837 lines
29 KiB
C++
837 lines
29 KiB
C++
/**
|
|
* @file status_loop.cpp
|
|
* @brief Human-readable protocol status messages
|
|
*
|
|
* http://rusefi.com/forum/viewtopic.php?t=263 rusEfi console overview
|
|
* http://rusefi.com/forum/viewtopic.php?t=210 Commands overview
|
|
*
|
|
*
|
|
* @date Mar 15, 2013
|
|
* @author Andrey Belomutskiy, (c) 2012-2020
|
|
*
|
|
* This file is part of rusEfi - see http://rusefi.com
|
|
*
|
|
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
|
|
* the GNU General Public License as published by the Free Software Foundation; either
|
|
* version 3 of the License, or (at your option) any later version.
|
|
*
|
|
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
|
|
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with this program.
|
|
* If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
#include "pch.h"
|
|
#include "status_loop.h"
|
|
#include "hip9011_logic.h"
|
|
|
|
#if EFI_LOGIC_ANALYZER
|
|
#include "logic_analyzer.h"
|
|
#endif /* EFI_LOGIC_ANALYZER */
|
|
|
|
#include "trigger_central.h"
|
|
#include "sensor_reader.h"
|
|
#include "mmc_card.h"
|
|
#include "console_io.h"
|
|
#include "malfunction_central.h"
|
|
#include "speed_density.h"
|
|
|
|
#include "advance_map.h"
|
|
#include "tunerstudio.h"
|
|
#include "fuel_math.h"
|
|
#include "main_trigger_callback.h"
|
|
#include "spark_logic.h"
|
|
#include "idle_thread.h"
|
|
#include "svnversion.h"
|
|
#include "can_hw.h"
|
|
#include "periodic_thread_controller.h"
|
|
#include "cdm_ion_sense.h"
|
|
#include "binary_logging.h"
|
|
#include "buffered_writer.h"
|
|
#include "dynoview.h"
|
|
#include "frequency_sensor.h"
|
|
#include "digital_input_exti.h"
|
|
#include "dc_motors.h"
|
|
|
|
#if EFI_PROD_CODE
|
|
// todo: move this logic to algo folder!
|
|
#include "rtc_helper.h"
|
|
#include "rusefi.h"
|
|
#include "pin_repository.h"
|
|
#include "max31855.h"
|
|
#include "single_timer_executor.h"
|
|
#include "periodic_task.h"
|
|
#endif /* EFI_PROD_CODE */
|
|
|
|
#if EFI_INTERNAL_FLASH
|
|
#include "flash_main.h"
|
|
#endif
|
|
|
|
#if EFI_MAP_AVERAGING
|
|
#include "map_averaging.h"
|
|
#endif
|
|
|
|
#if (BOARD_TLE8888_COUNT > 0)
|
|
#include "tle8888.h"
|
|
#endif /* BOARD_TLE8888_COUNT */
|
|
|
|
#if EFI_ENGINE_SNIFFER
|
|
#include "engine_sniffer.h"
|
|
extern WaveChart waveChart;
|
|
#endif /* EFI_ENGINE_SNIFFER */
|
|
|
|
#include "sensor_chart.h"
|
|
|
|
extern pin_output_mode_e DEFAULT_OUTPUT;
|
|
extern pin_output_mode_e INVERTED_OUTPUT;
|
|
|
|
#ifndef LED_WARNING_BRAIN_PIN_MODE
|
|
#define LED_WARNING_BRAIN_PIN_MODE DEFAULT_OUTPUT
|
|
#endif
|
|
#ifndef LED_RUNING_BRAIN_PIN_MODE
|
|
#define LED_RUNING_BRAIN_PIN_MODE DEFAULT_OUTPUT
|
|
#endif
|
|
#ifndef LED_COMMUNICATION_BRAIN_PIN_MODE
|
|
#define LED_COMMUNICATION_BRAIN_PIN_MODE DEFAULT_OUTPUT
|
|
#endif
|
|
|
|
int warningEnabled = true;
|
|
|
|
extern int maxTriggerReentrant;
|
|
extern uint32_t maxLockedDuration;
|
|
|
|
static void setWarningEnabled(int value) {
|
|
warningEnabled = value;
|
|
}
|
|
|
|
/**
|
|
* This is useful if we are changing engine mode dynamically
|
|
* For example http://rusefi.com/forum/viewtopic.php?f=5&t=1085
|
|
*/
|
|
static int packEngineMode() {
|
|
return (engineConfiguration->fuelAlgorithm << 4) +
|
|
(engineConfiguration->injectionMode << 2) +
|
|
engineConfiguration->ignitionMode;
|
|
}
|
|
|
|
static int prevCkpEventCounter = -1;
|
|
|
|
/**
|
|
* Time when the firmware version was last reported
|
|
* TODO: implement a request/response instead of just constantly sending this out
|
|
*/
|
|
static Timer printVersionTimer;
|
|
|
|
static void printRusefiVersion(const char *engineTypeName, const char *firmwareBuildId) {
|
|
// VersionChecker in rusEFI console is parsing these version string, please follow the expected format
