844 lines
28 KiB
C++
844 lines
28 KiB
C++
/**
|
|
* @file trigger_decoder.cpp
|
|
*
|
|
* @date Dec 24, 2013
|
|
* @author Andrey Belomutskiy, (c) 2012-2020
|
|
*
|
|
*
|
|
*
|
|
* enable trigger_details
|
|
* DBG_TRIGGER_COUNTERS = 5
|
|
* set debug_mode 5
|
|
*
|
|
* This file is part of rusEfi - see http://rusefi.com
|
|
*
|
|
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
|
|
* the GNU General Public License as published by the Free Software Foundation; either
|
|
* version 3 of the License, or (at your option) any later version.
|
|
*
|
|
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
|
|
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with this program.
|
|
* If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "pch.h"
|
|
|
|
#include "os_access.h"
|
|
|
|
#include "obd_error_codes.h"
|
|
#include "trigger_decoder.h"
|
|
#include "cyclic_buffer.h"
|
|
#include "trigger_central.h"
|
|
#include "trigger_simulator.h"
|
|
|
|
#if EFI_SENSOR_CHART
|
|
#include "sensor_chart.h"
|
|
#endif
|
|
|
|
TriggerDecoderBase::TriggerDecoderBase(const char* name)
|
|
: name(name)
|
|
{
|
|
resetTriggerState();
|
|
}
|
|
|
|
bool TriggerDecoderBase::getShaftSynchronized() {
|
|
return shaft_is_synchronized;
|
|
}
|
|
|
|
void TriggerDecoderBase::setShaftSynchronized(bool value) {
|
|
if (value) {
|
|
if (!shaft_is_synchronized) {
|
|
// just got synchronized
|
|
mostRecentSyncTime = getTimeNowNt();
|
|
}
|
|
} else {
|
|
// sync loss
|
|
mostRecentSyncTime = 0;
|
|
}
|
|
shaft_is_synchronized = value;
|
|
}
|
|
|
|
void TriggerDecoderBase::resetTriggerState() {
|
|
setShaftSynchronized(false);
|
|
toothed_previous_time = 0;
|
|
|
|
memset(toothDurations, 0, sizeof(toothDurations));
|
|
|
|
totalRevolutionCounter = 0;
|
|
totalTriggerErrorCounter = 0;
|
|
orderingErrorCounter = 0;
|
|
m_timeSinceDecodeError.init();
|
|
|
|
prevSignal = SHAFT_PRIMARY_FALLING;
|
|
startOfCycleNt = 0;
|
|
|
|
resetCurrentCycleState();
|
|
|
|
totalEventCountBase = 0;
|
|
isFirstEvent = true;
|
|
}
|
|
|
|
void TriggerDecoderBase::setTriggerErrorState() {
|
|
m_timeSinceDecodeError.reset();
|
|
totalTriggerErrorCounter++;
|
|
}
|
|
|
|
void TriggerDecoderBase::resetCurrentCycleState() {
|
|
memset(currentCycle.eventCount, 0, sizeof(currentCycle.eventCount));
|
|
currentCycle.current_index = 0;
|
|
}
|
|
|
|
#if EFI_SHAFT_POSITION_INPUT
|
|
|
|
PrimaryTriggerDecoder::PrimaryTriggerDecoder(const char* name)
|
|
: TriggerDecoderBase(name)
|
|
//https://en.cppreference.com/w/cpp/language/zero_initialization
|
|
, timeOfLastEvent()
|
|
, instantRpmValue()
|
|
{
|
|
}
|
|
|
|
#if ! EFI_PROD_CODE
|
|
bool printTriggerDebug = false;
|
|
bool printTriggerTrace = false;
|
|
// todo: migrate to triggerSyncGapRatio or triggerActualSyncGapRatio?
|
|
float actualSynchGap;
|
|
#endif /* ! EFI_PROD_CODE */
|
|
|
|
void TriggerWaveform::initializeSyncPoint(TriggerDecoderBase& state,
|
|
const TriggerConfiguration& triggerConfiguration) {
|
|
triggerShapeSynchPointIndex = state.findTriggerZeroEventIndex(*this, triggerConfiguration);
|
|
}
|
|
|
|
/**
|
|
* Calculate 'shape.triggerShapeSynchPointIndex' value using 'TriggerDecoderBase *state'
|
|
*/
|
|
void calculateTriggerSynchPoint(
|
|
TriggerWaveform& shape,
|
|
TriggerDecoderBase& state) {
|
|
state.resetTriggerState();
|
|
|
|
#if EFI_PROD_CODE
|
|
efiAssertVoid(CUSTOM_TRIGGER_STACK, getCurrentRemainingStack() > EXPECTED_REMAINING_STACK, "calc s");
|
|
#endif
|
|
engine->triggerErrorDetection.clear();
|
|
shape.initializeSyncPoint(state, engine->primaryTriggerConfiguration);
|
|
|
|
int length = shape.getLength();
|
|
engine->engineCycleEventCount = length;
|
|
|
|
efiAssertVoid(CUSTOM_SHAPE_LEN_ZERO, length > 0, "shapeLength=0");
|
|
if (shape.getSize() >= PWM_PHASE_MAX_COUNT) {
|
|
// todo: by the time we are here we had already modified a lot of RAM out of bounds!
