custom-board-bundle-sample-.../firmware/console/binary/serial_can.cpp

404 lines
12 KiB
C++

/**
* @file serial_can.cpp
*
* This code is a bridge between a serial streaming used by TS and a packet-frame CAN-bus, using the ISO-TP protocol.
* ISO 15765-2, or ISO-TP (Transport Layer), which is an international standard for sending data packets over a CAN-Bus.
* https://en.wikipedia.org/wiki/ISO_15765-2
*
* @date Aug 1, 2020
* @author andreika <prometheus.pcb@gmail.com>
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#include "pch.h"
#include "os_access.h"
#include "crc.h"
#if EFI_UNIT_TEST
#define PRINT printf
#define PRINT_EOL "\n"
#else
#define PRINT efiPrintf
#define PRINT_EOL ""
#endif
// todo: this file is asking to improve conditional compilation. unit_tests and cypress/kinetis are both special cases
#if HAL_USE_CAN || EFI_UNIT_TEST
#include "serial_can.h"
#include "can.h"
#include "can_msg_tx.h"
#endif // HAL_USE_CAN || EFI_UNIT_TEST
#if HAL_USE_CAN
static CanStreamer streamer;
static CanStreamerState state(&streamer);
static CanTsListener listener;
#endif // HAL_USE_CAN
#if HAL_USE_CAN || EFI_UNIT_TEST
int CanStreamerState::sendFrame(const IsoTpFrameHeader & header, const uint8_t *data, int num, can_sysinterval_t timeout) {
int dlc = 8; // standard 8 bytes
CanTxMessage txmsg(CAN_ECU_SERIAL_TX_ID, dlc, false);
// fill the frame data according to the CAN-TP protocol (ISO 15765-2)
txmsg[0] = (uint8_t)((header.frameType & 0xf) << 4);
int offset, maxNumBytes;
switch (header.frameType) {
case ISO_TP_FRAME_SINGLE:
offset = 1;
maxNumBytes = minI(header.numBytes, dlc - offset);
txmsg[0] |= maxNumBytes;
break;
case ISO_TP_FRAME_FIRST:
txmsg[0] |= (header.numBytes >> 8) & 0xf;
txmsg[1] = (uint8_t)(header.numBytes & 0xff);
offset = 2;
maxNumBytes = minI(header.numBytes, dlc - offset);
break;
case ISO_TP_FRAME_CONSECUTIVE:
txmsg[0] |= header.index & 0xf;
offset = 1;
// todo: is it correct?
maxNumBytes = dlc - offset;
break;
case ISO_TP_FRAME_FLOW_CONTROL:
txmsg[0] |= header.fcFlag & 0xf;
txmsg[1] = (uint8_t)(header.blockSize);
txmsg[2] = (uint8_t)(header.separationTime);
offset = 3;
maxNumBytes = 0; // no data is sent with 'flow control' frame
break;
}
int numBytes = minI(maxNumBytes, num);
// copy the contents
if (data != nullptr) {
for (int i = 0; i < numBytes; i++) {
txmsg[i + offset] = data[i];
}
}
// send the frame!
if (streamer->transmit(CAN_ANY_MAILBOX, &txmsg, timeout) == CAN_MSG_OK)
return numBytes;
return 0;
}
// returns the number of copied bytes
int CanStreamerState::receiveFrame(CANRxFrame *rxmsg, uint8_t *buf, int num, can_sysinterval_t timeout) {
if (rxmsg == nullptr || rxmsg->DLC < 1)
return 0;
engine->pauseCANdueToSerial = true;
int frameType = (rxmsg->data8[0] >> 4) & 0xf;
int numBytesAvailable, frameIdx;
uint8_t *srcBuf = rxmsg->data8;
switch (frameType) {
case ISO_TP_FRAME_SINGLE:
numBytesAvailable = rxmsg->data8[0] & 0xf;
srcBuf = rxmsg->data8 + 1;
this->waitingForNumBytes = -1;
break;
case ISO_TP_FRAME_FIRST:
this->waitingForNumBytes = ((rxmsg->data8[0] & 0xf) << 8) | rxmsg->data8[1];
this->waitingForFrameIndex = 1;
numBytesAvailable = minI(this->waitingForNumBytes, 6);
srcBuf = rxmsg->data8 + 2;
break;
case ISO_TP_FRAME_CONSECUTIVE:
frameIdx = rxmsg->data8[0] & 0xf;
if (this->waitingForNumBytes < 0 || this->waitingForFrameIndex != frameIdx) {
// todo: that's an abnormal situation, and we probably should react?
