custom-board-bundle-sample-.../firmware/controllers/trigger/trigger_structure.cpp

467 lines
16 KiB
C++

/**
* @file trigger_structure.cpp
*
* @date Jan 20, 2014
* @author Andrey Belomutskiy, (c) 2012-2018
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "global.h"
#include "trigger_structure.h"
#include "trigger_decoder.h"
#include "engine_math.h"
#include "trigger_universal.h"
#if EFI_SENSOR_CHART || defined(__DOXYGEN__)
#include "sensor_chart.h"
#endif /* EFI_SENSOR_CHART */
EXTERN_ENGINE;
trigger_shape_helper::trigger_shape_helper() {
memset(&pinStates, 0, sizeof(pinStates));
for (int channelIndex = 0; channelIndex < TRIGGER_CHANNEL_COUNT; channelIndex++) {
channels[channelIndex].init(pinStates[channelIndex]);
}
}
TriggerShape::TriggerShape() :
wave(switchTimesBuffer, NULL) {
version = 0;
initialize(OM_NONE, false);
wave.channels = h.channels;
memset(triggerIndexByAngle, 0, sizeof(triggerIndexByAngle));
}
void TriggerShape::calculateTriggerSynchPoint(TriggerState *state DECLARE_ENGINE_PARAMETER_SUFFIX) {
#if EFI_PROD_CODE || defined(__DOXYGEN__)
efiAssertVoid(CUSTOM_ERR_6642, getRemainingStack(chThdGetSelfX()) > 256, "calc s");
#endif
trigger_config_s const*triggerConfig = &engineConfiguration->trigger;
triggerShapeSynchPointIndex = findTriggerZeroEventIndex(state, this, triggerConfig PASS_ENGINE_PARAMETER_SUFFIX);
int length = getLength();
engine->engineCycleEventCount = length;
efiAssertVoid(CUSTOM_SHAPE_LEN_ZERO, length > 0, "shapeLength=0");
if (length >= PWM_PHASE_MAX_COUNT) {
warning(CUSTOM_ERR_TRIGGER_SHAPE_TOO_LONG, "Count above %d", length);
shapeDefinitionError = true;
return;
}
float firstAngle = getAngle(triggerShapeSynchPointIndex);
assertAngleRange(triggerShapeSynchPointIndex, "firstAngle", CUSTOM_ERR_6551);
int frontOnlyIndex = 0;
for (int eventIndex = 0; eventIndex < length; eventIndex++) {
if (eventIndex == 0) {
// explicit check for zero to avoid issues where logical zero is not exactly zero due to float nature
eventAngles[0] = 0;
// this value would be used in case of front-only
eventAngles[1] = 0;
frontOnlyIndexes[0] = 0;
} else {
assertAngleRange(triggerShapeSynchPointIndex, "triggerShapeSynchPointIndex", CUSTOM_ERR_6552);
int triggerDefinitionCoordinate = (triggerShapeSynchPointIndex + eventIndex) % engine->engineCycleEventCount;
efiAssertVoid(CUSTOM_ERR_6595, engine->engineCycleEventCount != 0, "zero engineCycleEventCount");
int triggerDefinitionIndex = triggerDefinitionCoordinate >= privateTriggerDefinitionSize ? triggerDefinitionCoordinate - privateTriggerDefinitionSize : triggerDefinitionCoordinate;
float angle = getAngle(triggerDefinitionCoordinate) - firstAngle;
efiAssertVoid(CUSTOM_ERR_6596, !cisnan(angle), "trgSyncNaN");
fixAngle(angle, "trgSync", CUSTOM_ERR_6559);
