HIP_9011 */
scheduleMsg(logger, "hwSetTimerDuration=%d", hwSetTimerDuration);
scheduleMsg(logger, "totalTriggerHandlerMaxTime=%d", triggerMaxDuration);
scheduleMsg(logger, "maxPrecisionCallbackDuration=%d", maxPrecisionCallbackDuration);
resetMaxValues();
#endif /* EFI_PROD_CODE */
}
static void resetRunningTriggerCounters() {
#if !EFI_UNIT_TEST
engine->triggerCentral.resetCounters();
triggerInfo();
#endif
}
void onConfigurationChangeTriggerCallback(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
bool changed = false;
for (int i = 0; i < CAM_INPUTS_COUNT; i++) {
changed |= isConfigurationChanged(camInputs[i]);
}
changed |=
isConfigurationChanged(trigger.type) ||
isConfigurationChanged(ambiguousOperationMode) ||
isConfigurationChanged(useOnlyRisingEdgeForTrigger) ||
isConfigurationChanged(globalTriggerAngleOffset) ||
isConfigurationChanged(trigger.customTotalToothCount) ||
isConfigurationChanged(trigger.customSkippedToothCount) ||
isConfigurationChanged(triggerInputPins[0]) ||
isConfigurationChanged(triggerInputPins[1]) ||
isConfigurationChanged(triggerInputPins[2]) ||
isConfigurationChanged(vvtMode) ||
isConfigurationChanged(vvtCamSensorUseRise) ||
isConfigurationChanged(vvtOffset) ||
isConfigurationChanged(vvtDisplayInverted);
if (changed) {
assertEngineReference();
#if EFI_ENGINE_CONTROL
ENGINE(initializeTriggerWaveform(logger PASS_ENGINE_PARAMETER_SUFFIX));
engine->triggerCentral.noiseFilter.resetAccumSignalData();
#endif
}
#if EFI_DEFAILED_LOGGING
scheduleMsg(logger, "isTriggerConfigChanged=%d", engine->isTriggerConfigChanged);
#endif /* EFI_DEFAILED_LOGGING */
// we do not want to miss two updates in a row
engine->isTriggerConfigChanged = engine->isTriggerConfigChanged || changed;
}
/**
* @returns true if configuration just changed, and if that change has affected trigger
*/
bool checkIfTriggerConfigChanged(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
bool result = engine->triggerVersion.isOld(engine->getGlobalConfigurationVersion()) && engine->isTriggerConfigChanged;
engine->isTriggerConfigChanged = false; // whoever has called the method is supposed to react to changes
return result;
}
bool isTriggerConfigChanged(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
return engine->isTriggerConfigChanged;
}
void initTriggerCentral(Logging *sharedLogger) {
logger = sharedLogger;
strcpy((char*) shaft_signal_msg_index, "x_");
#if EFI_ENGINE_SNIFFER
initWaveChart(&waveChart);
#endif /* EFI_ENGINE_SNIFFER */
#if EFI_PROD_CODE || EFI_SIMULATOR
addConsoleAction(CMD_TRIGGERINFO, triggerInfo);
addConsoleAction("trigger_shape_info", triggerShapeInfo);
addConsoleAction("reset_trigger", resetRunningTriggerCounters);
#endif
}
#endif