return 0;
}
numBytesAvailable = minI(this->waitingForNumBytes, 7);
srcBuf = rxmsg->data8 + 1;
this->waitingForFrameIndex = (this->waitingForFrameIndex + 1) & 0xf;
break;
case ISO_TP_FRAME_FLOW_CONTROL:
// todo: currently we just ignore the FC frame
return 0;
}
#if defined(TS_CAN_DEVICE_SHORT_PACKETS_IN_ONE_FRAME)
if (frameType == ISO_TP_FRAME_SINGLE) {
// restore the CRC on the whole packet
uint32_t crc = crc32((void *) srcBuf, numBytesAvailable);
// we need a separate buffer for crc because srcBuf may not be word-aligned for direct copy
uint8_t crcBuffer[sizeof(uint32_t)];
*(uint32_t *) (crcBuffer) = SWAP_UINT32(crc);
// now set the packet size
*(uint16_t *) tmpRxBuf = SWAP_UINT16(numBytesAvailable);
// copy the data
if (numBytesAvailable > 0)
memcpy(tmpRxBuf + sizeof(uint16_t), srcBuf, numBytesAvailable);
// copy the crc to the end
memcpy(tmpRxBuf + sizeof(uint16_t) + numBytesAvailable, crcBuffer, sizeof(crcBuffer));
// use the reconstructed tmp buffer as a source buffer
srcBuf = tmpRxBuf;
// we added the 16-bit size & 32-bit crc bytes
numBytesAvailable += sizeof(uint16_t) + sizeof(crcBuffer);
}
#endif /* TS_CAN_DEVICE_SHORT_PACKETS_IN_ONE_FRAME */
int numBytesToCopy = minI(num, numBytesAvailable);
if (buf != nullptr) {
memcpy(buf, srcBuf, numBytesToCopy);
}
srcBuf += numBytesToCopy;
waitingForNumBytes -= numBytesAvailable;
numBytesAvailable -= numBytesToCopy;
// if there are some more bytes left, we save them for the next time
for (int i = 0; i < numBytesAvailable; i++) {
rxFifoBuf.put(srcBuf[i]);
}
// according to the specs, we need to acknowledge the received multi-frame start frame
if (frameType == ISO_TP_FRAME_FIRST) {
IsoTpFrameHeader header;
header.frameType = ISO_TP_FRAME_FLOW_CONTROL;
header.fcFlag = 0; // = "continue to send"
header.blockSize = 0; // = the remaining "frames" to be sent without flow control or delay
header.separationTime = 0; // = wait 0 milliseconds, send immediately
sendFrame(header, nullptr, 0, timeout);
}
return numBytesToCopy;
}
int CanStreamerState::sendDataTimeout(const uint8_t *txbuf, int numBytes, can_sysinterval_t timeout) {
int offset = 0;
#ifdef SERIAL_CAN_DEBUG
PRINT("*** INFO: sendDataTimeout %d" PRINT_EOL, numBytes);
#endif /* SERIAL_CAN_DEBUG */
if (numBytes < 1)
return 0;
// 1 frame
if (numBytes <= 7) {
IsoTpFrameHeader header;
header.frameType = ISO_TP_FRAME_SINGLE;
header.numBytes = numBytes;
return sendFrame(header, txbuf, numBytes, timeout);
}
// multiple frames
// send the first header frame (FF)
IsoTpFrameHeader header;
header.frameType = ISO_TP_FRAME_FIRST;
header.numBytes = numBytes;
int numSent = sendFrame(header, txbuf + offset, numBytes, timeout);
offset += numSent;
numBytes -= numSent;
int totalNumSent = numSent;
// get a flow control (FC) frame
#if !EFI_UNIT_TEST // todo: add FC to unit-tests?
