44 lines
1.4 KiB
C++
44 lines
1.4 KiB
C++
#include "pch.h"
|
|
#include "maf_airmass.h"
|
|
#include "maf.h"
|
|
|
|
AirmassResult MafAirmass::getAirmass(int rpm) {
|
|
float maf = Sensor::getOrZero(SensorType::Maf);
|
|
return getAirmassImpl(maf, rpm);
|
|
}
|
|
|
|
/**
|
|
* Function block now works to create a standardised load from the cylinder filling as well as tune fuel via VE table.
|
|
* @return total duration of fuel injection per engine cycle, in milliseconds
|
|
*/
|
|
AirmassResult MafAirmass::getAirmassImpl(float massAirFlow, int rpm) const {
|
|
// If the engine is stopped, MAF is meaningless
|
|
if (rpm == 0) {
|
|
return {};
|
|
}
|
|
|
|
// kg/hr -> g/s
|
|
float gramPerSecond = massAirFlow * 1000 / 3600;
|
|
|
|
// 1/min -> 1/s
|
|
float revsPerSecond = rpm / 60.0f;
|
|
mass_t airPerRevolution = gramPerSecond / revsPerSecond;
|
|
|
|
// Now we have to divide among cylinders - on a 4 stroke, half of the cylinders happen every revolution
|
|
// This math is floating point to work properly on engines with odd cylinder count
|
|
float halfCylCount = engineConfiguration->specs.cylindersCount / 2.0f;
|
|
|
|
mass_t cylinderAirmass = airPerRevolution / halfCylCount;
|
|
|
|
//Create % load for fuel table using relative naturally aspirated cylinder filling
|
|
float airChargeLoad = 100 * cylinderAirmass / engine->standardAirCharge;
|
|
|
|
//Correct air mass by VE table
|
|
mass_t correctedAirmass = cylinderAirmass * getVe(rpm, airChargeLoad);
|
|
|
|
return {
|
|
correctedAirmass,
|
|
airChargeLoad, // AFR/VE/ignition table Y axis
|
|
};
|
|
}
|