custom-board-bundle-sample-.../firmware/controllers/limp_manager.cpp

250 lines
7.8 KiB
C++

#include "pch.h"
#include "limp_manager.h"
#include "fuel_math.h"
#include "main_trigger_callback.h"
#define CLEANUP_MODE_TPS 90
static bool noFiringUntilVvtSync(vvt_mode_e vvtMode) {
auto operationMode = getEngineRotationState()->getOperationMode();
// V-Twin MAP phase sense needs to always wait for sync
if (vvtMode == VVT_MAP_V_TWIN) {
return true;
}
if (engineConfiguration->isPhaseSyncRequiredForIgnition) {
// in rare cases engines do not like random sequential mode
return true;
}
// Odd cylinder count engines don't work properly with wasted spark, so wait for full sync (so that sequential works)
// See https://github.com/rusefi/rusefi/issues/4195 for the issue to properly support this case
if (engineConfiguration->cylindersCount > 1 && engineConfiguration->cylindersCount % 2 == 1) {
return true;
}
// Symmetrical crank modes require cam sync before firing
// non-symmetrical cranks can use faster spin-up mode (firing in wasted/batch before VVT sync)
// Examples include Nissan MR/VQ, Miata NB, etc
return
operationMode == FOUR_STROKE_SYMMETRICAL_CRANK_SENSOR ||
operationMode == FOUR_STROKE_THREE_TIMES_CRANK_SENSOR ||
operationMode == FOUR_STROKE_TWELVE_TIMES_CRANK_SENSOR;
}
void LimpManager::onFastCallback() {
updateState(Sensor::getOrZero(SensorType::Rpm), getTimeNowNt());
}
void LimpManager::updateRevLimit(int rpm) {
// User-configured hard RPM limit, either constant or CLT-lookup
m_revLimit = engineConfiguration->useCltBasedRpmLimit
? interpolate2d(Sensor::getOrZero(SensorType::Clt), engineConfiguration->cltRevLimitRpmBins, engineConfiguration->cltRevLimitRpm)
: (float)engineConfiguration->rpmHardLimit;
// Require configurable rpm drop before resuming
m_revLimitLow = m_revLimit - engineConfiguration->rpmHardLimitHyst;
m_timingRetard = interpolateClamped(m_revLimitLow, 0, m_revLimit, engineConfiguration->rpmSoftLimitTimingRetard, rpm);
percent_t fuelAdded = interpolateClamped(m_revLimitLow, 0, m_revLimit, engineConfiguration->rpmSoftLimitFuelAdded, rpm);
m_fuelCorrection = 1.0f + fuelAdded / 100;
}
void LimpManager::updateState(int rpm, efitick_t nowNt) {
Clearable allowFuel = engineConfiguration->isInjectionEnabled;
Clearable allowSpark = engineConfiguration->isIgnitionEnabled;
#if !EFI_UNIT_TEST
if (!m_ignitionOn) {
allowFuel.clear(ClearReason::IgnitionOff);
allowSpark.clear(ClearReason::IgnitionOff);
}
#endif
if (engine->engineState.lua.luaIgnCut) {
allowSpark.clear(ClearReason::Lua);
}
updateRevLimit(rpm);
if (m_revLimitHysteresis.test(rpm, m_revLimit, m_revLimitLow)) {
if (engineConfiguration->cutFuelOnHardLimit) {
allowFuel.clear(ClearReason::HardLimit);
}
if (engineConfiguration->cutSparkOnHardLimit) {
allowSpark.clear(ClearReason::HardLimit);
}
}
#if EFI_SHAFT_POSITION_INPUT
if (noFiringUntilVvtSync(engineConfiguration->vvtMode[0])
&& !engine->triggerCentral.triggerState.hasSynchronizedPhase()) {
// Any engine that requires cam-assistance for a full crank sync (symmetrical crank) can't schedule until we have cam sync
// examples:
// NB2, Nissan VQ/MR: symmetrical crank wheel and we need to make sure no spark happens out of sync
// VTwin Harley: uneven firing order, so we need "cam" MAP sync to make sure no spark happens out of sync
allowFuel.clear(ClearReason::EnginePhase);
allowSpark.clear(ClearReason::EnginePhase);
}
#endif // EFI_SHAFT_POSITION_INPUT
// Force fuel limiting on the fault rev limit
if (rpm > m_faultRevLimit) {
allowFuel.clear(ClearReason::FaultRevLimit);
}
// Limit fuel only on boost pressure (limiting spark bends valves)
float mapCut = engineConfiguration->boostCutPressure;
if (mapCut != 0) {
// require drop of 20kPa to resume fuel
if (m_boostCutHysteresis.test(Sensor::getOrZero(SensorType::Map), mapCut, mapCut - 20)) {
allowFuel.clear(ClearReason::BoostCut);
}
}
#if EFI_SHAFT_POSITION_INPUT
if (engine->rpmCalculator.isRunning()) {
uint16_t minOilPressure = engineConfiguration->minOilPressureAfterStart;
// Only check if the setting is enabled and you have an oil pressure sensor
if (minOilPressure > 0 && Sensor::hasSensor(SensorType::OilPressure)) {
// Has it been long enough we should have pressure?