CANRxFrame rxmsg;
for (int numFcReceived = 0; ; numFcReceived++) {
if (streamer->receive(CAN_ANY_MAILBOX, &rxmsg, timeout) != CAN_MSG_OK) {
#ifdef SERIAL_CAN_DEBUG
PRINT("*** ERROR: CAN Flow Control frame not received" PRINT_EOL);
#endif /* SERIAL_CAN_DEBUG */
//warning(CUSTOM_ERR_CAN_COMMUNICATION, "CAN Flow Control frame not received");
return 0;
}
receiveFrame(&rxmsg, nullptr, 0, timeout);
int flowStatus = rxmsg.data8[0] & 0xf;
// if something is not ok
if (flowStatus != CAN_FLOW_STATUS_OK) {
// if the receiver is not ready yet and asks to wait for the next FC frame (give it 3 attempts)
if (flowStatus == CAN_FLOW_STATUS_WAIT_MORE && numFcReceived < 3) {
continue;
}
#ifdef SERIAL_CAN_DEBUG
efiPrintf("*** ERROR: CAN Flow Control mode not supported");
#endif /* SERIAL_CAN_DEBUG */
//warning(CUSTOM_ERR_CAN_COMMUNICATION, "CAN Flow Control mode not supported");
return 0;
}
int blockSize = rxmsg.data8[1];
int minSeparationTime = rxmsg.data8[2];
if (blockSize != 0 || minSeparationTime != 0) {
// todo: process other Flow Control fields (see ISO 15765-2)
#ifdef SERIAL_CAN_DEBUG
efiPrintf("*** ERROR: CAN Flow Control fields not supported");
#endif /* SERIAL_CAN_DEBUG */
//warning(CUSTOM_ERR_CAN_COMMUNICATION, "CAN Flow Control fields not supported");
}
break;
}
#endif /* EFI_UNIT_TEST */
// send the rest of the data
int idx = 1;
while (numBytes > 0) {
int len = minI(numBytes, 7);
// send the consecutive frames
IsoTpFrameHeader header;
header.frameType = ISO_TP_FRAME_CONSECUTIVE;
header.index = ((idx++) & 0x0f);
header.numBytes = len;
int numSent = sendFrame(header, txbuf + offset, len, timeout);
if (numSent < 1)
break;
totalNumSent += numSent;
offset += numSent;
numBytes -= numSent;
}
return totalNumSent;
}
int CanStreamerState::getDataFromFifo(uint8_t *rxbuf, size_t &numBytes) {
if (rxFifoBuf.isEmpty())
return 0;
int numReadFromFifo = minI(numBytes, rxFifoBuf.getCount());
// move bytes from the FIFO buffer
int i;
for (i = 0; !rxFifoBuf.isEmpty() && i < numReadFromFifo; i++) {
rxbuf[i] = rxFifoBuf.get();
numBytes--;
}
return i;
}
can_msg_t CanStreamerState::streamAddToTxTimeout(size_t *np, const uint8_t *txbuf, can_sysinterval_t timeout) {
int numBytes = *np;
int offset = 0;
#ifdef SERIAL_CAN_DEBUG
PRINT("*** INFO: streamAddToTxTimeout adding %d, in buffer %d" PRINT_EOL, numBytes, txFifoBuf.getCount());
#endif /* SERIAL_CAN_DEBUG */
// we send here only if the TX FIFO buffer is getting overflowed
while (numBytes >= txFifoBuf.getSize() - txFifoBuf.getCount()) {
int numBytesToAdd = txFifoBuf.getSize() - txFifoBuf.getCount();
txFifoBuf.put(txbuf + offset, numBytesToAdd);
int numSent = sendDataTimeout((const uint8_t *)txFifoBuf.getElements(), txFifoBuf.getCount(), timeout);
#ifdef SERIAL_CAN_DEBUG
PRINT("*** INFO: streamAddToTxTimeout numBytesToAdd %d / numSent %d / numBytes %d" PRINT_EOL, numBytesToAdd, numSent, numBytes);
