custom-board-bundle-sample-.../firmware/console/eficonsole.cpp

256 lines
8.1 KiB
C++

/**
* @file eficonsole.cpp
* @brief Console package entry point code
*
*
* @date Nov 15, 2012
* @author Andrey Belomutskiy, (c) 2012-2020
*
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "pch.h"
#include "os_access.h"
#include "eficonsole.h"
#include "console_io.h"
#include "svnversion.h"
static void testCritical() {
chDbgCheck(0);
}
static void myerror() {
firmwareError(CUSTOM_ERR_TEST_ERROR, "firmwareError: %d", getRusEfiVersion());
}
#if defined(STM32F4) || defined(STM32F7) || defined(STM32H7)
#define HWREG(x) \
(*((volatile unsigned long *)(x)))
#define NVIC_FAULT_STAT 0xE000ED28 // Configurable Fault Status
#define NVIC_FAULT_STAT_BFARV 0x00008000 // Bus Fault Address Register Valid
#define NVIC_CFG_CTRL_BFHFNMIGN 0x00000100 // Ignore Bus Fault in NMI and
// Fault
#define NVIC_CFG_CTRL 0xE000ED14 // Configuration and Control
/**
* @brief Probe an address to see if can be read without generating a bus fault
* @details This function must be called with the processor in privileged mode.
* It:
* - Clear any previous indication of a bus fault in the BFARV bit
* - Temporarily sets the processor to Ignore Bus Faults with all interrupts and fault handlers disabled
* - Attempt to read from read_address, ignoring the result
* - Checks to see if the read caused a bus fault, by checking the BFARV bit is set
* - Re-enables Bus Faults and all interrupts and fault handlers
* @param[in] read_address The address to try reading a byte from
* @return Returns true if no bus fault occurred reading from read_address, or false if a bus fault occurred.
*/
bool read_probe (volatile const char *read_address)
{
bool address_readable = true;
/* Clear any existing indication of a bus fault - BFARV is write one to clear */
HWREG (NVIC_FAULT_STAT) |= NVIC_FAULT_STAT_BFARV;
HWREG (NVIC_CFG_CTRL) |= NVIC_CFG_CTRL_BFHFNMIGN;
asm volatile (" CPSID f;");
*read_address;
if ((HWREG (NVIC_FAULT_STAT) & NVIC_FAULT_STAT_BFARV) != 0)
{
address_readable = false;
}
asm volatile (" CPSIE f;");
HWREG (NVIC_CFG_CTRL) &= ~NVIC_CFG_CTRL_BFHFNMIGN;
return address_readable;
}
#endif
static void sayHello() {
efiPrintf(PROTOCOL_HELLO_PREFIX " rusEFI LLC (c) 2012-2022. All rights reserved.");
efiPrintf(PROTOCOL_HELLO_PREFIX " rusEFI v%d@%s", getRusEfiVersion(), VCS_VERSION);
efiPrintf(PROTOCOL_HELLO_PREFIX " Chibios Kernel: %s", CH_KERNEL_VERSION);
efiPrintf(PROTOCOL_HELLO_PREFIX " Compiled: " __DATE__ " - " __TIME__ "");
efiPrintf(PROTOCOL_HELLO_PREFIX " COMPILER=%s", __VERSION__);
#if USE_OPENBLT
efiPrintf(PROTOCOL_HELLO_PREFIX " with OPENBLT");
#endif
#ifdef ENABLE_AUTO_DETECT_HSE
extern float hseFrequencyMhz;
extern uint8_t autoDetectedRoundedMhz;
efiPrintf(PROTOCOL_HELLO_PREFIX " detected HSE clock %.2f MHz PLLM = %d", hseFrequencyMhz, autoDetectedRoundedMhz);
#endif /* ENABLE_AUTO_DETECT_HSE */
#if defined(STM32F4) || defined(STM32F7) || defined(STM32H7)
uint32_t *uid = ((uint32_t *)UID_BASE);
efiPrintf("UID=%x %x %x", uid[0], uid[1], uid[2]);
efiPrintf("can read 0x20000010 %d", read_probe((const char *)0x20000010));
efiPrintf("can read 0x20020010 %d", read_probe((const char *)0x20020010));
efiPrintf("can read 0x20070010 %d", read_probe((const char *)0x20070010));
#define TM_ID_GetFlashSize() (*(__IO uint16_t *) (FLASHSIZE_BASE))
#define MCU_REVISION_MASK 0xfff
int mcuRevision = DBGMCU->IDCODE & MCU_REVISION_MASK;
#define MIN_FLASH_SIZE 1024
int flashSize = TM_ID_GetFlashSize();
if (flashSize < MIN_FLASH_SIZE) {
firmwareError(OBD_PCM_Processor_Fault, "rusEFI expected at least %dK of flash", MIN_FLASH_SIZE);
}
// todo: bug, at the moment we report 1MB on dual-bank F7