|
|
efiPrintfProto(PROTOCOL_VERSION_TAG, "%d@%s %s %s %d",
|
|
getRusEfiVersion(), VCS_VERSION,
|
|
firmwareBuildId,
|
|
engineTypeName,
|
|
getTimeNowS());
|
|
}
|
|
|
|
// Inform the console about the mapping between a pin's logical name (for example, injector 3)
|
|
// and the physical MCU pin backing that function (for example, PE3)
|
|
static void printOutPin(const char *pinName, brain_pin_e hwPin) {
|
|
if (hwPin == Gpio::Unassigned || hwPin == Gpio::Invalid) {
|
|
return;
|
|
}
|
|
const char *hwPinName;
|
|
if (isBrainPinValid(hwPin)) {
|
|
hwPinName = hwPortname(hwPin);
|
|
} else {
|
|
hwPinName = "smart";
|
|
}
|
|
|
|
efiPrintfProto(PROTOCOL_OUTPIN, "%s@%s", pinName, hwPinName);
|
|
}
|
|
|
|
// Print out the current mapping between logical and physical pins that
|
|
// the engine sniffer cares about, so we can display a physical pin
|
|
// in each engine sniffer row
|
|
static void printEngineSnifferPinMappings() {
|
|
#if EFI_PROD_CODE
|
|
printOutPin(PROTOCOL_CRANK1, engineConfiguration->triggerInputPins[0]);
|
|
printOutPin(PROTOCOL_CRANK2, engineConfiguration->triggerInputPins[1]);
|
|
for (int i = 0;i<CAM_INPUTS_COUNT;i++) {
|
|
extern const char *vvtNames[];
|
|
printOutPin(vvtNames[i], engineConfiguration->camInputs[i]);
|
|
}
|
|
printOutPin(PROTOCOL_HIP_NAME, engineConfiguration->hip9011IntHoldPin);
|
|
printOutPin(PROTOCOL_TACH_NAME, engineConfiguration->tachOutputPin);
|
|
#if EFI_LOGIC_ANALYZER
|
|
printOutPin(PROTOCOL_WA_CHANNEL_1, engineConfiguration->logicAnalyzerPins[0]);
|
|
printOutPin(PROTOCOL_WA_CHANNEL_2, engineConfiguration->logicAnalyzerPins[1]);
|
|
#endif /* EFI_LOGIC_ANALYZER */
|
|
|
|
int cylCount = minI(engineConfiguration->cylindersCount, MAX_CYLINDER_COUNT);
|
|
for (int i = 0; i < cylCount; i++) {
|
|
printOutPin(enginePins.coils[i].getShortName(), engineConfiguration->ignitionPins[i]);
|
|
printOutPin(enginePins.trailingCoils[i].getShortName(), engineConfiguration->trailingCoilPins[i]);
|
|
printOutPin(enginePins.injectors[i].getShortName(), engineConfiguration->injectionPins[i]);
|
|
}
|
|
for (int i = 0; i < AUX_DIGITAL_VALVE_COUNT;i++) {
|
|
printOutPin(enginePins.auxValve[i].getShortName(), engineConfiguration->auxValves[i]);
|
|
}
|
|
#endif /* EFI_PROD_CODE */
|
|
}
|
|
|
|
void printOverallStatus() {
|
|
#if EFI_ENGINE_SNIFFER
|
|
waveChart.publishIfFull();
|
|
#endif /* EFI_ENGINE_SNIFFER */
|
|
|
|
#if EFI_SENSOR_CHART
|
|
publishSensorChartIfFull();
|
|
#endif // EFI_SENSOR_CHART
|
|
|
|
/**
|
|
* we report the version every second - this way the console does not need to
|
|
* request it and we will display it pretty soon
|
|
*/
|
|
if (printVersionTimer.hasElapsedSec(1)) {
|
|
// we're sending, reset the timer
|
|
printVersionTimer.reset();
|
|
|
|
// Output the firmware version, board type, git hash, uptime in seconds, etc
|
|
printRusefiVersion(getEngine_type_e(engineConfiguration->engineType), FIRMWARE_ID);
|
|
|
|
// Output the current engine sniffer pin mappings
|
|
printEngineSnifferPinMappings();
|
|
}
|
|
}
|
|
|
|
static systime_t timeOfPreviousReport = (systime_t) -1;
|
|
|
|
#if !defined(LOGIC_ANALYZER_BUFFER_SIZE)
|
|
// TODO: how small can this be?
|
|
#define LOGIC_ANALYZER_BUFFER_SIZE 1000
|
|
#endif /* LOGIC_ANALYZER_BUFFER_SIZE */
|
|
|
|
#if EFI_LOGIC_ANALYZER
|
|
static char logicAnalyzerBuffer[LOGIC_ANALYZER_BUFFER_SIZE];
|
|
static Logging logicAnalyzerLogger("logic analyzer", logicAnalyzerBuffer, sizeof(logicAnalyzerBuffer));
|
|
#endif // EFI_LOGIC_ANALYZER
|
|
|
|
/**
|
|
* @brief Sends all pending data to rusEfi console
|
|
*
|
|
* This method is periodically invoked by the main loop
|
|
* todo: is this mostly dead code?
|
|
*/
|
|
void updateDevConsoleState() {
|
|
#if EFI_PROD_CODE
|
|
// todo: unify with simulator!