if (engineConfiguration->useOnlyRisingEdgeForTrigger) {
if (isFrontEvent[triggerDefinitionIndex]) {
frontOnlyIndex += 2;
eventAngles[frontOnlyIndex] = angle;
eventAngles[frontOnlyIndex + 1] = angle;
}
} else {
eventAngles[eventIndex] = angle;
}
frontOnlyIndexes[eventIndex] = frontOnlyIndex;
}
}
}
void TriggerShape::initialize(operation_mode_e operationMode, bool needSecondTriggerInput) {
isSynchronizationNeeded = true; // that's default value
this->needSecondTriggerInput = needSecondTriggerInput;
memset(expectedDutyCycle, 0, sizeof(expectedDutyCycle));
memset(eventAngles, 0, sizeof(eventAngles));
// memset(triggerIndexByAngle, 0, sizeof(triggerIndexByAngle));
setTriggerSynchronizationGap(2);
for (int gapIndex = 1; gapIndex < GAP_TRACKING_LENGTH ; gapIndex++) {
// NaN means do not use this gap ratio
setTriggerSynchronizationGap3(gapIndex, NAN, 100000);
}
tdcPosition = 0;
shapeDefinitionError = useOnlyPrimaryForSync = false;
useRiseEdge = true;
gapBothDirections = false;
invertOnAdd = false;
this->operationMode = operationMode;
privateTriggerDefinitionSize = 0;
triggerShapeSynchPointIndex = 0;
memset(initialState, 0, sizeof(initialState));
memset(switchTimesBuffer, 0, sizeof(switchTimesBuffer));
memset(expectedEventCount, 0, sizeof(expectedEventCount));
wave.reset();
previousAngle = 0;
memset(frontOnlyIndexes, 0, sizeof(frontOnlyIndexes));
memset(isFrontEvent, 0, sizeof(isFrontEvent));
#if EFI_UNIT_TEST || defined(__DOXYGEN__)
memset(&triggerSignals, 0, sizeof(triggerSignals));
#endif
}
int TriggerShape::getSize() const {
return privateTriggerDefinitionSize;
}
int TriggerShape::getTriggerShapeSynchPointIndex() {
return triggerShapeSynchPointIndex;
}
efitime_t TriggerState::getStartOfRevolutionIndex() {
return totalEventCountBase;
}
void TriggerState::resetRunningCounters() {
runningRevolutionCounter = 0;
runningTriggerErrorCounter = 0;
runningOrderingErrorCounter = 0;
}
void TriggerState::runtimeStatistics(efitime_t nowNt DECLARE_ENGINE_PARAMETER_SUFFIX) {
// empty base implementation
}
TriggerStateWithRunningStatistics::TriggerStateWithRunningStatistics() {
instantRpm = 0;
prevInstantRpmValue = 0;
// avoid ill-defined instant RPM when the data is not gathered yet
efitime_t nowNt = getTimeNowNt();
for (int i = 0; i < PWM_PHASE_MAX_COUNT; i++) {
timeOfLastEvent[i] = nowNt;
}
}
float TriggerStateWithRunningStatistics::calculateInstantRpm(int *prevIndex, efitime_t nowNt DECLARE_ENGINE_PARAMETER_SUFFIX) {
int current_index = currentCycle.current_index; // local copy so that noone changes the value on us
/**
* Here we calculate RPM based on last 90 degrees
*/
angle_t currentAngle = TRIGGER_SHAPE(eventAngles[current_index]);
// todo: make this '90' depend on cylinder count or trigger shape?
