custom-board-bundle-sample-.../firmware/hw_layer/ports/stm32/flash_int.c

439 lines
11 KiB
C

/**
*
* http://www.chibios.com/forum/viewtopic.php?f=8&t=820
* https://github.com/tegesoft/flash-stm32f407
*
* @file flash_int.c
* @brief Lower-level code related to internal flash memory
*/
#include "global.h"
#include "os_access.h"
#if EFI_INTERNAL_FLASH
#include "flash_int.h"
#include <string.h>
#ifdef STM32H7XX
// Use bank 2 on H7
#define FLASH_CR FLASH->CR2
#define FLASH_SR FLASH->SR2
#define FLASH_KEYR FLASH->KEYR2
// I have no idea why ST changed the register name from STRT -> START
#define FLASH_CR_STRT FLASH_CR_START
#undef FLASH_BASE
// This is the start of the second bank, since H7 sector numbers are bank relative
#define FLASH_BASE 0x08100000
// QW bit supercedes the older BSY bit
#define intFlashWaitWhileBusy() do { __DSB(); } while (FLASH_SR & FLASH_SR_QW);
#else
#define FLASH_CR FLASH->CR
#define FLASH_SR FLASH->SR
#define FLASH_KEYR FLASH->KEYR
// Wait for the flash operation to finish
#define intFlashWaitWhileBusy() do { __DSB(); } while (FLASH->SR & FLASH_SR_BSY);
#endif
flashaddr_t intFlashSectorBegin(flashsector_t sector) {
flashaddr_t address = FLASH_BASE;
while (sector > 0) {
--sector;
address += flashSectorSize(sector);
}
return address;
}
flashaddr_t intFlashSectorEnd(flashsector_t sector) {
return intFlashSectorBegin(sector + 1);
}
flashsector_t intFlashSectorAt(flashaddr_t address) {
flashsector_t sector = 0;
while (address >= intFlashSectorEnd(sector))
++sector;
return sector;
}
static void intFlashClearErrors(void)
{
#ifdef STM32H7XX
FLASH->CCR2 = 0xffffffff;
#else
FLASH_SR = 0x0000ffff;
#endif
}
static int intFlashCheckErrors(void)
{
uint32_t sr = FLASH_SR;
#ifdef FLASH_SR_OPERR
if (sr & FLASH_SR_OPERR)
return FLASH_RETURN_OPERROR;
#endif
if (sr & FLASH_SR_WRPERR)
return FLASH_RETURN_WPERROR;
#ifdef FLASH_SR_PGAERR
if (sr & FLASH_SR_PGAERR)
return FLASH_RETURN_ALIGNERROR;
#endif
#ifdef FLASH_SR_PGPERR
if (sr & FLASH_SR_PGPERR)
return FLASH_RETURN_PPARALLERROR;
#endif
#ifdef FLASH_SR_ERSERR
if (sr & FLASH_SR_ERSERR)
return FLASH_RETURN_ESEQERROR;
#endif
#ifdef FLASH_SR_PGSERR
if (sr & FLASH_SR_PGSERR)
return FLASH_RETURN_PSEQERROR;
#endif
return FLASH_RETURN_SUCCESS;
}
/**
* @brief Unlock the flash memory for write access.
* @return HAL_SUCCESS Unlock was successful.
* @return HAL_FAILED Unlock failed.
*/
static bool intFlashUnlock(void) {
/* Check if unlock is really needed */
if (!(FLASH_CR & FLASH_CR_LOCK))
return HAL_SUCCESS;
/* Write magic unlock sequence */
FLASH_KEYR = 0x45670123;
FLASH_KEYR = 0xCDEF89AB;
/* Check if unlock was successful */
if (FLASH_CR & FLASH_CR_LOCK)
return HAL_FAILED;
return HAL_SUCCESS;
}
/**
* @brief Lock the flash memory for write access.
*/
#define intFlashLock() { FLASH_CR |= FLASH_CR_LOCK; }
#ifdef STM32F7XX
static bool isDualBank(void) {
// cleared bit indicates dual bank
return (FLASH->OPTCR & FLASH_OPTCR_nDBANK) == 0;
}
#endif
int intFlashSectorErase(flashsector_t sector) {
int ret;
uint8_t sectorRegIdx = sector;
#ifdef STM32F7XX
// On dual bank STM32F7, sector index doesn't match register value.
// High bit indicates bank, low 4 bits indicate sector within bank.
// Since each bank has 12 sectors, increment second-bank sector idx
// by 4 so that the first sector of the second bank (12) ends up with
// index 16 (0b10000)
if (isDualBank() && sectorRegIdx >= 12) {
sectorRegIdx -= 12;
/* bit 4 defines bank.