bool isTimedOut = engine->rpmCalculator.getSecondsSinceEngineStart(nowNt) > 5.0f;
// Only check before timed out
if (!isTimedOut) {
auto oilp = Sensor::get(SensorType::OilPressure);
if (oilp) {
// We had oil pressure! Set the flag.
if (oilp.Value > minOilPressure) {
m_hadOilPressureAfterStart = true;
}
}
}
// If time is up, the sensor works, and no pressure, kill the engine.
if (isTimedOut && !m_hadOilPressureAfterStart) {
allowFuel.clear(ClearReason::OilPressure);
}
}
} else {
// reset state in case of stalled engine
m_hadOilPressureAfterStart = false;
}
// If we're in engine stop mode, inhibit fuel
if (shutdownController.isEngineStop(nowNt)) {
/**
* todo: we need explicit clarification on why do we cut fuel but do not cut spark here!
*/
allowFuel.clear(ClearReason::StopRequested);
}
// If duty cycle is high, impose a fuel cut rev limiter.
// This is safer than attempting to limp along with injectors or a pump that are out of flow.
// only reset once below 20% duty to force the driver to lift
if (m_injectorDutyCutHysteresis.test(getInjectorDutyCycle(rpm), 96, 20)) {
allowFuel.clear(ClearReason::InjectorDutyCycle);
}
// If the pedal is pushed while not running, cut fuel to clear a flood condition.
if (!engine->rpmCalculator.isRunning() &&
engineConfiguration->isCylinderCleanupEnabled &&
Sensor::getOrZero(SensorType::DriverThrottleIntent) > CLEANUP_MODE_TPS) {
allowFuel.clear(ClearReason::FloodClear);
}
if (!engine->isMainRelayEnabled()) {
/*
todo AndreiKA this change breaks 22 unit tests?
allowFuel.clear();
allowSpark.clear();
*/
}
#endif // EFI_SHAFT_POSITION_INPUT
#if EFI_LAUNCH_CONTROL
// Fuel cut if launch control engaged
if (engine->launchController.isLaunchFuelRpmRetardCondition()) {
allowFuel.clear(ClearReason::LaunchCut);
}
// Spark cut if launch control engaged
if (engine->launchController.isLaunchSparkRpmRetardCondition()) {
allowSpark.clear(ClearReason::LaunchCut);
}
#endif // EFI_LAUNCH_CONTROL
m_transientAllowInjection = allowFuel;
m_transientAllowIgnition = allowSpark;
}
void LimpManager::onIgnitionStateChanged(bool ignitionOn) {
m_ignitionOn = ignitionOn;
}
void LimpManager::reportEtbProblem() {
m_allowEtb.clear(ClearReason::EtbProblem);
setFaultRevLimit(/*rpm*/1500);
}
void LimpManager::fatalError() {
m_allowEtb.clear(ClearReason::Fatal);
m_allowIgnition.clear(ClearReason::Fatal);
m_allowInjection.clear(ClearReason::Fatal);
m_allowTriggerInput.clear(ClearReason::Fatal);
setFaultRevLimit(/*rpm*/0);
}
void LimpManager::setFaultRevLimit(int limit) {
// Only allow decreasing the limit
// aka uses the limit of the worst fault to yet occur
m_faultRevLimit = minI(m_faultRevLimit, limit);
}
bool LimpManager::allowElectronicThrottle() const {
return m_allowEtb;
}
bool LimpManager::allowTriggerInput() const {
return m_allowTriggerInput;
}
LimpState LimpManager::allowInjection() const {
if (!m_allowInjection) {
return {false, m_allowInjection.clearReason};
}
if (!m_transientAllowInjection) {
return {false, m_transientAllowInjection.clearReason};
}
return {true, ClearReason::None};
}
LimpState LimpManager::allowIgnition() const {
if (!m_allowIgnition) {
return {false, m_allowIgnition.clearReason};
}
if (!m_transientAllowIgnition) {
return {false, m_transientAllowIgnition.clearReason};
}
return {true, ClearReason::None};
}
angle_t LimpManager::getLimitingTimingRetard() const {
if (!engineConfiguration->cutSparkOnHardLimit)
return 0;
return m_timingRetard;
}
float LimpManager::getLimitingFuelCorrection() const {
if (!engineConfiguration->cutFuelOnHardLimit)
return 1.0f; // no correction
return m_fuelCorrection;
}