custom-board-bundle-sample-.../firmware/controllers/sensors/impl/ego.cpp

175 lines
5.4 KiB
C++

/**
* @author Andrey Belomutskiy, (c) 2012-2020
*
* EGO Exhaust Gas Oxygen, also known as AFR Air/Fuel Ratio :)
*
* rusEfi has three options for wideband:
* 1) integration with external widebands using liner analog signal wire
* 2) 8-point interpolation curve to emulate a wide-band with a narrow-band sensor.
* 3) CJ125 internal wideband controller is known to work with both 4.2 and 4.9
*
*/
#include "pch.h"
#include "cyclic_buffer.h"
#ifdef EFI_NARROW_EGO_AVERAGING
// Needed by narrow EGOs (see updateEgoAverage()).
// getAfr() is called at ~50Hz, so we store at most (1<<3)*32 EGO values for ~5 secs.
#define EGO_AVG_SHIFT 3
#define EGO_AVG_BUF_SIZE 32 // 32*sizeof(float)
static bool useAveraging = false;
// Circular running-average buffer, used by CIC-like averaging filter
static cyclic_buffer<float, EGO_AVG_BUF_SIZE> egoAfrBuf;
// Total ego iterations (>240 days max. for 10ms update period)
static int totalEgoCnt = 0;
// We need this to calculate the real number of values stored in the buffer.
static int prevEgoCnt = 0;
// todo: move it to engineConfiguration
static const float stoichAfr = STOICH_RATIO;
static const float maxAfrDeviation = 5.0f; // 9.7..19.7
static const int minAvgSize = (EGO_AVG_BUF_SIZE / 2); // ~0.6 sec for 20ms period of 'fast' callback, and it matches a lag time of most narrow EGOs
static const int maxAvgSize = (EGO_AVG_BUF_SIZE - 1); // the whole buffer
#ifdef EFI_NARROW_EGO_AVERAGING
// we store the last measured AFR value to predict the current averaging window size
static float lastAfr = stoichAfr;
#endif
void initEgoAveraging() {
// Our averaging is intended for use only with Narrow EGOs.
if (engineConfiguration->afr_type == ES_NarrowBand) {
totalEgoCnt = prevEgoCnt = 0;
egoAfrBuf.clear();
useAveraging = true;
}
}
static float updateEgoAverage(float afr) {
// use a variation of cascaded integrator-comb (CIC) filtering
totalEgoCnt++;
int localBufPos = (totalEgoCnt >> EGO_AVG_SHIFT) % EGO_AVG_BUF_SIZE;
int localPrevBufPos = ((totalEgoCnt - 1) >> EGO_AVG_SHIFT) % EGO_AVG_BUF_SIZE;
// reset old buffer cell
if (localPrevBufPos != localBufPos) {
egoAfrBuf.elements[localBufPos] = 0;
// Remove (1 << EGO_AVG_SHIFT) elements from our circular buffer (except for the 1st cycle).
if (totalEgoCnt >= (EGO_AVG_BUF_SIZE << EGO_AVG_SHIFT))
prevEgoCnt += (1 << EGO_AVG_SHIFT);
}
// integrator stage
egoAfrBuf.elements[localBufPos] += afr;
// Change window size depending on |AFR-stoich| deviation.
// The narrow EGO is very noisy when AFR is close to shoich.
// And we need the fastest EGO response when AFR has the extreme deviation (way too lean/rich).
float avgSize = maxAvgSize;//interpolateClamped(minAvgSize, maxAfrDeviation, maxAvgSize, 0.0f, absF(lastAfr - stoichAfr));
// choose the number of recently filled buffer cells for averaging
int avgCnt = (int)efiRound(avgSize, 1.0f) << EGO_AVG_SHIFT;
// limit averaging count to the real stored count
int startAvgCnt = maxI(totalEgoCnt - avgCnt, prevEgoCnt);
// return moving average of N last sums
float egoAfrSum = 0;
for (int i = (totalEgoCnt >> EGO_AVG_SHIFT); i >= (startAvgCnt >> EGO_AVG_SHIFT); i--) {
egoAfrSum += egoAfrBuf.elements[i % EGO_AVG_BUF_SIZE];
}
// we divide by a real number of stored values to get an exact average
return egoAfrSum / float(totalEgoCnt - startAvgCnt);
}
#else
void initEgoAveraging() {
}
#endif
bool hasAfrSensor() {
if (engineConfiguration->enableAemXSeries || engineConfiguration->enableInnovateLC2) {
return true;
}
return isAdcChannelValid(engineConfiguration->afr.hwChannel);
}
extern float InnovateLC2AFR;
float getAfr(SensorType type) {
#if EFI_AUX_SERIAL
if (engineConfiguration->enableInnovateLC2)
return InnovateLC2AFR;
#endif
afr_sensor_s * sensor = &engineConfiguration->afr;
if (!isAdcChannelValid(type == SensorType::Lambda1 ? engineConfiguration->afr.hwChannel : engineConfiguration->afr.hwChannel2)) {
return 0;
}
float volts = getVoltageDivided("ego", type == SensorType::Lambda1 ? sensor->hwChannel : sensor->hwChannel2);
if (engineConfiguration->afr_type == ES_NarrowBand) {
float afr = interpolate2d(volts, config->narrowToWideOxygenBins, config->narrowToWideOxygen);
#ifdef EFI_NARROW_EGO_AVERAGING
if (useAveraging)
afr = updateEgoAverage(afr);
return (lastAfr = afr);
#else
return afr;
#endif
}
return interpolateMsg("AFR", sensor->v1, sensor->value1, sensor->v2, sensor->value2, volts)
+ engineConfiguration->egoValueShift;
}
static void initEgoSensor(afr_sensor_s *sensor, ego_sensor_e type) {
switch (type) {
case ES_BPSX_D1:
/**
* This decodes BPSX D1 Wideband Controller analog signal
*/
sensor->v1 = 0;
sensor->value1 = 9;
sensor->v2 = 5;
sensor->value2 = 19;
break;
case ES_Innovate_MTX_L:
sensor->v1 = 0;
sensor->value1 = 7.35;
sensor->v2 = 5;
sensor->value2 = 22.39;
break;
case ES_14Point7_Free:
sensor->v1 = 0;
sensor->value1 = 9.996;
sensor->v2 = 5;
sensor->value2 = 19.992;
break;
// technically 14Point7 and PLX use the same scale
case ES_PLX:
sensor->v1 = 0;
sensor->value1 = 10;
sensor->v2 = 5;
sensor->value2 = 20;
break;
case ES_NarrowBand:
sensor->v1 = 0.1;
sensor->value1 = 15;
sensor->v2 = 0.9;
sensor->value2 = 14;
break;
default:
firmwareError(ObdCode::CUSTOM_EGO_TYPE, "Unexpected EGO %d", type);
break;
}
}
void setEgoSensor(ego_sensor_e type) {
engineConfiguration->afr_type = type;
initEgoSensor(&engineConfiguration->afr, type);
}