|
|
if (hasFirmwareError()) {
|
|
efiPrintf("%s error: %s", CRITICAL_PREFIX, getCriticalErrorMessage());
|
|
warningEnabled = false;
|
|
return;
|
|
}
|
|
#endif /* EFI_PROD_CODE */
|
|
|
|
#if HAL_USE_ADC
|
|
printFullAdcReportIfNeeded();
|
|
#endif /* HAL_USE_ADC */
|
|
|
|
systime_t nowSeconds = getTimeNowS();
|
|
|
|
#if EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT
|
|
int currentCkpEventCounter = engine->triggerCentral.triggerState.getTotalEventCounter();
|
|
if (prevCkpEventCounter == currentCkpEventCounter && timeOfPreviousReport == nowSeconds) {
|
|
return;
|
|
}
|
|
timeOfPreviousReport = nowSeconds;
|
|
|
|
prevCkpEventCounter = currentCkpEventCounter;
|
|
#else
|
|
chThdSleepMilliseconds(200);
|
|
#endif
|
|
|
|
#if EFI_LOGIC_ANALYZER
|
|
printWave(&logicAnalyzerLogger);
|
|
scheduleLogging(&logicAnalyzerLogger);
|
|
#endif /* EFI_LOGIC_ANALYZER */
|
|
}
|
|
|
|
static OutputPin *leds[] = { &enginePins.warningLedPin, &enginePins.runningLedPin,
|
|
&enginePins.errorLedPin, &enginePins.communicationLedPin, &enginePins.checkEnginePin };
|
|
|
|
static void initStatusLeds() {
|
|
enginePins.communicationLedPin.initPin("led: comm status", engineConfiguration->communicationLedPin, &LED_COMMUNICATION_BRAIN_PIN_MODE, true);
|
|
// checkEnginePin is already initialized by the time we get here
|
|
|
|
enginePins.warningLedPin.initPin("led: warning status", engineConfiguration->warningLedPin, &LED_WARNING_BRAIN_PIN_MODE, true);
|
|
enginePins.runningLedPin.initPin("led: running status", engineConfiguration->runningLedPin, &LED_RUNING_BRAIN_PIN_MODE, true);
|
|
}
|
|
|
|
#if EFI_PROD_CODE
|
|
|
|
static bool isTriggerErrorNow() {
|
|
#if EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT
|
|
bool justHadError = engine->triggerCentral.triggerState.someSortOfTriggerError();
|
|
return justHadError || engine->triggerCentral.isTriggerDecoderError();
|
|
#else
|
|
return false;
|
|
#endif /* EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT */
|
|
}
|
|
|
|
extern bool consoleByteArrived;
|
|
|
|
class CommunicationBlinkingTask : public PeriodicTimerController {
|
|
|
|
int getPeriodMs() override {
|
|
return counter % 2 == 0 ? onTimeMs : offTimeMs;
|
|
}
|
|
|
|
void setAllLeds(int value) {
|
|
// make sure we do not turn the critical LED off if already have
|
|
// critical error by now
|
|
for (uint32_t i = 0; !hasFirmwareError() && i < sizeof(leds) / sizeof(leds[0]); i++) {
|
|
leds[i]->setValue(value);
|
|
}
|
|
}
|
|
|
|
void PeriodicTask() override {
|
|
counter++;
|
|
|
|
bool lowVBatt = Sensor::getOrZero(SensorType::BatteryVoltage) < LOW_VBATT;
|
|
|
|
if (counter == 1) {
|
|
// first invocation of BlinkingTask
|
|
setAllLeds(1);
|
|
} else if (counter == 2) {
|
|
// second invocation of BlinkingTask
|
|
setAllLeds(0);
|
|
} else if (counter % 2 == 0) {
|
|
enginePins.communicationLedPin.setValue(0);
|
|
#if HW_CHECK_SD
|
|
extern int totalLoggedBytes;
|
|
if (totalLoggedBytes > 2000) {
|
|
enginePins.communicationLedPin.setValue(1);
|
|
}
|
|
#endif // HW_CHECK_SD
|
|
|
|
//#if HW_CHECK_MODE
|
|
// // we have to do anything possible to help users notice FACTORY MODE
|
|
// enginePins.errorLedPin.setValue(1);
|
|
// enginePins.runningLedPin.setValue(1);
|
|
//#endif // HW_CHECK_MODE
|
|
if (!lowVBatt) {
|
|
enginePins.warningLedPin.setValue(0);
|
|
}
|
|
} else {
|
|
#define BLINKING_PERIOD_MS 33
|
|
|
|
if (hasFirmwareError()) {
|
|
// special behavior in case of critical error - not equal on/off time
|
|
// this special behavior helps to notice that something is not right, also
|
|
// differentiates software firmware error from critical interrupt error with CPU halt.
|
|
offTimeMs = 50;
|
|
onTimeMs = 450;
|
|
} else if (consoleByteArrived) {
|
|
offTimeMs = 100;
|
|
onTimeMs = 33;
|
|
#if EFI_INTERNAL_FLASH
|
|
} else if (getNeedToWriteConfiguration()) {
|
|
offTimeMs = onTimeMs = 500;
|
|
#endif // EFI_INTERNAL_FLASH
|
|
} else {
|
|
onTimeMs =
|
|
#if EFI_USB_SERIAL
|
|
is_usb_serial_ready() ? 3 * BLINKING_PERIOD_MS :
|
|
#endif // EFI_USB_SERIAL
|
|
BLINKING_PERIOD_MS;
|
|
offTimeMs = 0.6 * onTimeMs;
|
|
}
|
|
|
|
enginePins.communicationLedPin.setValue(1);
|
|
//#if HW_CHECK_MODE
|
|
// // we have to do anything possible to help users notice FACTORY MODE
|
|
// enginePins.errorLedPin.setValue(0);
|
|
// enginePins.runningLedPin.setValue(0);
|
|
//#endif // HW_CHECK_MODE
|
|
|
|
#if EFI_ENGINE_CONTROL
|
|
if (lowVBatt || isTriggerErrorNow()) {
|
|
// todo: at the moment warning codes do not affect warning LED?!
