custom-board-bundle-sample-.../firmware/controllers/engine_controller.cpp

845 lines
23 KiB
C++

/**
* @file engine_controller.cpp
* @brief Controllers package entry point code
*
*
*
* @date Feb 7, 2013
* @author Andrey Belomutskiy, (c) 2012-2020
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "global.h"
#include "os_access.h"
#include "trigger_central.h"
#include "engine_controller.h"
#include "fsio_core.h"
#include "fsio_impl.h"
#include "idle_thread.h"
#include "advance_map.h"
#include "rpm_calculator.h"
#include "main_trigger_callback.h"
#include "io_pins.h"
#include "flash_main.h"
#include "injector_central.h"
#include "os_util.h"
#include "engine_math.h"
#include "allsensors.h"
#include "electronic_throttle.h"
#include "map_averaging.h"
#include "malfunction_central.h"
#include "malfunction_indicator.h"
#include "engine.h"
#include "speed_density.h"
#include "local_version_holder.h"
#include "alternator_controller.h"
#include "fuel_math.h"
#include "settings.h"
#include "aux_pid.h"
#include "spark_logic.h"
#include "aux_valves.h"
#include "accelerometer.h"
#include "counter64.h"
#include "perf_trace.h"
#if EFI_SENSOR_CHART
#include "sensor_chart.h"
#endif
#if EFI_TUNER_STUDIO
#include "tunerstudio.h"
#endif
#if EFI_LOGIC_ANALYZER
#include "logic_analyzer.h"
#endif
#if HAL_USE_ADC
#include "AdcConfiguration.h"
#endif /* HAL_USE_ADC */
#if defined(EFI_BOOTLOADER_INCLUDE_CODE)
#include "bootloader/bootloader.h"
#endif /* EFI_BOOTLOADER_INCLUDE_CODE */
#if EFI_PROD_CODE || EFI_SIMULATOR
#include "periodic_task.h"
#endif
#if ! EFI_UNIT_TEST
#include "init.h"
#endif /* EFI_UNIT_TEST */
#if EFI_PROD_CODE
#include "pwm_generator.h"
#include "adc_inputs.h"
#include "pwm_tester.h"
#include "pwm_generator.h"
#include "lcd_controller.h"
#include "pin_repository.h"
#include "tachometer.h"
#endif /* EFI_PROD_CODE */
#if EFI_CJ125
#include "cj125.h"
#endif /* EFI_CJ125 */
EXTERN_ENGINE;
void initDataStructures(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
initFuelMap(PASS_ENGINE_PARAMETER_SIGNATURE);
initTimingMap(PASS_ENGINE_PARAMETER_SIGNATURE);
initSpeedDensity(PASS_ENGINE_PARAMETER_SIGNATURE);
}
static void mostCommonInitEngineController(Logging *sharedLogger DECLARE_ENGINE_PARAMETER_SUFFIX) {
#if !EFI_UNIT_TEST
initSensors();
#endif /* EFI_UNIT_TEST */
initSensors(sharedLogger PASS_ENGINE_PARAMETER_SUFFIX);
initAccelEnrichment(sharedLogger PASS_ENGINE_PARAMETER_SUFFIX);
#if EFI_FSIO
initFsioImpl(sharedLogger PASS_ENGINE_PARAMETER_SUFFIX);
#endif /* EFI_FSIO */
#if EFI_IDLE_CONTROL
startIdleThread(sharedLogger PASS_ENGINE_PARAMETER_SUFFIX);
#endif /* EFI_IDLE_CONTROL */
#if EFI_ELECTRONIC_THROTTLE_BODY
initElectronicThrottle(PASS_ENGINE_PARAMETER_SIGNATURE);
#endif /* EFI_ELECTRONIC_THROTTLE_BODY */
#if EFI_MAP_AVERAGING
if (engineConfiguration->isMapAveragingEnabled) {
initMapAveraging(sharedLogger PASS_ENGINE_PARAMETER_SUFFIX);
}
#endif /* EFI_MAP_AVERAGING */
}
EXTERN_ENGINE;
#if EFI_ENABLE_MOCK_ADC
void setMockVoltage(int hwChannel, float voltage DECLARE_ENGINE_PARAMETER_SUFFIX) {
engine->engineState.mockAdcState.setMockVoltage(hwChannel, voltage PASS_ENGINE_PARAMETER_SUFFIX);
}
#endif
#if !EFI_UNIT_TEST
extern bool hasFirmwareErrorFlag;
extern EnginePins enginePins;
static void doPeriodicSlowCallback(DECLARE_ENGINE_PARAMETER_SIGNATURE);
class PeriodicFastController : public PeriodicTimerController {
void PeriodicTask() override {
engine->periodicFastCallback();
}
int getPeriodMs() override {
return FAST_CALLBACK_PERIOD_MS;
}
};
class PeriodicSlowController : public PeriodicTimerController {
void PeriodicTask() override {
doPeriodicSlowCallback(PASS_ENGINE_PARAMETER_SIGNATURE);
}
int getPeriodMs() override {
// we need at least protection from zero value while resetting configuration
int periodMs = maxI(50, CONFIG(generalPeriodicThreadPeriodMs));
return periodMs;
}
};
static PeriodicFastController fastController;
static PeriodicSlowController slowController;
static LoggingWithStorage logger("Engine Controller");
#if EFI_PROD_CODE || EFI_SIMULATOR
/**
* todo: this should probably become 'static', i.e. private, and propagated around explicitly?
