240 lines
6.6 KiB
C++
240 lines
6.6 KiB
C++
/**
|
|
* @file rpm_calculator.cpp
|
|
* @brief RPM calculator
|
|
*
|
|
* Here we listen to position sensor events in order to figure our if engine is currently running or not.
|
|
* Actual getRpm() is calculated once per crankshaft revolution, based on the amount of time passed
|
|
* since the start of previous shaft revolution.
|
|
*
|
|
* @date Jan 1, 2013
|
|
* @author Andrey Belomutskiy, (c) 2012-2014
|
|
*/
|
|
|
|
#include "main.h"
|
|
|
|
#include "rpm_calculator.h"
|
|
|
|
#if EFI_WAVE_CHART
|
|
#include "wave_chart.h"
|
|
extern WaveChart waveChart;
|
|
#endif /* EFI_WAVE_CHART */
|
|
|
|
#if EFI_SHAFT_POSITION_INPUT || defined(__DOXYGEN__)
|
|
|
|
#include "trigger_central.h"
|
|
#include "engine_configuration.h"
|
|
#include "ec2.h"
|
|
#include "engine_math.h"
|
|
#if EFI_PROD_CODE
|
|
#include "rfiutil.h"
|
|
#include "engine.h"
|
|
#endif
|
|
|
|
#if EFI_ANALOG_CHART
|
|
#include "analog_chart.h"
|
|
#endif /* EFI_PROD_CODE */
|
|
|
|
#define UNREALISTIC_RPM 30000
|
|
|
|
#define TOP_DEAD_CENTER_MESSAGE "r"
|
|
|
|
/**
|
|
* WARNING: this is a heavy method because 'getRpm()' is relatively heavy
|
|
*
|
|
* @return -1 in case of isNoisySignal(), current RPM otherwise
|
|
*/
|
|
int getRpmE(Engine *engine) {
|
|
efiAssert(engine->rpmCalculator!=NULL, "rpmCalculator not assigned", -1);
|
|
return engine->rpmCalculator->rpm();
|
|
}
|
|
|
|
extern engine_configuration_s *engineConfiguration;
|
|
extern engine_configuration2_s *engineConfiguration2;
|
|
|
|
#if EFI_PROD_CODE || EFI_SIMULATOR
|
|
static Logging logger;
|
|
extern Engine engine;
|
|
#endif
|
|
|
|
RpmCalculator::RpmCalculator() {
|
|
rpmValue = 0;
|
|
|
|
// we need this initial to have not_running at first invocation
|
|
lastRpmEventTimeUs = (uint64_t) -10 * US_PER_SECOND;
|
|
}
|
|
|
|
/**
|
|
* @return true if there was a full shaft revolution within the last second
|
|
*/
|
|
bool RpmCalculator::isRunning(void) {
|
|
uint64_t nowUs = getTimeNowUs();
|
|
return nowUs - lastRpmEventTimeUs < US_PER_SECOND;
|
|
}
|
|
|
|
// todo: migrate to float return result or add a float verion? this would have with calculations
|
|
// todo: add a version which does not check time & saves time? need to profile
|
|
int RpmCalculator::rpm(void) {
|
|
if (!isRunning()) {
|
|
return 0;
|
|
}
|
|
return rpmValue;
|
|
}
|
|
|
|
bool isValidRpm(int rpm) {
|
|
return rpm > 0 && rpm < UNREALISTIC_RPM;
|
|
}
|
|
|
|
#if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__)
|
|
/**
|
|
* WARNING: this is a heavy method because 'getRpm()' is relatively heavy
|
|
*/
|
|
bool isCranking(void) {
|
|
int rpm = getRpm();
|
|
return isCrankingR(rpm);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* @brief Shaft position callback used by RPM calculation logic.
|
|
*
|
|
* This callback should always be the first of trigger callbacks because other callbacks depend of values
|
|
* updated here.
|
|
* This callback is invoked on interrupt thread.
|
|
*/
|
|
void rpmShaftPositionCallback(trigger_event_e ckpSignalType, uint32_t index, RpmCalculator *rpmState) {
|
|
uint64_t nowUs = getTimeNowUs();
|
|
|
|
if (index != 0) {
|
|
#if EFI_ANALOG_CHART || defined(__DOXYGEN__)
|
|
if (engineConfiguration->analogChartMode == AC_TRIGGER)
|
|
acAddData(getCrankshaftAngle(nowUs), 1000 * ckpSignalType + index);
|
|
#endif
|
|
return;
|
|
}
|
|
rpmState->revolutionCounter++;
|
|
|
|
|
|
bool hadRpmRecently = rpmState->isRunning();
|
|
|
|
if (hadRpmRecently) {
|
|
uint64_t diff = nowUs - rpmState->lastRpmEventTimeUs;
|
|
/**
|
|
* Four stroke cycle is two crankshaft revolutions
|
|
*
|
|
* We always do '* 2' because the event signal is already adjusted to 'per engine cycle'
|
|
* and each revolution of crankshaft consists of two engine cycles revolutions
|
|
*
|
|
*/
|
|
if (diff == 0) {
|
|
rpmState->rpmValue = NOISY_RPM;
|
|
} else {
|
|
int rpm = (int) (60 * US_PER_SECOND * 2 / diff);
|
|
rpmState->rpmValue = rpm > UNREALISTIC_RPM ? NOISY_RPM : rpm;
|
|
}
|
|
}
|
|
rpmState->lastRpmEventTimeUs = nowUs;
|
|
#if EFI_ANALOG_CHART || defined(__DOXYGEN__)
|
|
if (engineConfiguration->analogChartMode == AC_TRIGGER)
|
|
acAddData(getCrankshaftAngle(nowUs), index);
|
|
#endif
|
|
}
|
|
|
|
static scheduling_s tdcScheduler[2];
|
|
|
|
static char rpmBuffer[10];
|
|
|
|
#if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__)
|
|
/**
|
|
* This callback has nothing to do with actual engine control, it just sends a Top Dead Center mark to the dev console
|
|
* digital sniffer.