* Sectors starting from 12 are in bank #2 */
sectorRegIdx |= 0x10;
}
#endif
/* Unlock flash for write access */
if (intFlashUnlock() == HAL_FAILED)
return FLASH_RETURN_NO_PERMISSION;
/* Wait for any busy flags. */
intFlashWaitWhileBusy();
/* Clearing error status bits.*/
intFlashClearErrors();
/* Setup parallelism before any program/erase */
FLASH_CR &= ~FLASH_CR_PSIZE_MASK;
FLASH_CR |= FLASH_CR_PSIZE_VALUE;
/* Start deletion of sector.
* SNB(4:1) is defined as:
* 00000 sector 0
* 00001 sector 1
* ...
* 01011 sector 11 (the end of 1st bank, 1Mb border)
* 10000 sector 12 (start of 2nd bank)
* ...
* 11011 sector 23 (the end of 2nd bank, 2Mb border)
* others not allowed */
FLASH_CR &= ~FLASH_CR_SNB_Msk;
FLASH_CR |= (sectorRegIdx << FLASH_CR_SNB_Pos) & FLASH_CR_SNB_Msk;
/* sector erase */
FLASH_CR |= FLASH_CR_SER;
/* start erase operation */
FLASH_CR |= FLASH_CR_STRT;
/* Wait until it's finished. */
intFlashWaitWhileBusy();
/* Sector erase flag does not clear automatically. */
FLASH_CR &= ~FLASH_CR_SER;
/* Lock flash again */
intFlashLock()
;
ret = intFlashCheckErrors();
if (ret != FLASH_RETURN_SUCCESS)
return ret;
/* Check deleted sector for errors */
if (intFlashIsErased(intFlashSectorBegin(sector), flashSectorSize(sector)) == FALSE)
return FLASH_RETURN_BAD_FLASH; /* Sector is not empty despite the erase cycle! */
/* Successfully deleted sector */
return FLASH_RETURN_SUCCESS;
}
int intFlashErase(flashaddr_t address, size_t size) {
while (size > 0) {
flashsector_t sector = intFlashSectorAt(address);
int err = intFlashSectorErase(sector);
if (err != FLASH_RETURN_SUCCESS)
return err;
address = intFlashSectorEnd(sector);
size_t sector_size = flashSectorSize(sector);
if (sector_size >= size)
break;
size -= sector_size;
}
return FLASH_RETURN_SUCCESS;
}
bool intFlashIsErased(flashaddr_t address, size_t size) {
#if CORTEX_MODEL == 7
// If we have a cache, invalidate the relevant cache lines.
// They may still contain old data, leading us to believe that the
// flash erase failed.
SCB_InvalidateDCache_by_Addr((uint32_t*)address, size);
#endif
/* Check for default set bits in the flash memory
* For efficiency, compare flashdata_t values as much as possible,
* then, fallback to byte per byte comparison. */
while (size >= sizeof(flashdata_t)) {
if (*(volatile flashdata_t*) address != (flashdata_t) (-1)) // flashdata_t being unsigned, -1 is 0xFF..FF
return false;
address += sizeof(flashdata_t);
size -= sizeof(flashdata_t);
}
while (size > 0) {
if (*(char*) address != 0xFF)
return false;
++address;
--size;
}
return TRUE;
}
bool intFlashCompare(flashaddr_t address, const char* buffer, size_t size) {
/* For efficiency, compare flashdata_t values as much as possible,
* then, fallback to byte per byte comparison. */
while (size >= sizeof(flashdata_t)) {
if (*(volatile flashdata_t*) address != *(flashdata_t*) buffer)
return FALSE;
address += sizeof(flashdata_t);
buffer += sizeof(flashdata_t);
size -= sizeof(flashdata_t);
}
while (size > 0) {
if (*(volatile char*) address != *buffer)
return FALSE;
++address;
++buffer;
--size;
}
return TRUE;
}
int intFlashRead(flashaddr_t address, char* buffer, size_t size) {
#if CORTEX_MODEL == 7
// If we have a cache, invalidate the relevant cache lines.
// They may still contain old data, leading us to read invalid data.