#endif /* SERIAL_CAN_DEBUG */
if (numSent < 1)
break;
txFifoBuf.clear();
offset += numBytesToAdd;
numBytes -= numBytesToAdd;
}
#ifdef SERIAL_CAN_DEBUG
PRINT("*** INFO: streamAddToTxTimeout remaining goes to buffer %d" PRINT_EOL, numBytes);
#endif /* SERIAL_CAN_DEBUG */
// now we put the rest on hold
txFifoBuf.put(txbuf + offset, numBytes);
#ifdef SERIAL_CAN_DEBUG
PRINT("*** INFO: in buffer %d" PRINT_EOL, txFifoBuf.getCount());
#endif /* SERIAL_CAN_DEBUG */
return CAN_MSG_OK;
}
can_msg_t CanStreamerState::streamFlushTx(can_sysinterval_t timeout) {
int numSent = sendDataTimeout((const uint8_t *)txFifoBuf.getElements(), txFifoBuf.getCount(), timeout);
if (numSent != txFifoBuf.getCount()) {
//warning(CUSTOM_ERR_CAN_COMMUNICATION, "CAN sendDataTimeout() problems");
}
txFifoBuf.clear();
return CAN_MSG_OK;
}
can_msg_t CanStreamerState::streamReceiveTimeout(size_t *np, uint8_t *rxbuf, can_sysinterval_t timeout) {
int i = 0;
size_t numBytes = *np;
// first, fill the data from the stored buffer (saved from the previous CAN frame)
i = getDataFromFifo(rxbuf, numBytes);
// if even more data is needed, then we receive more CAN frames
while (numBytes > 0) {
CANRxFrame rxmsg;
if (streamer->receive(CAN_ANY_MAILBOX, &rxmsg, timeout) == CAN_MSG_OK) {
int numReceived = receiveFrame(&rxmsg, rxbuf + i, numBytes, timeout);
if (numReceived < 1)
break;
numBytes -= numReceived;
i += numReceived;
} else {
break;
}
}
*np -= numBytes;
#ifdef SERIAL_CAN_DEBUG
efiPrintf("* ret: %d %d (%d)", i, *np, numBytes);
for (int j = 0; j < i; j++) {
efiPrintf("* [%d]: %02x", j, rxbuf[j]);
}
#endif /* SERIAL_CAN_DEBUG */
return CAN_MSG_OK;
}
void CanTsListener::decodeFrame(const CANRxFrame& frame, efitick_t /*nowNt*/) {
// todo: what if the FIFO is full?
CanRxMessage msg(frame);
if (!rxFifo.put(msg)) {
//warning(CUSTOM_ERR_CAN_COMMUNICATION, "CAN sendDataTimeout() problems");
}
}
#if HAL_USE_CAN
void CanStreamer::init() {
registerCanListener(listener);
}
can_msg_t CanStreamer::transmit(canmbx_t /*mailbox*/, const CanTxMessage */*ctfp*/, can_sysinterval_t /*timeout*/) {
// we do nothing here - see CanTxMessage::~CanTxMessage()
return CAN_MSG_OK;
}
can_msg_t CanStreamer::receive(canmbx_t /*mailbox*/, CANRxFrame *crfp, can_sysinterval_t timeout) {
// see CanTsListener and processCanRxMessage()
CanRxMessage msg;
if (listener.get(msg, timeout)) {
*crfp = msg.frame;
return CAN_MSG_OK;
}
return CAN_MSG_TIMEOUT;
}
void canStreamInit(void) {
streamer.init();
}
msg_t canStreamAddToTxTimeout(size_t *np, const uint8_t *txbuf, sysinterval_t timeout) {
return state.streamAddToTxTimeout(np, txbuf, timeout);
}
msg_t canStreamFlushTx(sysinterval_t timeout) {
return state.streamFlushTx(timeout);
}
msg_t canStreamReceiveTimeout(size_t *np, uint8_t *rxbuf, sysinterval_t timeout) {
return state.streamReceiveTimeout(np, rxbuf, timeout);
}
#endif /* HAL_USE_CAN */
#endif // HAL_USE_CAN || EFI_UNIT_TEST