custom-board-bundle-sample-.../firmware/controllers/trigger/rpm_calculator.cpp

320 lines
9.3 KiB
C++

/**
* @file rpm_calculator.cpp
* @brief RPM calculator
*
* Here we listen to position sensor events in order to figure our if engine is currently running or not.
* Actual getRpm() is calculated once per crankshaft revolution, based on the amount of time passed
* since the start of previous shaft revolution.
*
* @date Jan 1, 2013
* @author Andrey Belomutskiy, (c) 2012-2017
*/
#include "main.h"
#include "rpm_calculator.h"
#if EFI_SHAFT_POSITION_INPUT || defined(__DOXYGEN__)
#include "trigger_central.h"
#include "engine_configuration.h"
#include "engine_math.h"
#if EFI_PROD_CODE
#include "rfiutil.h"
#include "engine.h"
#endif
#if EFI_SENSOR_CHART || defined(__DOXYGEN__)
#include "sensor_chart.h"
#endif
#include "efilib2.h"
#if EFI_ENGINE_SNIFFER
#include "engine_sniffer.h"
extern WaveChart waveChart;
#endif /* EFI_ENGINE_SNIFFER */
EXTERN_ENGINE
;
extern bool hasFirmwareErrorFlag;
static Logging * logger;
int revolutionCounterSinceBootForUnitTest = 0;
RpmCalculator::RpmCalculator() {
#if !EFI_PROD_CODE
mockRpm = MOCK_UNDEFINED;
#endif /* EFI_PROD_CODE */
rpmValue = 0;
assignRpmValue(0);
// we need this initial to have not_running at first invocation
lastRpmEventTimeNt = (efitime_t) -10 * US2NT(US_PER_SECOND_LL);
revolutionCounterSinceStart = 0;
revolutionCounterSinceBootForUnitTest = revolutionCounterSinceBoot = 0;
lastRpmEventTimeNt = 0;
oneDegreeUs = NAN;
}
bool RpmCalculator::isStopped(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
return rpmValue == 0;
}
bool RpmCalculator::isCranking(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
return ((rpmValue) > 0 && (rpmValue) < CONFIG(cranking.rpm));
}
/**
* @return true if there was a full shaft revolution within the last second
*/
bool RpmCalculator::isRunning(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
return rpmValue >= CONFIG(cranking.rpm);
}
bool RpmCalculator::checkIfSpinning(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
if (lastRpmEventTimeNt == 0) {
// here we assume 64 bit time does not overflow
// zero value is the default meaning no RPM events since reboot
return false;
}
efitick_t nowNt = getTimeNowNt();
if (ENGINE(stopEngineRequestTimeNt) != 0) {
if (nowNt - ENGINE(stopEngineRequestTimeNt) < 3 * US2NT(US_PER_SECOND_LL)) {
// 'stopengine' command implementation
setStopped(PASS_ENGINE_PARAMETER_SIGNATURE);
return false;
}
}
/**
* note that the result of this subtraction could be negative, that would happen if
* we have a trigger event between the time we've invoked 'getTimeNow' and here
*/
bool noEventsForTooLong = nowNt - lastRpmEventTimeNt >= US2NT(2 * US_PER_SECOND_LL); // Anything below 60 rpm is not running
if (noEventsForTooLong) {
setStopped(PASS_ENGINE_PARAMETER_SIGNATURE);
return false;
}
return true;
}
void RpmCalculator::assignRpmValue(int value) {
previousRpmValue = rpmValue;
rpmValue = value;
if (rpmValue <= 0) {
oneDegreeUs = NAN;
} else {
oneDegreeUs = getOneDegreeTimeUs(rpmValue);
}
}
void RpmCalculator::setRpmValue(int value DECLARE_ENGINE_PARAMETER_SUFFIX) {
assignRpmValue(value);
if (previousRpmValue == 0 && rpmValue > 0) {
/**
* this would make sure that we have good numbers for first cranking revolution
* #275 cranking could be improved
*/
ENGINE(periodicFastCallback(PASS_ENGINE_PARAMETER_SIGNATURE));
}
}
void RpmCalculator::onNewEngineCycle() {
revolutionCounterSinceBoot++;
revolutionCounterSinceStart++;
#if EFI_UNIT_TEST
revolutionCounterSinceBootForUnitTest = revolutionCounterSinceBoot;
#endif /* EFI_UNIT_TEST */
}
uint32_t RpmCalculator::getRevolutionCounter(void) {
return revolutionCounterSinceBoot;
}
uint32_t RpmCalculator::getRevolutionCounterSinceStart(void) {
return revolutionCounterSinceStart;
}
float RpmCalculator::getRpmAcceleration() {
return 1.0 * previousRpmValue / rpmValue;
}
void RpmCalculator::setStopped(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
revolutionCounterSinceStart = 0;
if (rpmValue != 0) {
assignRpmValue(0);
scheduleMsg(logger, "engine stopped");
}
state = STOPPED;
}
/**
* WARNING: this is a heavy method because 'getRpm()' is relatively heavy
*
* @return -1 in case of isNoisySignal(), current RPM otherwise
*/
// todo: migrate to float return result or add a float version? this would have with calculations
// todo: add a version which does not check time & saves time? need to profile
int RpmCalculator::getRpm(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
#if !EFI_PROD_CODE
if (mockRpm != MOCK_UNDEFINED) {
return mockRpm;
}
#endif /* EFI_PROD_CODE */
return rpmValue;
}
/**
* @brief Shaft position callback used by RPM calculation logic.
*
* This callback should always be the first of trigger callbacks because other callbacks depend of values
* updated here.
* This callback is invoked on interrupt thread.