|
|
*/
|
|
static void onTdcCallback(void) {
|
|
itoa10(rpmBuffer, getRpm());
|
|
addWaveChartEvent(TOP_DEAD_CENTER_MESSAGE, (char*) rpmBuffer, "");
|
|
}
|
|
|
|
/**
|
|
* This trigger callback schedules the actual physical TDC callback in relation to trigger synchronization point.
|
|
*/
|
|
static void tdcMarkCallback(trigger_event_e ckpSignalType, uint32_t index0, void *arg) {
|
|
(void)arg;
|
|
(void)ckpSignalType;
|
|
bool isTriggerSynchronizationPoint = index0 == 0;
|
|
if (isTriggerSynchronizationPoint) {
|
|
int revIndex2 = getRevolutionCounter() % 2;
|
|
// todo: use event-based scheduling, not just time-based scheduling
|
|
scheduleByAngle(&tdcScheduler[revIndex2], engineConfiguration->globalTriggerAngleOffset,
|
|
(schfunc_t) onTdcCallback, NULL);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static RpmCalculator rpmState;
|
|
|
|
uint64_t getLastRpmEventTime(void) {
|
|
return rpmState.lastRpmEventTimeUs;
|
|
}
|
|
|
|
int getRevolutionCounter(void) {
|
|
return rpmState.revolutionCounter;
|
|
}
|
|
|
|
/**
|
|
* @return Current crankshaft angle, 0 to 720 for four-stroke
|
|
*/
|
|
float getCrankshaftAngle(uint64_t timeUs) {
|
|
uint64_t timeSinceZeroAngleUs = timeUs - rpmState.lastRpmEventTimeUs;
|
|
|
|
/**
|
|
* even if we use 'getOneDegreeTimeUs' macros here, it looks like the
|
|
* compiler is not smart enough to figure out that "A / ( B / C)" could be optimized into
|
|
* "A * C / B" in order to replace a slower division with a faster multiplication.
|
|
*/
|
|
return timeSinceZeroAngleUs / getOneDegreeTimeUs(rpmState.rpm());
|
|
}
|
|
|
|
void initRpmCalculator(void) {
|
|
#if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__)
|
|
initLogging(&logger, "rpm calc");
|
|
engine.rpmCalculator = &rpmState;
|
|
|
|
tdcScheduler[0].name = "tdc0";
|
|
tdcScheduler[1].name = "tdc1";
|
|
addTriggerEventListener(&tdcMarkCallback, "chart TDC mark", NULL);
|
|
#endif
|
|
|
|
addTriggerEventListener((ShaftPositionListener) &rpmShaftPositionCallback, "rpm reporter", &rpmState);
|
|
}
|
|
|
|
#if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__)
|
|
/**
|
|
* Schedules a callback 'angle' degree of crankshaft from now.
|
|
* The callback would be executed once after the duration of time which
|
|
* it takes the crankshaft to rotate to the specified angle.
|
|
*/
|
|
void scheduleByAngle(scheduling_s *timer, float angle, schfunc_t callback, void *param) {
|
|
int rpm = getRpm();
|
|
if (!isValidRpm(rpm)) {
|
|
/**
|
|
* this might happen in case of a single trigger event after a pause - this is normal, so no
|
|
* warning here
|
|
*/
|
|
return;
|
|
}
|
|
float delayMs = getOneDegreeTimeMs(rpm) * angle;
|
|
if (cisnan(delayMs)) {
|
|
firmwareError("NaN delay?");
|
|
return;
|
|
}
|
|
scheduleTask("by angle", timer, (int) MS2US(delayMs), callback, param);
|
|
}
|
|
#endif
|
|
|
|
#endif /* EFI_SHAFT_POSITION_INPUT */
|
|
|
|
void addWaveChartEvent(const char *name, const char * msg, const char *msg2) {
|
|
#if EFI_WAVE_CHART
|
|
waveChart.addWaveChartEvent3(name, msg, msg2);
|
|
#endif /* EFI_WAVE_CHART */
|
|
}
|