|
|
firmwareError(CUSTOM_ERR_TRIGGER_WAVEFORM_TOO_LONG, "Trigger length above maximum: %d", length);
|
|
shape.setShapeDefinitionError(true);
|
|
return;
|
|
}
|
|
|
|
if (shape.getSize() == 0) {
|
|
firmwareError(CUSTOM_ERR_TRIGGER_ZERO, "triggerShape size is zero");
|
|
}
|
|
}
|
|
|
|
void TriggerFormDetails::prepareEventAngles(TriggerWaveform *shape) {
|
|
int triggerShapeSynchPointIndex = shape->triggerShapeSynchPointIndex;
|
|
if (triggerShapeSynchPointIndex == EFI_ERROR_CODE) {
|
|
return;
|
|
}
|
|
angle_t firstAngle = shape->getAngle(triggerShapeSynchPointIndex);
|
|
assertAngleRange(firstAngle, "firstAngle", CUSTOM_TRIGGER_SYNC_ANGLE);
|
|
|
|
int riseOnlyIndex = 0;
|
|
|
|
size_t length = shape->getLength();
|
|
|
|
memset(eventAngles, 0, sizeof(eventAngles));
|
|
|
|
// this may be <length for some triggers like symmetrical crank Miata NB
|
|
size_t triggerShapeLength = shape->getSize();
|
|
|
|
assertAngleRange(shape->triggerShapeSynchPointIndex, "triggerShapeSynchPointIndex", CUSTOM_TRIGGER_SYNC_ANGLE2);
|
|
efiAssertVoid(CUSTOM_TRIGGER_CYCLE, engine->engineCycleEventCount != 0, "zero engineCycleEventCount");
|
|
|
|
for (size_t eventIndex = 0; eventIndex < length; eventIndex++) {
|
|
if (eventIndex == 0) {
|
|
// explicit check for zero to avoid issues where logical zero is not exactly zero due to float nature
|
|
eventAngles[0] = 0;
|
|
// this value would be used in case of front-only
|
|
eventAngles[1] = 0;
|
|
} else {
|
|
// Rotate the trigger around so that the sync point is at position 0
|
|
auto wrappedIndex = (shape->triggerShapeSynchPointIndex + eventIndex) % length;
|
|
|
|
// Compute this tooth's position within the trigger definition
|
|
// (wrap, as the trigger def may be smaller than total trigger length)
|
|
auto triggerDefinitionIndex = wrappedIndex % triggerShapeLength;
|
|
|
|
// Compute the relative angle of this tooth to the sync point's tooth
|
|
float angle = shape->getAngle(wrappedIndex) - firstAngle;
|
|
|
|
efiAssertVoid(CUSTOM_TRIGGER_CYCLE, !cisnan(angle), "trgSyncNaN");
|
|
// Wrap the angle back in to [0, 720)
|
|
fixAngle(angle, "trgSync", CUSTOM_TRIGGER_SYNC_ANGLE_RANGE);
|
|
|
|
if (engineConfiguration->useOnlyRisingEdgeForTrigger) {
|
|
efiAssertVoid(OBD_PCM_Processor_Fault, triggerDefinitionIndex < triggerShapeLength, "trigger shape fail");
|
|
assertIsInBounds(triggerDefinitionIndex, shape->isRiseEvent, "isRise");
|
|
|
|
// In case this is a rising event, replace the following fall event with the rising as well
|
|
if (shape->isRiseEvent[triggerDefinitionIndex]) {
|
|
riseOnlyIndex += 2;
|
|
eventAngles[riseOnlyIndex] = angle;
|
|
eventAngles[riseOnlyIndex + 1] = angle;
|
|
}
|
|
} else {
|
|
eventAngles[eventIndex] = angle;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int64_t TriggerDecoderBase::getTotalEventCounter() const {
|
|
return totalEventCountBase + currentCycle.current_index;
|
|
}
|
|
|
|
int TriggerDecoderBase::getTotalRevolutionCounter() const {
|
|
return totalRevolutionCounter;
|
|
}
|
|
|
|
void PrimaryTriggerDecoder::resetTriggerState() {
|
|
TriggerDecoderBase::resetTriggerState();
|
|
|
|
memset(timeOfLastEvent, 0, sizeof(timeOfLastEvent));
|
|
memset(spinningEvents, 0, sizeof(spinningEvents));
|
|
spinningEventIndex = 0;
|
|
prevInstantRpmValue = 0;
|
|
m_instantRpm = 0;
|
|
|
|
resetHasFullSync();
|
|
}
|
|
|
|
void PrimaryTriggerDecoder::movePreSynchTimestamps() {
|
|
// here we take timestamps of events which happened prior to synchronization and place them
|
|
// at appropriate locations
|
|
auto triggerSize = getTriggerSize();
|
|
|
|
int eventsToCopy = minI(spinningEventIndex, triggerSize);
|
|
|
|
size_t firstSrc;
|
|
size_t firstDst;
|
|
|
|
if (eventsToCopy >= triggerSize) {
|
|
// Only copy one trigger length worth of events, filling the whole buffer
|
|
firstSrc = spinningEventIndex - triggerSize;
|
|
firstDst = 0;
|
|
} else {
|
|
// There is less than one full cycle, copy to the end of the buffer