|
|
enginePins.warningLedPin.setValue(1);
|
|
}
|
|
#endif /* EFI_ENGINE_CONTROL */
|
|
}
|
|
}
|
|
|
|
private:
|
|
int counter = 0;
|
|
int onTimeMs = 100;
|
|
int offTimeMs = 100;
|
|
};
|
|
|
|
static CommunicationBlinkingTask communicationsBlinkingTask;
|
|
|
|
#endif /* EFI_PROD_CODE */
|
|
|
|
#if EFI_HIP_9011
|
|
extern HIP9011 instance;
|
|
#endif /* EFI_HIP_9011 */
|
|
|
|
|
|
#if EFI_TUNER_STUDIO
|
|
|
|
static void updateTempSensors() {
|
|
SensorResult clt = Sensor::get(SensorType::Clt);
|
|
engine->outputChannels.coolant = clt.value_or(0);
|
|
engine->outputChannels.isCltError = !clt.Valid;
|
|
|
|
SensorResult iat = Sensor::get(SensorType::Iat);
|
|
engine->outputChannels.intake = iat.value_or(0);
|
|
engine->outputChannels.isIatError = !iat.Valid;
|
|
|
|
SensorResult auxTemp1 = Sensor::get(SensorType::AuxTemp1);
|
|
engine->outputChannels.auxTemp1 = auxTemp1.value_or(0);
|
|
|
|
SensorResult auxTemp2 = Sensor::get(SensorType::AuxTemp2);
|
|
engine->outputChannels.auxTemp2 = auxTemp2.value_or(0);
|
|
}
|
|
|
|
static void updateThrottles() {
|
|
SensorResult tps1 = Sensor::get(SensorType::Tps1);
|
|
engine->outputChannels.TPSValue = tps1.value_or(0);
|
|
engine->outputChannels.isTpsError = !tps1.Valid;
|
|
engine->outputChannels.tpsADC = convertVoltageTo10bitADC(Sensor::getRaw(SensorType::Tps1Primary));
|
|
|
|
SensorResult tps2 = Sensor::get(SensorType::Tps2);
|
|
engine->outputChannels.TPS2Value = tps2.value_or(0);
|
|
// If we don't have a TPS2 at all, don't turn on the failure light
|
|
engine->outputChannels.isTps2Error = isTps2Error();
|
|
|
|
SensorResult pedal = Sensor::get(SensorType::AcceleratorPedal);
|
|
engine->outputChannels.throttlePedalPosition = pedal.value_or(0);
|
|
// Only report fail if you have one (many people don't)
|
|
engine->outputChannels.isPedalError = isPedalError();
|
|
|
|
// TPS 1 pri/sec split
|
|
engine->outputChannels.tps1Split = Sensor::getOrZero(SensorType::Tps1Primary) - Sensor::getOrZero(SensorType::Tps1Secondary);
|
|
// TPS 2 pri/sec split
|
|
engine->outputChannels.tps2Split = Sensor::getOrZero(SensorType::Tps2Primary) - Sensor::getOrZero(SensorType::Tps2Secondary);
|
|
// TPS1 - TPS2 split
|
|
engine->outputChannels.tps12Split = Sensor::getOrZero(SensorType::Tps1) - Sensor::getOrZero(SensorType::Tps2);
|
|
// Pedal pri/sec split
|
|
engine->outputChannels.accPedalSplit = Sensor::getOrZero(SensorType::AcceleratorPedalPrimary) - Sensor::getOrZero(SensorType::AcceleratorPedalSecondary);
|
|
}
|
|
|
|
static void updateLambda() {
|
|
float lambdaValue = Sensor::getOrZero(SensorType::Lambda1);
|
|
engine->outputChannels.lambdaValue = lambdaValue;
|
|
engine->outputChannels.AFRValue = lambdaValue * engine->fuelComputer.stoichiometricRatio;
|
|
|
|
float lambda2Value = Sensor::getOrZero(SensorType::Lambda2);
|
|
engine->outputChannels.lambdaValue2 = lambda2Value;
|
|
engine->outputChannels.AFRValue2 = lambda2Value * engine->fuelComputer.stoichiometricRatio;
|
|
}
|
|
|
|
static void updateFuelSensors() {
|
|
// Low pressure is directly in kpa
|
|
engine->outputChannels.lowFuelPressure = Sensor::getOrZero(SensorType::FuelPressureLow);
|
|
// High pressure is in bar, aka 100 kpa
|
|
engine->outputChannels.highFuelPressure = KPA2BAR(Sensor::getOrZero(SensorType::FuelPressureHigh));
|
|
|
|
engine->outputChannels.flexPercent = Sensor::getOrZero(SensorType::FuelEthanolPercent);
|
|
|
|
engine->outputChannels.fuelTankLevel = Sensor::getOrZero(SensorType::FuelLevel);
|
|
}
|
|
|
|
static void updateVvtSensors() {
|
|
#if EFI_SHAFT_POSITION_INPUT
|
|
// 248
|
|
engine->outputChannels.vvtPositionB1I = engine->triggerCentral.getVVTPosition(/*bankIndex*/0, /*camIndex*/0);
|
|
engine->outputChannels.vvtPositionB1E = engine->triggerCentral.getVVTPosition(/*bankIndex*/0, /*camIndex*/1);
|
|
engine->outputChannels.vvtPositionB2I = engine->triggerCentral.getVVTPosition(/*bankIndex*/1, /*camIndex*/0);
|
|
engine->outputChannels.vvtPositionB2E = engine->triggerCentral.getVVTPosition(/*bankIndex*/1, /*camIndex*/1);
|
|
#endif
|
|
}
|
|
|
|
static void updateVehicleSpeed() {
|
|
#if EFI_VEHICLE_SPEED
|
|
engine->outputChannels.vehicleSpeedKph = Sensor::getOrZero(SensorType::VehicleSpeed);
|
|
engine->outputChannels.speedToRpmRatio = engine->module<GearDetector>()->getGearboxRatio();
|
|