angle_t previousAngle = currentAngle - 90;
fixAngle(previousAngle, "prevAngle", CUSTOM_ERR_6560);
// todo: prevIndex should be pre-calculated
*prevIndex = TRIGGER_SHAPE(triggerIndexByAngle[(int)previousAngle]);
// now let's get precise angle for that event
angle_t prevIndexAngle = TRIGGER_SHAPE(eventAngles[*prevIndex]);
uint32_t time = nowNt - timeOfLastEvent[*prevIndex];
angle_t angleDiff = currentAngle - prevIndexAngle;
// todo: angle diff should be pre-calculated
fixAngle(angleDiff, "angleDiff", CUSTOM_ERR_6561);
// just for safety
if (time == 0)
return prevInstantRpmValue;
float instantRpm = (60000000.0 / 360 * US_TO_NT_MULTIPLIER) * angleDiff / time;
instantRpmValue[current_index] = instantRpm;
timeOfLastEvent[current_index] = nowNt;
// This fixes early RPM instability based on incomplete data
if (instantRpm < RPM_LOW_THRESHOLD)
return prevInstantRpmValue;
prevInstantRpmValue = instantRpm;
return instantRpm;
}
void TriggerStateWithRunningStatistics::setLastEventTimeForInstantRpm(efitime_t nowNt DECLARE_ENGINE_PARAMETER_SUFFIX) {
timeOfLastEvent[currentCycle.current_index] = nowNt;
}
void TriggerStateWithRunningStatistics::runtimeStatistics(efitime_t nowNt DECLARE_ENGINE_PARAMETER_SUFFIX) {
if (engineConfiguration->debugMode == DBG_INSTANT_RPM) {
int prevIndex;
instantRpm = calculateInstantRpm(&prevIndex, nowNt PASS_ENGINE_PARAMETER_SUFFIX);
}
if (ENGINE(sensorChartMode) == SC_RPM_ACCEL || ENGINE(sensorChartMode) == SC_DETAILED_RPM) {
int prevIndex;
instantRpm = calculateInstantRpm(&prevIndex, nowNt PASS_ENGINE_PARAMETER_SUFFIX);
#if EFI_SENSOR_CHART || defined(__DOXYGEN__)
angle_t currentAngle = TRIGGER_SHAPE(eventAngles[currentCycle.current_index]);
if (boardConfiguration->sensorChartMode == SC_DETAILED_RPM) {
scAddData(currentAngle, instantRpm);
} else {
scAddData(currentAngle, instantRpm / instantRpmValue[prevIndex]);
}
#endif /* EFI_SENSOR_CHART */
}
}
efitime_t TriggerState::getTotalEventCounter() {
return totalEventCountBase + currentCycle.current_index;
}
int TriggerState::getTotalRevolutionCounter() {
return totalRevolutionCounter;
}
/**
* physical primary trigger duration
*/
angle_t TriggerShape::getCycleDuration() const {
switch (operationMode) {
case FOUR_STROKE_SYMMETRICAL_CRANK_SENSOR:
return 180;
case FOUR_STROKE_CRANK_SENSOR:
case TWO_STROKE:
return 360;
default:
return 720;
}
}
/**
* Trigger event count equals engine cycle event count if we have a cam sensor.
* Two trigger cycles make one engine cycle in case of a four stroke engine If we only have a cranksensor.
*/
uint32_t TriggerShape::getLength() const {
/**
* 4 for FOUR_STROKE_SYMMETRICAL_CRANK_SENSOR
* 2 for FOUR_STROKE_CRANK_SENSOR
* 1 otherwise
*/
int multiplier = getEngineCycle(operationMode) / getCycleDuration();
return multiplier * getSize();
}
angle_t TriggerShape::getAngle(int index) const {
// todo: why is this check here? looks like the code below could be used universally
if (operationMode == FOUR_STROKE_CAM_SENSOR) {
return getSwitchAngle(index);
}
/**
* FOUR_STROKE_CRANK_SENSOR magic:
* We have two crank shaft revolutions for each engine cycle
* See also trigger_central.cpp
* See also getEngineCycleEventCount()
*/
efiAssert(CUSTOM_ERR_ASSERT, privateTriggerDefinitionSize != 0, "shapeSize=0", NAN);
int crankCycle = index / privateTriggerDefinitionSize;
int remainder = index % privateTriggerDefinitionSize;
return getCycleDuration() * crankCycle + getSwitchAngle(remainder);
}
void TriggerShape::addEvent3(angle_t angle, trigger_wheel_e const channelIndex, trigger_value_e const stateParam, float filterLeft, float filterRight DECLARE_ENGINE_PARAMETER_SUFFIX) {
if (angle > filterLeft && angle < filterRight)
addEvent2(angle, channelIndex, stateParam PASS_ENGINE_PARAMETER_SUFFIX);
}
operation_mode_e TriggerShape::getOperationMode() {
return operationMode;
}
#if EFI_UNIT_TEST || defined(__DOXYGEN__)
extern bool printTriggerDebug;
#endif
void TriggerShape::calculateExpectedEventCounts(bool useOnlyRisingEdgeForTrigger) {
// todo: move the following logic from below here
// if (!useOnlyRisingEdgeForTrigger || stateParam == TV_RISE) {
// expectedEventCount[channelIndex]++;
// }
}
/**
* Deprecated - see https://github.com/rusefi/rusefi/issues/635
*/
void TriggerShape::addEvent2(angle_t angle, trigger_wheel_e const channelIndex, trigger_value_e const stateParam DECLARE_ENGINE_PARAMETER_SUFFIX) {
/**
* While '720' value works perfectly it has not much sense for crank sensor-only scenario.