|
|
firstSrc = 0;
|
|
firstDst = triggerSize - spinningEventIndex;
|
|
}
|
|
|
|
memcpy(timeOfLastEvent + firstDst, spinningEvents + firstSrc, eventsToCopy * sizeof(timeOfLastEvent[0]));
|
|
}
|
|
|
|
float PrimaryTriggerDecoder::calculateInstantRpm(
|
|
TriggerWaveform const & triggerShape, TriggerFormDetails *triggerFormDetails,
|
|
uint32_t current_index, efitick_t nowNt) {
|
|
|
|
assertIsInBoundsWithResult(current_index, timeOfLastEvent, "calc timeOfLastEvent", 0);
|
|
|
|
// Record the time of this event so we can calculate RPM from it later
|
|
timeOfLastEvent[current_index] = nowNt;
|
|
|
|
// Determine where we currently are in the revolution
|
|
angle_t currentAngle = triggerFormDetails->eventAngles[current_index];
|
|
if (cisnan(currentAngle)) {
|
|
// todo: huh? dead code? how can we get NAN from eventAngles table?
|
|
return NOISY_RPM;
|
|
}
|
|
|
|
// Hunt for a tooth ~90 degrees ago to compare to the current time
|
|
angle_t previousAngle = currentAngle - 90;
|
|
fixAngle(previousAngle, "prevAngle", CUSTOM_ERR_TRIGGER_ANGLE_RANGE);
|
|
int prevIndex = triggerShape.findAngleIndex(triggerFormDetails, previousAngle);
|
|
|
|
// now let's get precise angle for that event
|
|
angle_t prevIndexAngle = triggerFormDetails->eventAngles[prevIndex];
|
|
efitick_t time90ago = timeOfLastEvent[prevIndex];
|
|
if (time90ago == 0) {
|
|
return prevInstantRpmValue;
|
|
}
|
|
// we are OK to subtract 32 bit value from more precise 64 bit since the result would 32 bit which is
|
|
// OK for small time differences like this one
|
|
uint32_t time = nowNt - time90ago;
|
|
angle_t angleDiff = currentAngle - prevIndexAngle;
|
|
|
|
// Wrap the angle in to the correct range (ie, could be -630 when we want +90)
|
|
fixAngle(angleDiff, "angleDiff", CUSTOM_ERR_6561);
|
|
|
|
// just for safety
|
|
if (time == 0)
|
|
return prevInstantRpmValue;
|
|
|
|
float instantRpm = (60000000.0 / 360 * US_TO_NT_MULTIPLIER) * angleDiff / time;
|
|
assertIsInBoundsWithResult(current_index, instantRpmValue, "instantRpmValue", 0);
|
|
instantRpmValue[current_index] = instantRpm;
|
|
|
|
// This fixes early RPM instability based on incomplete data
|
|
if (instantRpm < RPM_LOW_THRESHOLD) {
|
|
return prevInstantRpmValue;
|
|
}
|
|
|
|
prevInstantRpmValue = instantRpm;
|
|
|
|
m_instantRpmRatio = instantRpm / instantRpmValue[prevIndex];
|
|
|
|
return instantRpm;
|
|
}
|
|
|
|
void PrimaryTriggerDecoder::setLastEventTimeForInstantRpm(efitick_t nowNt) {
|
|
if (getShaftSynchronized()) {
|
|
return;
|
|
}
|
|
// here we remember tooth timestamps which happen prior to synchronization
|
|
if (spinningEventIndex >= PRE_SYNC_EVENTS) {
|
|
// too many events while trying to find synchronization point
|
|
// todo: better implementation would be to shift here or use cyclic buffer so that we keep last
|
|
// 'PRE_SYNC_EVENTS' events
|
|
return;
|
|
}
|
|
spinningEvents[spinningEventIndex++] = nowNt;
|
|
}
|
|
|
|
void PrimaryTriggerDecoder::updateInstantRpm(
|
|
TriggerWaveform const & triggerShape, TriggerFormDetails *triggerFormDetails,
|
|
uint32_t index, efitick_t nowNt) {
|
|
|
|
m_instantRpm = calculateInstantRpm(triggerShape, triggerFormDetails, index,
|
|
nowNt);
|
|
|
|
|
|
#if EFI_SENSOR_CHART
|
|
if (engine->sensorChartMode == SC_RPM_ACCEL || engine->sensorChartMode == SC_DETAILED_RPM) {
|
|
angle_t currentAngle = triggerFormDetails->eventAngles[currentCycle.current_index];
|
|
if (engineConfiguration->sensorChartMode == SC_DETAILED_RPM) {
|
|
scAddData(currentAngle, m_instantRpm);
|
|
} else {
|
|
scAddData(currentAngle, m_instantRpmRatio);
|
|
}
|
|
}
|
|
#endif /* EFI_SENSOR_CHART */
|
|
}
|
|
|
|
bool TriggerDecoderBase::isValidIndex(const TriggerWaveform& triggerShape) const {
|
|
return currentCycle.current_index < triggerShape.getSize();
|
|
}
|
|
|
|
static trigger_wheel_e eventIndex[4] = { T_PRIMARY, T_PRIMARY, T_SECONDARY, T_SECONDARY };
|
|