*/
void rpmShaftPositionCallback(trigger_event_e ckpSignalType,
uint32_t index DECLARE_ENGINE_PARAMETER_SUFFIX) {
efitick_t nowNt = getTimeNowNt();
#if EFI_PROD_CODE
efiAssertVoid(getRemainingStack(chThdGetSelfX()) > 256, "lowstckRCL");
#endif
if (index == 0) {
ENGINE(m.beforeRpmCb) = GET_TIMESTAMP();
RpmCalculator *rpmState = &engine->rpmCalculator;
bool hadRpmRecently = rpmState->checkIfSpinning(PASS_ENGINE_PARAMETER_SIGNATURE);
if (hadRpmRecently) {
efitime_t diffNt = nowNt - rpmState->lastRpmEventTimeNt;
/**
* Four stroke cycle is two crankshaft revolutions
*
* We always do '* 2' because the event signal is already adjusted to 'per engine cycle'
* and each revolution of crankshaft consists of two engine cycles revolutions
*
*/
if (diffNt == 0) {
rpmState->setRpmValue(NOISY_RPM PASS_ENGINE_PARAMETER_SUFFIX);
} else {
int mult = (int)getEngineCycle(engineConfiguration->operationMode) / 360;
int rpm = (int) (60 * US2NT(US_PER_SECOND_LL) * mult / diffNt);
rpmState->setRpmValue(rpm > UNREALISTIC_RPM ? NOISY_RPM : rpm PASS_ENGINE_PARAMETER_SUFFIX);
}
}
rpmState->onNewEngineCycle();
rpmState->lastRpmEventTimeNt = nowNt;
ENGINE(m.rpmCbTime) = GET_TIMESTAMP() - ENGINE(m.beforeRpmCb);
}
#if EFI_SENSOR_CHART || defined(__DOXYGEN__)
// this 'index==0' case is here so that it happens after cycle callback so
// it goes into sniffer report into the first position
if (ENGINE(sensorChartMode) == SC_TRIGGER) {
angle_t crankAngle = getCrankshaftAngleNt(nowNt PASS_ENGINE_PARAMETER_SUFFIX);
int signal = 1000 * ckpSignalType + index;
scAddData(crankAngle, signal);
}
#endif
}
static scheduling_s tdcScheduler[2];
static char rpmBuffer[_MAX_FILLER];
#if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__)
/**
* This callback has nothing to do with actual engine control, it just sends a Top Dead Center mark to the dev console
* digital sniffer.
*/
static void onTdcCallback(void) {
itoa10(rpmBuffer, getRpmE(engine));
addEngineSniffferEvent(TOP_DEAD_CENTER_MESSAGE, (char* ) rpmBuffer);
}
/**
* This trigger callback schedules the actual physical TDC callback in relation to trigger synchronization point.
*/
static void tdcMarkCallback(trigger_event_e ckpSignalType,
uint32_t index0 DECLARE_ENGINE_PARAMETER_SUFFIX) {
(void) ckpSignalType;
bool isTriggerSynchronizationPoint = index0 == 0;
if (isTriggerSynchronizationPoint && ENGINE(isEngineChartEnabled)) {
int revIndex2 = engine->rpmCalculator.getRevolutionCounter() % 2;
int rpm = ENGINE(rpmCalculator.getRpm(PASS_ENGINE_PARAMETER_SIGNATURE));
// todo: use event-based scheduling, not just time-based scheduling
if (isValidRpm(rpm)) {
scheduleByAngle(rpm, &tdcScheduler[revIndex2], tdcPosition(),
(schfunc_t) onTdcCallback, NULL, &engine->rpmCalculator);
}
}
}
#endif
#if EFI_PROD_CODE || EFI_SIMULATOR
int getRevolutionCounter() {
return engine->rpmCalculator.getRevolutionCounter();
}
#endif
/**
* @return Current crankshaft angle, 0 to 720 for four-stroke
*/
float getCrankshaftAngleNt(efitime_t timeNt DECLARE_ENGINE_PARAMETER_SUFFIX) {
efitime_t timeSinceZeroAngleNt = timeNt
- engine->rpmCalculator.lastRpmEventTimeNt;
/**
* even if we use 'getOneDegreeTimeUs' macros here, it looks like the
* compiler is not smart enough to figure out that "A / ( B / C)" could be optimized into
* "A * C / B" in order to replace a slower division with a faster multiplication.
*/
int rpm = engine->rpmCalculator.getRpm(PASS_ENGINE_PARAMETER_SIGNATURE);
return rpm == 0 ? NAN : timeSinceZeroAngleNt / getOneDegreeTimeNt(rpm);
}
void initRpmCalculator(Logging *sharedLogger, Engine *engine) {
logger = sharedLogger;
if (hasFirmwareError()) {
return;
}
#if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__)
// tdcScheduler[0].name = "tdc0";
// tdcScheduler[1].name = "tdc1";
addTriggerEventListener(tdcMarkCallback, "chart TDC mark", engine);
#endif
addTriggerEventListener(rpmShaftPositionCallback, "rpm reporter", engine);
}
#if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__)
/**
* Schedules a callback 'angle' degree of crankshaft from now.
* The callback would be executed once after the duration of time which
* it takes the crankshaft to rotate to the specified angle.
*/
void scheduleByAngle(int rpm, scheduling_s *timer, angle_t angle,
schfunc_t callback, void *param, RpmCalculator *calc) {
efiAssertVoid(!cisnan(angle), "NaN angle?");
efiAssertVoid(isValidRpm(rpm), "RPM check expected");
float delayUs = calc->oneDegreeUs * angle;
efiAssertVoid(!cisnan(delayUs), "NaN delay?");
scheduleTask(timer, (int) delayUs, callback, param);
}
#endif
#else
RpmCalculator::RpmCalculator() {
}
#endif /* EFI_SHAFT_POSITION_INPUT */