*/
addEvent(engineConfiguration->useOnlyRisingEdgeForTrigger, angle / getEngineCycle(operationMode), channelIndex, stateParam);
}
void TriggerShape::addEvent720(angle_t angle, trigger_wheel_e const channelIndex, trigger_value_e const stateParam) {
addEvent(useOnlyRisingEdgeForTriggerTemp, angle / 720, channelIndex, stateParam);
}
// todo: the whole 'useOnlyRisingEdgeForTrigger' parameter and logic should not be here
// todo: see calculateExpectedEventCounts
// related calculation should be done once trigger is initialized outside of trigger shape scope
void TriggerShape::addEvent(bool useOnlyRisingEdgeForTrigger, angle_t angle, trigger_wheel_e const channelIndex, trigger_value_e const stateParam) {
efiAssertVoid(CUSTOM_OMODE_UNDEF, operationMode != OM_NONE, "operationMode not set");
efiAssertVoid(CUSTOM_ERR_6598, channelIndex!= T_SECONDARY || needSecondTriggerInput, "secondary needed or not?");
#if EFI_UNIT_TEST || defined(__DOXYGEN__)
if (printTriggerDebug) {
printf("addEvent2 %.2f i=%d r/f=%d\r\n", angle, channelIndex, stateParam);
}
#endif
trigger_value_e state;
if (invertOnAdd) {
state = (stateParam == TV_FALL) ? TV_RISE : TV_FALL;
} else {
state = stateParam;
}
#if EFI_UNIT_TEST || defined(__DOXYGEN__)
int signal = channelIndex * 1000 + stateParam;
triggerSignals[privateTriggerDefinitionSize] = signal;
#endif
if (!useOnlyRisingEdgeForTrigger || stateParam == TV_RISE) {
expectedEventCount[channelIndex]++;
}
efiAssertVoid(CUSTOM_ERR_6599, angle > 0, "angle should be positive");
if (privateTriggerDefinitionSize > 0) {
if (angle <= previousAngle) {
warning(CUSTOM_ERR_TRG_ANGLE_ORDER, "invalid angle order: new=%.2f and prev=%.2f, size=%d", angle, previousAngle, privateTriggerDefinitionSize);
shapeDefinitionError = true;
return;
}
}
previousAngle = angle;
if (privateTriggerDefinitionSize == 0) {
privateTriggerDefinitionSize = 1;
for (int i = 0; i < PWM_PHASE_MAX_WAVE_PER_PWM; i++) {
SingleWave *wave = &this->wave.channels[i];
if (wave->pinStates == NULL) {
warning(CUSTOM_ERR_STATE_NULL, "wave pinStates is NULL");
shapeDefinitionError = true;
return;
}
wave->setState(/* channelIndex */ 0, /* value */ initialState[i]);
}
isFrontEvent[0] = TV_RISE == stateParam;
wave.setSwitchTime(0, angle);
wave.channels[channelIndex].setState(/* channelIndex */ 0, /* value */ state);
return;
}
int exactMatch = wave.findAngleMatch(angle, privateTriggerDefinitionSize);
if (exactMatch != EFI_ERROR_CODE) {
warning(CUSTOM_ERR_SAME_ANGLE, "same angle: not supported");
shapeDefinitionError = true;
return;
}
int index = wave.findInsertionAngle(angle, privateTriggerDefinitionSize);
/**
* todo: it would be nice to be able to provide trigger angles without sorting them externally