static trigger_value_e eventType[4] = { TV_FALL, TV_RISE, TV_FALL, TV_RISE };
|
|
|
|
#if EFI_UNIT_TEST
|
|
#define PRINT_INC_INDEX if (printTriggerTrace) {\
|
|
printf("nextTriggerEvent index=%d\r\n", currentCycle.current_index); \
|
|
}
|
|
#else
|
|
#define PRINT_INC_INDEX {}
|
|
#endif /* EFI_UNIT_TEST */
|
|
|
|
#define nextTriggerEvent() \
|
|
{ \
|
|
if (useOnlyRisingEdgeForTrigger) {currentCycle.current_index++;} \
|
|
currentCycle.current_index++; \
|
|
PRINT_INC_INDEX; \
|
|
}
|
|
|
|
#define considerEventForGap() (!triggerShape.useOnlyPrimaryForSync || isPrimary)
|
|
|
|
#define needToSkipFall(type) ((!triggerShape.gapBothDirections) && (( triggerShape.useRiseEdge) && (type != TV_RISE)))
|
|
#define needToSkipRise(type) ((!triggerShape.gapBothDirections) && ((!triggerShape.useRiseEdge) && (type != TV_FALL)))
|
|
|
|
int TriggerDecoderBase::getCurrentIndex() const {
|
|
return currentCycle.current_index;
|
|
}
|
|
|
|
void TriggerCentral::validateCamVvtCounters() {
|
|
// micro-optimized 'totalRevolutionCounter % 256'
|
|
int camVvtValidationIndex = triggerState.getTotalRevolutionCounter() & 0xFF;
|
|
if (camVvtValidationIndex == 0) {
|
|
vvtCamCounter = 0;
|
|
} else if (camVvtValidationIndex == 0xFE && vvtCamCounter < 60) {
|
|
// magic logic: we expect at least 60 CAM/VVT events for each 256 trigger cycles, otherwise throw a code
|
|
warning(OBD_Camshaft_Position_Sensor_Circuit_Range_Performance, "No Camshaft Position Sensor signals");
|
|
}
|
|
}
|
|
|
|
angle_t PrimaryTriggerDecoder::syncEnginePhase(int divider, int remainder, angle_t engineCycle) {
|
|
efiAssert(OBD_PCM_Processor_Fault, remainder < divider, "syncEnginePhase", false);
|
|
angle_t totalShift = 0;
|
|
while (getTotalRevolutionCounter() % divider != remainder) {
|
|
/**
|
|
* we are here if we've detected the cam sensor within the wrong crank phase
|
|
* let's increase the trigger event counter, that would adjust the state of
|
|
* virtual crank-based trigger
|
|
*/
|
|
incrementTotalEventCounter();
|
|
totalShift += engineCycle / divider;
|
|
}
|
|
|
|
// Allow injection/ignition to happen, we've now fully sync'd the crank based on new cam information
|
|
m_hasSynchronizedPhase = true;
|
|
|
|
if (totalShift > 0) {
|
|
camResyncCounter++;
|
|
}
|
|
|
|
return totalShift;
|
|
}
|
|
|
|
void TriggerDecoderBase::incrementTotalEventCounter() {
|
|
totalRevolutionCounter++;
|
|
}
|
|
|
|
void PrimaryTriggerDecoder::onTriggerError() {
|
|
// On trigger error, we've lost full sync
|
|
resetHasFullSync();
|
|
}
|
|
|
|
void PrimaryTriggerDecoder::onNotEnoughTeeth(int /*actual*/, int /*expected*/) {
|
|
warning(CUSTOM_PRIMARY_NOT_ENOUGH_TEETH, "primary trigger error: not enough teeth between sync points: expected %d/%d got %d/%d",
|
|
TRIGGER_WAVEFORM(getExpectedEventCount(0)),
|
|
TRIGGER_WAVEFORM(getExpectedEventCount(1)),
|
|
currentCycle.eventCount[0],
|
|
currentCycle.eventCount[1]);
|
|
}
|
|
|
|
void PrimaryTriggerDecoder::onTooManyTeeth(int /*actual*/, int /*expected*/) {
|
|
warning(CUSTOM_PRIMARY_TOO_MANY_TEETH, "primary trigger error: too many teeth between sync points: expected %d/%d got %d/%d",
|
|
TRIGGER_WAVEFORM(getExpectedEventCount(0)),
|
|
TRIGGER_WAVEFORM(getExpectedEventCount(1)),
|
|
currentCycle.eventCount[0],
|
|
currentCycle.eventCount[1]);
|
|
}
|
|
|
|
void VvtTriggerDecoder::onNotEnoughTeeth(int actual, int expected) {
|
|
warning(CUSTOM_CAM_NOT_ENOUGH_TEETH, "cam %s trigger error: not enough teeth between sync points: actual %d expected %d", name, actual, expected);
|
|
}
|
|
|
|
void VvtTriggerDecoder::onTooManyTeeth(int actual, int expected) {
|
|
warning(CUSTOM_CAM_TOO_MANY_TEETH, "cam %s trigger error: too many teeth between sync points: %d > %d", name, actual, expected);
|
|
}
|
|
|
|
bool TriggerDecoderBase::validateEventCounters(const TriggerWaveform& triggerShape) const {
|
|
// We can check if things are fine by comparing the number of events in a cycle with the expected number of event.