engine->outputChannels.detectedGear = engine->module<GearDetector>()->getCurrentGear();
|
|
#endif /* EFI_VEHICLE_SPEED */
|
|
}
|
|
|
|
static void updateRawSensors() {
|
|
engine->outputChannels.rawTps1Primary = Sensor::getRaw(SensorType::Tps1Primary);
|
|
engine->outputChannels.rawTps1Secondary = Sensor::getRaw(SensorType::Tps1Secondary);
|
|
engine->outputChannels.rawTps2Primary = Sensor::getRaw(SensorType::Tps2Primary);
|
|
engine->outputChannels.rawTps2Secondary = Sensor::getRaw(SensorType::Tps2Secondary);
|
|
engine->outputChannels.rawPpsPrimary = Sensor::getRaw(SensorType::AcceleratorPedalPrimary);
|
|
engine->outputChannels.rawPpsSecondary = Sensor::getRaw(SensorType::AcceleratorPedalSecondary);
|
|
engine->outputChannels.rawBattery = Sensor::getRaw(SensorType::BatteryVoltage);
|
|
engine->outputChannels.rawClt = Sensor::getRaw(SensorType::Clt);
|
|
engine->outputChannels.rawIat = Sensor::getRaw(SensorType::Iat);
|
|
engine->outputChannels.rawOilPressure = Sensor::getRaw(SensorType::OilPressure);
|
|
engine->outputChannels.rawLowFuelPressure = Sensor::getRaw(SensorType::FuelPressureLow);
|
|
engine->outputChannels.rawHighFuelPressure = Sensor::getRaw(SensorType::FuelPressureHigh);
|
|
engine->outputChannels.rawMaf = Sensor::getRaw(SensorType::Maf);
|
|
engine->outputChannels.rawMaf2 = Sensor::getRaw(SensorType::Maf2);
|
|
engine->outputChannels.rawMap = Sensor::getRaw(SensorType::MapSlow);
|
|
engine->outputChannels.rawWastegatePosition = Sensor::getRaw(SensorType::WastegatePosition);
|
|
engine->outputChannels.rawIdlePositionSensor = Sensor::getRaw(SensorType::IdlePosition);
|
|
|
|
engine->outputChannels.luaGauges[0] = Sensor::getOrZero(SensorType::LuaGauge1);
|
|
engine->outputChannels.luaGauges[1] = Sensor::getOrZero(SensorType::LuaGauge2);
|
|
|
|
for (int i = 0;i<LUA_ANALOG_INPUT_COUNT;i++) {
|
|
adc_channel_e ch = engineConfiguration->auxAnalogInputs[i];
|
|
if (ch != EFI_ADC_NONE) {
|
|
engine->outputChannels.rawAnalogInput[i] = getVoltageDivided("raw aux", ch);
|
|
}
|
|
}
|
|
|
|
// TODO: transition AFR to new sensor model
|
|
engine->outputChannels.rawAfr = (engineConfiguration->afr.hwChannel == EFI_ADC_NONE) ? 0 : getVoltageDivided("ego", engineConfiguration->afr.hwChannel);
|
|
}
|
|
static void updatePressures() {
|
|
engine->outputChannels.baroPressure = Sensor::getOrZero(SensorType::BarometricPressure);
|
|
engine->outputChannels.MAPValue = Sensor::getOrZero(SensorType::Map);
|
|
engine->outputChannels.oilPressure = Sensor::getOrZero(SensorType::OilPressure);
|
|
|
|
engine->outputChannels.auxLinear1 = Sensor::getOrZero(SensorType::AuxLinear1);
|
|
engine->outputChannels.auxLinear2 = Sensor::getOrZero(SensorType::AuxLinear2);
|
|
}
|
|
|
|
static void updateMiscSensors() {
|
|
engine->outputChannels.VBatt = Sensor::getOrZero(SensorType::BatteryVoltage);
|
|
|
|
engine->outputChannels.idlePositionSensor = Sensor::getOrZero(SensorType::IdlePosition);
|
|
|
|
engine->outputChannels.wastegatePositionSensor = Sensor::getOrZero(SensorType::WastegatePosition);
|
|
|
|
engine->outputChannels.ISSValue = Sensor::getOrZero(SensorType::InputShaftSpeed);
|
|
engine->outputChannels.auxSpeed1 = Sensor::getOrZero(SensorType::AuxSpeed1);
|
|
engine->outputChannels.auxSpeed2 = Sensor::getOrZero(SensorType::AuxSpeed2);
|
|
|
|
#if HAL_USE_ADC
|
|
engine->outputChannels.internalMcuTemperature = getMCUInternalTemperature();
|
|
#endif /* HAL_USE_ADC */
|
|
|
|
// tCharge depends on the previous state, so we should use the stored value.
|
|
engine->outputChannels.tCharge = engine->engineState.sd.tCharge;
|
|
}
|
|
|
|
static void updateSensors() {
|
|
updateTempSensors();
|
|
updateThrottles();
|
|
updateRawSensors();
|
|
updateLambda();
|
|
updateFuelSensors();
|
|
updateVvtSensors();
|
|
updateVehicleSpeed();
|
|
updatePressures();
|
|
updateMiscSensors();
|
|
}
|
|
|
|
static void updateFuelCorrections() {
|
|
engine->outputChannels.fuelPidCorrection[0] = 100.0f * (engine->stftCorrection[0] - 1.0f);
|
|
engine->outputChannels.fuelPidCorrection[1] = 100.0f * (engine->stftCorrection[1] - 1.0f);
|
|
|
|
// get rid of this, have gauges use injector model info directly
|
|
engine->outputChannels.injectorLagMs = engine->module<InjectorModel>()->getDeadtime();
|
|
}
|
|
|
|
static void updateFuelResults() {
|
|
// todo: kill outputChannel while taking care of gauge name and scale!