* The idea here is to shift existing data - including handling high vs low state of the signals
*/
// todo: does this logic actually work? I think it does not! due to broken state handling
/*
for (int i = size - 1; i >= index; i--) {
for (int j = 0; j < PWM_PHASE_MAX_WAVE_PER_PWM; j++) {
wave.waves[j].pinStates[i + 1] = wave.getChannelState(j, index);
}
wave.setSwitchTime(i + 1, wave.getSwitchTime(i));
}
*/
isFrontEvent[index] = TV_RISE == stateParam;
if (index != privateTriggerDefinitionSize) {
firmwareError(ERROR_TRIGGER_DRAMA, "are we ever here?");
}
privateTriggerDefinitionSize++;
for (int i = 0; i < PWM_PHASE_MAX_WAVE_PER_PWM; i++) {
int value = wave.getChannelState(/* channelIndex */i, index - 1);
wave.channels[i].setState(index, value);
}
wave.setSwitchTime(index, angle);
wave.channels[channelIndex].setState(index, state);
}
angle_t TriggerShape::getSwitchAngle(int index) const {
return getCycleDuration() * wave.getSwitchTime(index);
}
void setToothedWheelConfiguration(TriggerShape *s, int total, int skipped,
operation_mode_e operationMode DECLARE_ENGINE_PARAMETER_SUFFIX) {
#if EFI_ENGINE_CONTROL || defined(__DOXYGEN__)
s->useRiseEdge = true;
initializeSkippedToothTriggerShapeExt(s, total, skipped,
operationMode PASS_ENGINE_PARAMETER_SUFFIX);
#endif
}
void TriggerShape::setTriggerSynchronizationGap2(float syncRatioFrom, float syncRatioTo) {
setTriggerSynchronizationGap3(/*gapIndex*/0, syncRatioFrom, syncRatioTo);
}
void TriggerShape::setTriggerSynchronizationGap3(int gapIndex, float syncRatioFrom, float syncRatioTo) {
isSynchronizationNeeded = true;
this->syncronizationRatioFrom[gapIndex] = syncRatioFrom;
this->syncronizationRatioTo[gapIndex] = syncRatioTo;
if (gapIndex == 0) {
// we have a special case here - only sync with one gap has this feature
this->syncRatioAvg = (int)efiRound((syncRatioFrom + syncRatioTo) * 0.5f, 1.0f);
}
#if EFI_UNIT_TEST || defined(__DOXYGEN__)
if (printTriggerDebug) {
printf("setTriggerSynchronizationGap3 %d %.2f %.2f\r\n", gapIndex, syncRatioFrom, syncRatioTo);
}
#endif /* EFI_UNIT_TEST */
}
void TriggerShape::setTriggerSynchronizationGap(float syncRatio) {
setTriggerSynchronizationGap3(/*gapIndex*/0, syncRatio * 0.75f, syncRatio * 1.25f);
}
void TriggerShape::setSecondTriggerSynchronizationGap2(float syncRatioFrom, float syncRatioTo) {
setTriggerSynchronizationGap3(/*gapIndex*/1, syncRatioFrom, syncRatioTo);
}
void TriggerShape::setThirdTriggerSynchronizationGap(float syncRatio) {
setTriggerSynchronizationGap3(/*gapIndex*/2, syncRatio * 0.75f, syncRatio * 1.25f);
}
void TriggerShape::setSecondTriggerSynchronizationGap(float syncRatio) {
setTriggerSynchronizationGap3(/*gapIndex*/1, syncRatio * 0.75f, syncRatio * 1.25f);
}