|
|
bool isDecodingError = false;
|
|
for (int i = 0;i < PWM_PHASE_MAX_WAVE_PER_PWM;i++) {
|
|
isDecodingError |= (currentCycle.eventCount[i] != triggerShape.getExpectedEventCount(i));
|
|
}
|
|
|
|
#if EFI_UNIT_TEST
|
|
printf("validateEventCounters: isDecodingError=%d\n", isDecodingError);
|
|
if (isDecodingError) {
|
|
for (int i = 0;i < PWM_PHASE_MAX_WAVE_PER_PWM;i++) {
|
|
printf("count: cur=%d exp=%d\n", currentCycle.eventCount[i], triggerShape.getExpectedEventCount(i));
|
|
}
|
|
}
|
|
#endif /* EFI_UNIT_TEST */
|
|
|
|
return isDecodingError;
|
|
}
|
|
|
|
void TriggerDecoderBase::onShaftSynchronization(
|
|
bool wasSynchronized,
|
|
const efitick_t nowNt,
|
|
const TriggerWaveform& triggerShape) {
|
|
startOfCycleNt = nowNt;
|
|
resetCurrentCycleState();
|
|
|
|
if (wasSynchronized) {
|
|
incrementTotalEventCounter();
|
|
} else {
|
|
// We have just synchronized, this is the zeroth revolution
|
|
totalRevolutionCounter = 0;
|
|
}
|
|
|
|
totalEventCountBase += triggerShape.getSize();
|
|
|
|
#if EFI_UNIT_TEST
|
|
if (printTriggerDebug) {
|
|
printf("onShaftSynchronization index=%d %d\r\n",
|
|
currentCycle.current_index,
|
|
totalRevolutionCounter);
|
|
}
|
|
#endif /* EFI_UNIT_TEST */
|
|
}
|
|
|
|
/**
|
|
* @brief Trigger decoding happens here
|
|
* VR falls are filtered out and some VR noise detection happens prior to invoking this method, for
|
|
* Hall this method is invoked every time we have a fall or rise on one of the trigger sensors.
|
|
* This method changes the state of trigger_state_s data structure according to the trigger event
|
|
* @param signal type of event which just happened
|
|
* @param nowNt current time
|
|
*/
|
|
expected<TriggerDecodeResult> TriggerDecoderBase::decodeTriggerEvent(
|
|
const char *msg,
|
|
const TriggerWaveform& triggerShape,
|
|
TriggerStateListener* triggerStateListener,
|
|
const TriggerConfiguration& triggerConfiguration,
|
|
const trigger_event_e signal,
|
|
const efitick_t nowNt) {
|
|
ScopePerf perf(PE::DecodeTriggerEvent);
|
|
|
|
if (previousEventTimer.getElapsedSecondsAndReset(nowNt) > 1) {
|
|
/**
|
|
* We are here if there is a time gap between now and previous shaft event - that means the engine is not running.
|
|
* That means we have lost synchronization since the engine is not running :)
|
|
*/
|
|
setShaftSynchronized(false);
|
|
if (triggerStateListener) {
|
|
triggerStateListener->OnTriggerSynchronizationLost();
|
|
}
|
|
}
|
|
|
|
bool useOnlyRisingEdgeForTrigger = triggerConfiguration.UseOnlyRisingEdgeForTrigger;
|
|
|
|
efiAssert(CUSTOM_TRIGGER_UNEXPECTED, signal <= SHAFT_SECONDARY_RISING, "unexpected signal", unexpected);
|
|
|
|
trigger_wheel_e triggerWheel = eventIndex[signal];
|
|
trigger_value_e type = eventType[signal];
|
|
|
|
// Check that we didn't get the same edge twice in a row - that should be impossible
|
|
if (!useOnlyRisingEdgeForTrigger && prevSignal == signal) {
|
|
orderingErrorCounter++;
|
|
}
|
|
|
|
prevSignal = signal;
|
|
|
|
currentCycle.eventCount[triggerWheel]++;
|
|
|
|
if (toothed_previous_time > nowNt) {
|
|
firmwareError(CUSTOM_OBD_93, "[%s] toothed_previous_time after nowNt prev=%d now=%d", msg, toothed_previous_time, nowNt);
|
|
}
|
|
|
|
efitick_t currentDurationLong = isFirstEvent ? 0 : nowNt - toothed_previous_time;
|
|
|
|
/**
|
|
* For performance reasons, we want to work with 32 bit values. If there has been more then
|
|
* 10 seconds since previous trigger event we do not really care.