SCB_InvalidateDCache_by_Addr((uint32_t*)address, size);
#endif
memcpy(buffer, (char*) address, size);
return FLASH_RETURN_SUCCESS;
}
#ifdef STM32H7XX
int intFlashWrite(flashaddr_t address, const char* buffer, size_t size) {
/* Unlock flash for write access */
if (intFlashUnlock() == HAL_FAILED)
return FLASH_RETURN_NO_PERMISSION;
/* Wait for any busy flags */
intFlashWaitWhileBusy();
/* Setup parallelism before program */
FLASH_CR &= ~FLASH_CR_PSIZE_MASK;
FLASH_CR |= FLASH_CR_PSIZE_VALUE;
// Round up to the next number of full 32 byte words
size_t flashWordCount = (size - 1) / 32 + 1;
// Read units of flashdata_t from the buffer, writing to flash
const flashdata_t* pRead = (const flashdata_t*)buffer;
flashdata_t* pWrite = (flashdata_t*)address;
for (size_t word = 0; word < flashWordCount; word++) {
/* Enter flash programming mode */
FLASH_CR |= FLASH_CR_PG;
// Flush pipelines
__ISB();
__DSB();
// Write 32 bytes
for (size_t i = 0; i < 8; i++) {
*pWrite++ = *pRead++;
}
// Flush pipelines
__ISB();
__DSB();
/* Wait for completion */
intFlashWaitWhileBusy();
/* Exit flash programming mode */
FLASH_CR &= ~FLASH_CR_PG;
// Flush pipelines
__ISB();
__DSB();
}
/* Lock flash again */
intFlashLock();
return FLASH_RETURN_SUCCESS;
}
#else // not STM32H7XX
static int intFlashWriteData(flashaddr_t address, const flashdata_t data) {
/* Clearing error status bits.*/
intFlashClearErrors();
/* Enter flash programming mode */
FLASH->CR |= FLASH_CR_PG;
/* Write the data */
*(flashdata_t*) address = data;
// Cortex-M7 (STM32F7/H7) can execute out order - need to force a full flush
// so that we actually wait for the operation to complete!
#if CORTEX_MODEL == 7
__DSB();
#endif
/* Wait for completion */
intFlashWaitWhileBusy();
/* Exit flash programming mode */
FLASH->CR &= ~FLASH_CR_PG;
return intFlashCheckErrors();
}
int intFlashWrite(flashaddr_t address, const char* buffer, size_t size) {
int ret = FLASH_RETURN_SUCCESS;
/* Unlock flash for write access */
if (intFlashUnlock() == HAL_FAILED)
return FLASH_RETURN_NO_PERMISSION;
/* Wait for any busy flags */
intFlashWaitWhileBusy();
/* Setup parallelism before any program/erase */
FLASH->CR &= ~FLASH_CR_PSIZE_MASK;
FLASH->CR |= FLASH_CR_PSIZE_VALUE;
/* Check if the flash address is correctly aligned */
size_t alignOffset = address % sizeof(flashdata_t);
// print("flash alignOffset=%d\r\n", alignOffset);
if (alignOffset != 0) {
/* Not aligned, thus we have to read the data in flash already present
* and update them with buffer's data */
/* Align the flash address correctly */
flashaddr_t alignedFlashAddress = address - alignOffset;
/* Read already present data */
flashdata_t tmp = *(volatile flashdata_t*) alignedFlashAddress;
/* Compute how much bytes one must update in the data read */
size_t chunkSize = sizeof(flashdata_t) - alignOffset;
if (chunkSize > size)
chunkSize = size; // this happens when both address and address + size are not aligned
/* Update the read data with buffer's data */
memcpy((char*) &tmp + alignOffset, buffer, chunkSize);
/* Write the new data in flash */
ret = intFlashWriteData(alignedFlashAddress, tmp);
if (ret != FLASH_RETURN_SUCCESS)
goto exit;
/* Advance */
address += chunkSize;
buffer += chunkSize;
size -= chunkSize;
}
/* Now, address is correctly aligned. One can copy data directly from
* buffer's data to flash memory until the size of the data remaining to be
* copied requires special treatment. */
while (size >= sizeof(flashdata_t)) {
// print("flash write size=%d\r\n", size);
ret = intFlashWriteData(address, *(const flashdata_t*) buffer);
if (ret != FLASH_RETURN_SUCCESS)
goto exit;
address += sizeof(flashdata_t);
buffer += sizeof(flashdata_t);
size -= sizeof(flashdata_t);
}
/* Now, address is correctly aligned, but the remaining data are to
* small to fill a entier flashdata_t. Thus, one must read data already
* in flash and update them with buffer's data before writing an entire
* flashdata_t to flash memory. */
if (size > 0) {
flashdata_t tmp = *(volatile flashdata_t*) address;
memcpy(&tmp, buffer, size);
ret = intFlashWriteData(address, tmp);
if (ret != FLASH_RETURN_SUCCESS)
goto exit;
}
exit:
/* Lock flash again */
intFlashLock()
;
return ret;
}
#endif
#endif /* EFI_INTERNAL_FLASH */