efiPrintf("MCU rev=%x flashSize=%d", mcuRevision, flashSize);
#endif
#ifdef CH_FREQUENCY
efiPrintf("CH_FREQUENCY=%d", CH_FREQUENCY);
#endif
#ifdef CORTEX_MAX_KERNEL_PRIORITY
efiPrintf("CORTEX_MAX_KERNEL_PRIORITY=%d", CORTEX_MAX_KERNEL_PRIORITY);
#endif
#ifdef STM32_ADCCLK
efiPrintf("STM32_ADCCLK=%d", STM32_ADCCLK);
efiPrintf("STM32_TIMCLK1=%d", STM32_TIMCLK1);
efiPrintf("STM32_TIMCLK2=%d", STM32_TIMCLK2);
#endif
#ifdef STM32_PCLK1
efiPrintf("STM32_PCLK1=%d", STM32_PCLK1);
efiPrintf("STM32_PCLK2=%d", STM32_PCLK2);
#endif
efiPrintf("PORT_IDLE_THREAD_STACK_SIZE=%d", PORT_IDLE_THREAD_STACK_SIZE);
efiPrintf("CH_DBG_ENABLE_ASSERTS=%d", CH_DBG_ENABLE_ASSERTS);
#ifdef CH_DBG_ENABLED
efiPrintf("CH_DBG_ENABLED=%d", CH_DBG_ENABLED);
#endif
efiPrintf("CH_DBG_SYSTEM_STATE_CHECK=%d", CH_DBG_SYSTEM_STATE_CHECK);
efiPrintf("CH_DBG_ENABLE_STACK_CHECK=%d", CH_DBG_ENABLE_STACK_CHECK);
#ifdef EFI_LOGIC_ANALYZER
efiPrintf("EFI_LOGIC_ANALYZER=%d", EFI_LOGIC_ANALYZER);
#endif
#ifdef EFI_TUNER_STUDIO
efiPrintf("EFI_TUNER_STUDIO=%d", EFI_TUNER_STUDIO);
#else
efiPrintf("EFI_TUNER_STUDIO=%d", 0);
#endif
#ifdef EFI_SIGNAL_EXECUTOR_SLEEP
efiPrintf("EFI_SIGNAL_EXECUTOR_SLEEP=%d", EFI_SIGNAL_EXECUTOR_SLEEP);
#endif
#ifdef EFI_SIGNAL_EXECUTOR_HW_TIMER
efiPrintf("EFI_SIGNAL_EXECUTOR_HW_TIMER=%d", EFI_SIGNAL_EXECUTOR_HW_TIMER);
#endif
#if defined(EFI_SHAFT_POSITION_INPUT)
efiPrintf("EFI_SHAFT_POSITION_INPUT=%d", EFI_SHAFT_POSITION_INPUT);
#endif
#ifdef EFI_INTERNAL_ADC
efiPrintf("EFI_INTERNAL_ADC=%d", EFI_INTERNAL_ADC);
#endif
/**
* Time to finish output. This is needed to avoid mix-up of this methods output and console command confirmation
*/
chThdSleepMilliseconds(5);
}
void validateStack(const char*msg, obd_code_e code, int desiredStackUnusedSize) {
#if CH_DBG_THREADS_PROFILING && CH_DBG_FILL_THREADS
int unusedStack = CountFreeStackSpace(chThdGetSelfX()->wabase);
if (unusedStack < desiredStackUnusedSize) {
warning(code, "Stack low on %s: %d", msg, unusedStack);
}
#else
(void)msg; (void)code; (void)desiredStackUnusedSize;
#endif
}
#if CH_DBG_THREADS_PROFILING && CH_DBG_FILL_THREADS
int CountFreeStackSpace(const void* wabase) {
const uint8_t* stackBase = reinterpret_cast<const uint8_t*>(wabase);
const uint8_t* stackUsage = stackBase;
// thread stacks are filled with CH_DBG_STACK_FILL_VALUE
// find out where that ends - that's the last thing we needed on the stack
while (*stackUsage == CH_DBG_STACK_FILL_VALUE) {
stackUsage++;
}
return (int)(stackUsage - stackBase);
}
#endif
/**
* This methods prints all threads, their stack usage, and their total times
*/
static void cmd_threads() {
#if CH_DBG_THREADS_PROFILING && CH_DBG_FILL_THREADS
thread_t* tp = chRegFirstThread();
efiPrintf("name\twabase\ttime\tfree stack");
while (tp) {
int freeBytes = CountFreeStackSpace(tp->wabase);
efiPrintf("%s\t%08x\t%lu\t%d", tp->name, tp->wabase, tp->time, freeBytes);
if (freeBytes < 100) {
firmwareError(OBD_PCM_Processor_Fault, "Ran out of stack on thread %s, %d bytes remain", tp->name, freeBytes);
}
tp = chRegNextThread(tp);
}
int isrSpace = CountFreeStackSpace(reinterpret_cast<void*>(0x20000000));
efiPrintf("isr\t0\t0\t%d", isrSpace);
#else // CH_DBG_THREADS_PROFILING && CH_DBG_FILL_THREADS
efiPrintf("CH_DBG_THREADS_PROFILING && CH_DBG_FILL_THREADS is not enabled");
#endif
}
void initializeConsole() {
initConsoleLogic();
startConsole(&handleConsoleLine);
sayHello();
addConsoleAction("test", [](){ /* do nothing */});
addConsoleAction("hello", sayHello);
#if EFI_HAS_RESET
addConsoleAction("reset", scheduleReset);
#endif
addConsoleAction("critical", testCritical);
addConsoleAction("error", myerror);
addConsoleAction("threadsinfo", cmd_threads);
}