|
|
engine->outputChannels.chargeAirMass = engine->fuelComputer.sdAirMassInOneCylinder;
|
|
|
|
engine->outputChannels.baseFuel = engine->engineState.baseFuel * 1000; // Convert grams to mg
|
|
engine->outputChannels.fuelRunning = engine->fuelComputer.running.fuel;
|
|
|
|
engine->outputChannels.fuelFlowRate = engine->engineState.fuelConsumption.getConsumptionGramPerSecond();
|
|
engine->outputChannels.totalFuelConsumption = engine->engineState.fuelConsumption.getConsumedGrams();
|
|
}
|
|
|
|
static void updateFuelInfo() {
|
|
updateFuelCorrections();
|
|
updateFuelResults();
|
|
|
|
const auto& wallFuel = engine->injectionEvents.elements[0].wallFuel;
|
|
engine->outputChannels.wallFuelAmount = wallFuel.getWallFuel() * 1000; // Convert grams to mg
|
|
engine->outputChannels.wallFuelCorrectionValue = wallFuel.wallFuelCorrection * 1000; // Convert grams to mg
|
|
|
|
engine->outputChannels.injectionOffset = engine->engineState.injectionOffset;
|
|
|
|
engine->outputChannels.veValue = engine->engineState.currentVe;
|
|
|
|
engine->outputChannels.crankingFuelMs = engine->engineState.crankingFuel.fuel;
|
|
}
|
|
|
|
static void updateIgnition(int rpm) {
|
|
engine->outputChannels.coilDutyCycle = getCoilDutyCycle(rpm);
|
|
}
|
|
|
|
static void updateFlags() {
|
|
#if EFI_USB_SERIAL
|
|
engine->outputChannels.isUsbConnected = is_usb_serial_ready();
|
|
#endif // EFI_USB_SERIAL
|
|
|
|
engine->outputChannels.isMainRelayOn = enginePins.mainRelay.getLogicValue();
|
|
engine->outputChannels.isFanOn = enginePins.fanRelay.getLogicValue();
|
|
engine->outputChannels.isFan2On = enginePins.fanRelay2.getLogicValue();
|
|
engine->outputChannels.isO2HeaterOn = enginePins.o2heater.getLogicValue();
|
|
// todo: eliminate state copy logic by giving DfcoController it's owm xxx.txt and leveraging LiveData
|
|
engine->outputChannels.dfcoActive = engine->module<DfcoController>()->cutFuel();
|
|
|
|
#if EFI_LAUNCH_CONTROL
|
|
engine->outputChannels.launchTriggered = engine->launchController.isLaunchCondition;
|
|
#endif
|
|
|
|
#if EFI_PROD_CODE
|
|
engine->outputChannels.isTriggerError = isTriggerErrorNow();
|
|
#endif // EFI_PROD_CODE
|
|
|
|
#if EFI_INTERNAL_FLASH
|
|
engine->outputChannels.needBurn = getNeedToWriteConfiguration();
|
|
#endif /* EFI_INTERNAL_FLASH */
|
|
}
|
|
|
|
// weird thing: one of the reasons for this to be a separate method is stack usage reduction in non-optimized build
|
|
// see https://github.com/rusefi/rusefi/issues/3302 and linked tickets
|
|
static void updateTpsDebug() {
|
|
// TPS 1 pri/sec ratio - useful for ford ETB that has partial-range second channel
|
|
engine->outputChannels.debugFloatField5 = 100 * Sensor::getOrZero(SensorType::Tps1Primary) / Sensor::getOrZero(SensorType::Tps1Secondary);
|
|
}
|
|
|
|
// sensor state for EFI Analytics Tuner Studio
|
|
// todo: the 'let's copy internal state for external consumers' approach is DEPRECATED
|
|
// As of 2022 it's preferred to leverage LiveData where all state is exposed
|
|
void updateTunerStudioState() {
|
|
TunerStudioOutputChannels *tsOutputChannels = &engine->outputChannels;
|
|
#if EFI_SHAFT_POSITION_INPUT
|
|
int rpm = Sensor::get(SensorType::Rpm).value_or(0);
|
|
#else /* EFI_SHAFT_POSITION_INPUT */
|
|
int rpm = 0;
|
|
#endif /* EFI_SHAFT_POSITION_INPUT */
|
|
|
|
#if EFI_PROD_CODE
|
|
executorStatistics();
|
|
#endif /* EFI_PROD_CODE */
|
|
|
|
// header
|
|
tsOutputChannels->tsConfigVersion = TS_FILE_VERSION;
|
|
static_assert(offsetof (TunerStudioOutputChannels, tsConfigVersion) == TS_FILE_VERSION_OFFSET);
|
|
|
|
DcHardware *getdcHardware();
|
|
|
|
DcHardware *dc = getdcHardware();
|
|
engine->dc_motors.dcOutput0 = dc->dcMotor.get();
|
|
engine->dc_motors.isEnabled0_int = dc->msg() == nullptr;
|
|
|
|
#if EFI_SHAFT_POSITION_INPUT
|
|
|
|
// offset 0
|
|
tsOutputChannels->RPMValue = rpm;
|
|