|
|
*/
|
|
toothDurations[0] =
|
|
currentDurationLong > 10 * NT_PER_SECOND ? 10 * NT_PER_SECOND : currentDurationLong;
|
|
|
|
bool isPrimary = triggerWheel == T_PRIMARY;
|
|
|
|
if (needToSkipFall(type) || needToSkipRise(type) || (!considerEventForGap())) {
|
|
#if EFI_UNIT_TEST
|
|
if (printTriggerTrace) {
|
|
printf("%s isLessImportant %s now=%d index=%d\r\n",
|
|
getTrigger_type_e(triggerConfiguration.TriggerType.type),
|
|
getTrigger_event_e(signal),
|
|
(int)nowNt,
|
|
currentCycle.current_index);
|
|
}
|
|
#endif /* EFI_UNIT_TEST */
|
|
|
|
// For less important events we simply increment the index.
|
|
nextTriggerEvent();
|
|
} else {
|
|
#if !EFI_PROD_CODE
|
|
if (printTriggerTrace) {
|
|
printf("%s event %s %lld\r\n",
|
|
getTrigger_type_e(triggerConfiguration.TriggerType.type),
|
|
getTrigger_event_e(signal),
|
|
nowNt);
|
|
printf("decodeTriggerEvent ratio %.2f: current=%d previous=%d\r\n", 1.0 * toothDurations[0] / toothDurations[1],
|
|
toothDurations[0], toothDurations[1]);
|
|
}
|
|
#endif
|
|
|
|
isFirstEvent = false;
|
|
bool isSynchronizationPoint;
|
|
bool wasSynchronized = getShaftSynchronized();
|
|
|
|
if (triggerShape.isSynchronizationNeeded) {
|
|
triggerSyncGapRatio = (float)toothDurations[0] / toothDurations[1];
|
|
|
|
isSynchronizationPoint = isSyncPoint(triggerShape, triggerConfiguration.TriggerType.type);
|
|
if (isSynchronizationPoint) {
|
|
enginePins.debugTriggerSync.toggle();
|
|
}
|
|
|
|
/**
|
|
* todo: technically we can afford detailed logging even with 60/2 as long as low RPM
|
|
* todo: figure out exact threshold as a function of RPM and tooth count?
|
|
* Open question what is 'triggerShape.getSize()' for 60/2 is it 58 or 58*2 or 58*4?
|
|
*/
|
|
bool silentTriggerError = triggerShape.getSize() > 40 && engineConfiguration->silentTriggerError;
|
|
|
|
#if EFI_UNIT_TEST
|
|
actualSynchGap = triggerSyncGapRatio;
|
|
#endif /* EFI_UNIT_TEST */
|
|
|
|
#if EFI_PROD_CODE || EFI_SIMULATOR
|
|
bool verbose = engine->isEngineSnifferEnabled && triggerConfiguration.VerboseTriggerSynchDetails;
|
|
|
|
if (verbose || (someSortOfTriggerError() && !silentTriggerError)) {
|
|
const char * prefix = verbose ? "[vrb]" : "[err]";
|
|
|
|
int rpm = Sensor::getOrZero(SensorType::Rpm);
|
|
floatms_t engineCycleDuration = getEngineCycleDuration(rpm);
|
|
|
|
for (int i = 0;i<triggerShape.gapTrackingLength;i++) {
|
|
float ratioFrom = triggerShape.syncronizationRatioFrom[i];
|
|
if (cisnan(ratioFrom)) {
|
|
// we do not track gap at this depth
|
|
continue;
|
|
}
|
|
|
|
float gap = 1.0 * toothDurations[i] / toothDurations[i + 1];
|
|
if (cisnan(gap)) {
|
|
efiPrintf("%s index=%d NaN gap, you have noise issues?",
|
|
i,
|
|
prefix
|
|
);
|
|
} else {
|
|
float ratioTo = triggerShape.syncronizationRatioTo[i];
|
|
|
|
bool gapOk = isInRange(ratioFrom, gap, ratioTo);
|
|
|
|
efiPrintf("%s %srpm=%d time=%d eventIndex=%d gapIndex=%d: %s gap=%.3f expected from %.3f to %.3f error=%s",
|
|
prefix,
|
|
triggerConfiguration.PrintPrefix,
|
|
(int)Sensor::getOrZero(SensorType::Rpm),
|
|
/* cast is needed to make sure we do not put 64 bit value to stack*/ (int)getTimeNowSeconds(),
|
|
currentCycle.current_index,
|
|
i,
|
|
gapOk ? "Y" : "n",
|
|
gap,
|
|
ratioFrom,
|
|
ratioTo,
|
|
boolToString(someSortOfTriggerError()));
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
if (printTriggerTrace) {