auto instantRpm = engine->triggerCentral.instantRpm.getInstantRpm();
|
|
tsOutputChannels->instantRpm = instantRpm;
|
|
|
|
updateSensors();
|
|
updateFuelInfo();
|
|
updateIgnition(rpm);
|
|
updateFlags();
|
|
|
|
// 104
|
|
tsOutputChannels->rpmAcceleration = engine->rpmCalculator.getRpmAcceleration();
|
|
|
|
// Output both the estimated air flow, and measured air flow (if available)
|
|
tsOutputChannels->mafMeasured = Sensor::getOrZero(SensorType::Maf);
|
|
tsOutputChannels->mafMeasured2 = Sensor::getOrZero(SensorType::Maf2);
|
|
tsOutputChannels->mafEstimate = engine->engineState.airflowEstimate;
|
|
|
|
// offset 116
|
|
// TPS acceleration
|
|
tsOutputChannels->deltaTpsValue = engine->tpsAccelEnrichment.getMaxDelta();
|
|
|
|
tsOutputChannels->totalTriggerErrorCounter = engine->triggerCentral.triggerState.totalTriggerErrorCounter;
|
|
|
|
tsOutputChannels->orderingErrorCounter = engine->triggerCentral.triggerState.orderingErrorCounter;
|
|
#endif // EFI_SHAFT_POSITION_INPUT
|
|
|
|
|
|
// 68
|
|
// 140
|
|
#if EFI_ENGINE_CONTROL
|
|
tsOutputChannels->injectorDutyCycle = getInjectorDutyCycle(rpm);
|
|
#endif
|
|
|
|
// 224
|
|
efitimesec_t timeSeconds = getTimeNowS();
|
|
tsOutputChannels->seconds = timeSeconds;
|
|
|
|
// 252
|
|
tsOutputChannels->engineMode = packEngineMode();
|
|
// 120
|
|
tsOutputChannels->firmwareVersion = getRusEfiVersion();
|
|
|
|
// 276
|
|
tsOutputChannels->accelerationX = engine->sensors.accelerometer.x;
|
|
// 278
|
|
tsOutputChannels->accelerationY = engine->sensors.accelerometer.y;
|
|
tsOutputChannels->accelerationZ = engine->sensors.accelerometer.z;
|
|
tsOutputChannels->accelerationRoll = engine->sensors.accelerometer.roll;
|
|
tsOutputChannels->accelerationYaw = engine->sensors.accelerometer.yaw;
|
|
|
|
#if EFI_DYNO_VIEW
|
|
tsOutputChannels->VssAcceleration = getDynoviewAcceleration();
|
|
#endif
|
|
|
|
tsOutputChannels->turboSpeed = Sensor::getOrZero(SensorType::TurbochargerSpeed);
|
|
extern FrequencySensor inputShaftSpeedSensor;
|
|
tsOutputChannels->issEdgeCounter = inputShaftSpeedSensor.eventCounter;
|
|
extern FrequencySensor vehicleSpeedSensor;
|
|
tsOutputChannels->vssEdgeCounter = vehicleSpeedSensor.eventCounter;
|
|
|
|
#if HW_CHECK_MODE
|
|
tsOutputChannels->hasCriticalError = 1;
|
|
#else
|
|
tsOutputChannels->hasCriticalError = hasFirmwareError();
|
|
#endif // HW_CHECK_MODE
|
|
|
|
tsOutputChannels->isWarnNow = engine->engineState.warnings.isWarningNow();
|
|
#if EFI_HIP_9011_DEBUG
|
|
tsOutputChannels->isKnockChipOk = (instance.invalidResponsesCount == 0);
|
|
#endif /* EFI_HIP_9011 */
|
|
|
|
tsOutputChannels->tpsAccelFuel = engine->engineState.tpsAccelEnrich;
|
|
|
|
tsOutputChannels->checkEngine = hasErrorCodes();
|
|
|
|
#if EFI_MAX_31855
|
|
for (int i = 0; i < EGT_CHANNEL_COUNT; i++)
|
|
tsOutputChannels->egt[i] = getMax31855EgtValue(i);
|
|
#endif /* EFI_MAX_31855 */
|
|
|
|
#if EFI_IDLE_CONTROL
|
|
tsOutputChannels->idleAirValvePosition = getIdlePosition();
|
|
#endif
|
|
|
|
tsOutputChannels->warningCounter = engine->engineState.warnings.warningCounter;
|
|
tsOutputChannels->lastErrorCode = static_cast<uint16_t>(engine->engineState.warnings.lastErrorCode);
|
|
for (int i = 0; i < 8;i++) {
|
|
tsOutputChannels->recentErrorCode[i] = static_cast<uint16_t>(engine->engineState.warnings.recentWarnings.get(i).Code);
|
|
}
|
|
|
|
tsOutputChannels->starterState = enginePins.starterControl.getLogicValue();
|
|
tsOutputChannels->starterRelayDisable = enginePins.starterRelayDisable.getLogicValue();
|
|
|
|
tsOutputChannels->mapFast = Sensor::getOrZero(SensorType::MapFast);
|
|
|
|
|
|
tsOutputChannels->revolutionCounterSinceStart = engine->rpmCalculator.getRevolutionCounterSinceStart();
|
|
#if EFI_CAN_SUPPORT
|
|
postCanState();
|
|
#endif /* EFI_CAN_SUPPORT */
|
|
|
|
#if EFI_CLOCK_LOCKS
|
|
tsOutputChannels->maxLockedDuration = NT2US(maxLockedDuration);
|
|
#endif /* EFI_CLOCK_LOCKS */
|
|
|
|
#if EFI_SHAFT_POSITION_INPUT
|
|
tsOutputChannels->maxTriggerReentrant = maxTriggerReentrant;
|
|
tsOutputChannels->triggerPrimaryFall = engine->triggerCentral.getHwEventCounter((int)SHAFT_PRIMARY_FALLING);
|
|
tsOutputChannels->triggerPrimaryRise = engine->triggerCentral.getHwEventCounter((int)SHAFT_PRIMARY_RISING);
|
|
|
|
tsOutputChannels->triggerSecondaryFall = engine->triggerCentral.getHwEventCounter((int)SHAFT_SECONDARY_FALLING);
|
|
tsOutputChannels->triggerSecondaryRise = engine->triggerCentral.getHwEventCounter((int)SHAFT_SECONDARY_RISING);
|
|
|
|
tsOutputChannels->triggerVvtRise = engine->triggerCentral.vvtEventRiseCounter[0];
|
|
tsOutputChannels->triggerVvtFall = engine->triggerCentral.vvtEventFallCounter[0];
|
|
tsOutputChannels->triggerVvt2Fall = engine->triggerCentral.vvtEventRiseCounter[1];
|
|
tsOutputChannels->triggerVvt2Rise = engine->triggerCentral.vvtEventFallCounter[1];
|
|
#endif // EFI_SHAFT_POSITION_INPUT
|
|
|
|
#if HAL_USE_PAL && EFI_PROD_CODE
|
|
tsOutputChannels->extiOverflowCount = getExtiOverflowCounter();
|
|
#endif
|
|
|
|
switch (engineConfiguration->debugMode) {
|
|
case DBG_TPS_ACCEL:
|
|
tsOutputChannels->debugIntField1 = engine->tpsAccelEnrichment.cb.getSize();
|
|
break;
|
|
case DBG_SR5_PROTOCOL: {
|
|
const int _10_6 = 100000;
|
|
tsOutputChannels->debugIntField1 = tsState.textCommandCounter * _10_6 + tsState.totalCounter;
|
|
tsOutputChannels->debugIntField2 = tsState.outputChannelsCommandCounter * _10_6 + tsState.writeValueCommandCounter;
|
|
tsOutputChannels->debugIntField3 = tsState.readPageCommandsCounter * _10_6 + tsState.burnCommandCounter;
|
|
break;
|
|
}
|
|
case DBG_TRIGGER_COUNTERS:
|
|
|
|
#if EFI_SHAFT_POSITION_INPUT
|
|
tsOutputChannels->debugIntField4 = engine->triggerCentral.triggerState.currentCycle.eventCount[0];
|
|
tsOutputChannels->debugIntField5 = engine->triggerCentral.triggerState.currentCycle.eventCount[1];
|
|
#endif // EFI_SHAFT_POSITION_INPUT
|
|
|
|
break;
|
|
#if EFI_HIP_9011_DEBUG
|
|
case DBG_KNOCK:
|
|
// todo: maybe extract hipPostState(tsOutputChannels);
|
|
tsOutputChannels->debugIntField1 = instance.correctResponsesCount;
|
|
tsOutputChannels->debugIntField2 = instance.invalidResponsesCount;
|
|
break;
|
|
#endif /* EFI_HIP_9011 */
|
|
#if EFI_MAP_AVERAGING
|
|
case DBG_MAP:
|
|
postMapState(tsOutputChannels);
|
|
break;
|
|
#endif /* EFI_MAP_AVERAGING */
|
|
case DBG_ANALOG_INPUTS:
|
|
tsOutputChannels->debugFloatField4 = isAdcChannelValid(engineConfiguration->map.sensor.hwChannel) ? getVoltageDivided("map", engineConfiguration->map.sensor.hwChannel) : 0.0f;
|
|
tsOutputChannels->debugFloatField7 = isAdcChannelValid(engineConfiguration->afr.hwChannel) ? getVoltageDivided("ego", engineConfiguration->afr.hwChannel) : 0.0f;
|
|
break;
|
|
case DBG_ANALOG_INPUTS2:
|
|
updateTpsDebug();
|
|
break;
|
|
case DBG_INSTANT_RPM:
|
|
{
|
|
#if EFI_SHAFT_POSITION_INPUT
|
|
tsOutputChannels->debugFloatField2 = instantRpm / Sensor::getOrZero(SensorType::Rpm);
|
|
#endif // EFI_SHAFT_POSITION_INPUT
|
|
|
|
}
|
|
break;
|
|
case DBG_ION:
|
|
#if EFI_CDM_INTEGRATION
|
|
ionPostState(tsOutputChannels);
|
|
#endif /* EFI_CDM_INTEGRATION */
|
|
break;
|
|
case DBG_TLE8888:
|
|
#if (BOARD_TLE8888_COUNT > 0)
|
|
tle8888PostState();
|
|
#endif /* BOARD_TLE8888_COUNT */
|
|
break;
|
|
case DBG_LOGIC_ANALYZER:
|
|
#if EFI_LOGIC_ANALYZER
|
|
reportLogicAnalyzerToTS();
|
|
#endif /* EFI_LOGIC_ANALYZER */
|
|
break;
|
|
default:
|
|
;
|
|
}
|
|
}
|
|
|
|
#endif /* EFI_TUNER_STUDIO */
|
|
|
|
void initStatusLoop() {
|
|
addConsoleActionI("warn", setWarningEnabled);
|
|
}
|
|
|
|
void startStatusThreads() {
|
|
// todo: refactoring needed, this file should probably be split into pieces
|
|
#if EFI_PROD_CODE
|
|
initStatusLeds();
|
|
communicationsBlinkingTask.start();
|
|
#endif /* EFI_PROD_CODE */
|
|
}
|