|
|
float gap = 1.0 * toothDurations[0] / toothDurations[1];
|
|
for (int i = 0;i<triggerShape.gapTrackingLength;i++) {
|
|
float gap = 1.0 * toothDurations[i] / toothDurations[i + 1];
|
|
printf("%sindex=%d: gap=%.2f expected from %.2f to %.2f error=%s\r\n",
|
|
triggerConfiguration.PrintPrefix,
|
|
i,
|
|
gap,
|
|
triggerShape.syncronizationRatioFrom[i],
|
|
triggerShape.syncronizationRatioTo[i],
|
|
boolToString(someSortOfTriggerError()));
|
|
}
|
|
}
|
|
#endif /* EFI_PROD_CODE */
|
|
} else {
|
|
/**
|
|
* We are here in case of a wheel without synchronization - we just need to count events,
|
|
* synchronization point simply happens once we have the right number of events
|
|
*
|
|
* in case of noise the counter could be above the expected number of events, that's why 'more or equals' and not just 'equals'
|
|
*/
|
|
|
|
unsigned int endOfCycleIndex = triggerShape.getSize() - (triggerConfiguration.UseOnlyRisingEdgeForTrigger ? 2 : 1);
|
|
|
|
isSynchronizationPoint = !getShaftSynchronized() || (currentCycle.current_index >= endOfCycleIndex);
|
|
|
|
#if EFI_UNIT_TEST
|
|
if (printTriggerTrace) {
|
|
printf("decodeTriggerEvent sync=%d isSynchronizationPoint=%d index=%d size=%d\r\n",
|
|
getShaftSynchronized(),
|
|
isSynchronizationPoint,
|
|
currentCycle.current_index,
|
|
triggerShape.getSize());
|
|
}
|
|
#endif /* EFI_UNIT_TEST */
|
|
}
|
|
#if EFI_UNIT_TEST
|
|
if (printTriggerTrace) {
|
|
printf("decodeTriggerEvent %s isSynchronizationPoint=%d index=%d %s\r\n",
|
|
getTrigger_type_e(triggerConfiguration.TriggerType.type),
|
|
isSynchronizationPoint, currentCycle.current_index,
|
|
getTrigger_event_e(signal));
|
|
}
|
|
#endif /* EFI_UNIT_TEST */
|
|
|
|
if (isSynchronizationPoint) {
|
|
bool isDecodingError = validateEventCounters(triggerShape);
|
|
|
|
if (triggerStateListener) {
|
|
triggerStateListener->OnTriggerSyncronization(wasSynchronized, isDecodingError);
|
|
}
|
|
|
|
// If we got a sync point, but the wrong number of events since the last sync point
|
|
// One of two things has happened:
|
|
// - We missed a tooth, and this is the real sync point
|
|
// - Due to some mistake in timing, we found what looks like a sync point but actually isn't
|
|
// In either case, we should wait for another sync point before doing anything to try and run an engine,
|
|
// so we clear the synchronized flag.
|
|
if (wasSynchronized && isDecodingError) {
|
|
setTriggerErrorState();
|
|
onNotEnoughTeeth(currentCycle.current_index, triggerShape.getSize());
|
|
|
|
// Something wrong, no longer synchronized
|
|
setShaftSynchronized(false);
|
|
|
|
// This is a decoding error
|
|
onTriggerError();
|
|
} else {
|
|
// If this was the first sync point OR no decode error, we're synchronized!
|
|
setShaftSynchronized(true);
|
|
}
|
|
|
|
// this call would update duty cycle values
|
|
nextTriggerEvent();
|
|
|
|
onShaftSynchronization(wasSynchronized, nowNt, triggerShape);
|
|
} else { /* if (!isSynchronizationPoint) */
|
|
nextTriggerEvent();
|
|
}
|
|
|
|
for (int i = triggerShape.gapTrackingLength; i > 0; i--) {
|
|
toothDurations[i] = toothDurations[i - 1];
|
|
}
|
|
|
|
toothed_previous_time = nowNt;
|
|
}
|
|
|
|
if (getShaftSynchronized() && !isValidIndex(triggerShape)) {
|
|
// We've had too many events since the last sync point, we should have seen a sync point by now.
|
|
// This is a trigger error.
|
|
|
|
// let's not show a warning if we are just starting to spin
|
|
if (Sensor::getOrZero(SensorType::Rpm) != 0) {
|
|
setTriggerErrorState();
|
|
onTooManyTeeth(currentCycle.current_index, triggerShape.getSize());
|
|
}
|
|
|
|
onTriggerError();
|
|
|
|
setShaftSynchronized(false);
|
|
|
|
return unexpected;
|
|
}
|
|
|
|
// Needed for early instant-RPM detection
|
|
if (triggerStateListener) {
|
|
triggerStateListener->OnTriggerStateProperState(nowNt);
|
|
}
|
|
|
|
triggerStateIndex = currentCycle.current_index;
|
|
|
|
if (getShaftSynchronized()) {
|
|
return TriggerDecodeResult{ currentCycle.current_index };
|
|
} else {
|
|
return unexpected;
|
|
}
|
|
}
|
|
|
|
bool TriggerDecoderBase::isSyncPoint(const TriggerWaveform& triggerShape, trigger_type_e triggerType) const {
|
|
// Miata NB needs a special decoder.
|
|
// The problem is that the crank wheel only has 4 teeth, also symmetrical, so the pattern
|
|
// is long-short-long-short for one crank rotation.
|
|
// A quick acceleration can result in two successive "short gaps", so we see
|
|
// long-short-short-short-long instead of the correct long-short-long-short-long
|
|
// This logic expands the lower bound on a "long" tooth, then compares the last
|
|
// tooth to the current one.
|
|
|
|
// Instead of detecting short/long, this logic first checks for "maybe short" and "maybe long",
|
|
// then simply tests longer vs. shorter instead of absolute value.
|
|
if (triggerType == TT_MIATA_VVT) {
|
|
auto secondGap = (float)toothDurations[1] / toothDurations[2];
|
|
|
|
bool currentGapOk = isInRange(triggerShape.syncronizationRatioFrom[0], (float)triggerSyncGapRatio, triggerShape.syncronizationRatioTo[0]);
|
|
bool secondGapOk = isInRange(triggerShape.syncronizationRatioFrom[1], secondGap, triggerShape.syncronizationRatioTo[1]);
|
|
|
|
// One or both teeth was impossible range, this is not the sync point
|
|
if (!currentGapOk || !secondGapOk) {
|
|
return false;
|
|
}
|
|
|
|
// If both teeth are in the range of possibility, return whether this gap is
|
|
// shorter than the last or not. If it is, this is the sync point.
|
|
return triggerSyncGapRatio < secondGap;
|
|
}
|
|
|
|
for (int i = 0; i < triggerShape.gapTrackingLength; i++) {
|
|
auto from = triggerShape.syncronizationRatioFrom[i];
|
|
auto to = triggerShape.syncronizationRatioTo[i];
|
|
|
|
if (cisnan(from)) {
|
|
// don't check this gap, skip it
|
|
continue;
|
|
}
|
|
|
|
// This is transformed to avoid a division and use a cheaper multiply instead
|
|
// toothDurations[i] / toothDurations[i+1] > from
|
|
// is an equivalent comparison to
|
|
// toothDurations[i] > toothDurations[i+1] * from
|
|
bool isGapCondition =
|
|
(toothDurations[i] > toothDurations[i + 1] * from
|
|
&& toothDurations[i] < toothDurations[i + 1] * to);
|
|
|
|
if (!isGapCondition) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Trigger shape is defined in a way which is convenient for trigger shape definition
|
|
* On the other hand, trigger decoder indexing begins from synchronization event.
|
|
*
|
|
* This function finds the index of synchronization event within TriggerWaveform
|
|
*/
|
|
uint32_t TriggerDecoderBase::findTriggerZeroEventIndex(
|
|
TriggerWaveform& shape,
|
|
const TriggerConfiguration& triggerConfiguration) {
|
|
#if EFI_PROD_CODE
|
|
efiAssert(CUSTOM_ERR_ASSERT, getCurrentRemainingStack() > 128, "findPos", -1);
|
|
#endif
|
|
|
|
|
|
resetTriggerState();
|
|
|
|
if (shape.shapeDefinitionError) {
|
|
return 0;
|
|
}
|
|
|
|
TriggerStimulatorHelper helper;
|
|
|
|
uint32_t syncIndex = helper.findTriggerSyncPoint(shape,
|
|
triggerConfiguration,
|
|
*this);
|
|
if (syncIndex == EFI_ERROR_CODE) {
|
|
return syncIndex;
|
|
}
|
|
|
|
// Assert that we found the sync point on the very first revolution
|
|
efiAssert(CUSTOM_ERR_ASSERT, getTotalRevolutionCounter() == 0, "findZero_revCounter", EFI_ERROR_CODE);
|
|
|
|
#if EFI_UNIT_TEST
|
|
if (printTriggerDebug) {
|
|
printf("findTriggerZeroEventIndex: syncIndex located %d!\r\n", syncIndex);
|
|
}
|
|
#endif /* EFI_UNIT_TEST */
|
|
|
|
helper.assertSyncPosition(triggerConfiguration,
|
|
syncIndex, *this, shape);
|
|
|
|
return syncIndex % shape.getSize();
|
|
}
|
|
|
|
#endif /* EFI_SHAFT_POSITION_INPUT */
|
|
|