*/
Engine ___engine CCM_OPTIONAL;
Engine * engine = &___engine;
#endif /* EFI_PROD_CODE || EFI_SIMULATOR */
class EngineStateBlinkingTask : public PeriodicTimerController {
int getPeriodMs() override {
return 50;
}
void PeriodicTask() override {
counter++;
bool is_running = ENGINE(rpmCalculator).isRunning(PASS_ENGINE_PARAMETER_SIGNATURE);
if (is_running) {
// blink in running mode
enginePins.runningLedPin.setValue(counter % 2);
} else {
int is_cranking = ENGINE(rpmCalculator).isCranking(PASS_ENGINE_PARAMETER_SIGNATURE);
enginePins.runningLedPin.setValue(is_cranking);
}
}
private:
int counter = 0;
};
static EngineStateBlinkingTask engineStateBlinkingTask;
#if EFI_PROD_CODE
static Overflow64Counter halTime;
/**
* 64-bit result would not overflow, but that's complex stuff for our 32-bit MCU
*/
//todo: macro to save method invocation
efitimeus_t getTimeNowUs(void) {
ScopePerf perf(PE::GetTimeNowUs);
return getTimeNowNt() / (CORE_CLOCK / 1000000);
}
//todo: macro to save method invocation
efitick_t getTimeNowNt(void) {
#if EFI_PROD_CODE
/* Entering a reentrant critical zone.*/
syssts_t sts = chSysGetStatusAndLockX();
efitime_t localH = halTime.state.highBits;
uint32_t localLow = halTime.state.lowBits;
uint32_t value = getTimeNowLowerNt();
if (value < localLow) {
// new value less than previous value means there was an overflow in that 32 bit counter
localH += 0x100000000LL;
}
efitime_t result = localH + value;
/* Leaving the critical zone.*/
chSysRestoreStatusX(sts);
return result;
#else /* EFI_PROD_CODE */
// todo: why is this implementation not used?
/**
* this method is lock-free and thread-safe, that's because the 'update' method
* is atomic with a critical zone requirement.
*
* http://stackoverflow.com/questions/5162673/how-to-read-two-32bit-counters-as-a-64bit-integer-without-race-condition
*/
efitime_t localH;
efitime_t localH2;
uint32_t localLow;
int counter = 0;
do {
localH = halTime.state.highBits;
localLow = halTime.state.lowBits;
localH2 = halTime.state.highBits;
#if EFI_PROD_CODE
if (counter++ == 10000)
chDbgPanic("lock-free frozen");
#endif /* EFI_PROD_CODE */
} while (localH != localH2);
/**
* We need to take current counter after making a local 64 bit snapshot
*/
uint32_t value = getTimeNowLowerNt();
if (value < localLow) {
// new value less than previous value means there was an overflow in that 32 bit counter
localH += 0x100000000LL;
}
return localH + value;
#endif /* EFI_PROD_CODE */
}
#endif /* EFI_PROD_CODE */
#if ! EFI_UNIT_TEST
/**
* number of SysClock ticks in one ms
*/
#define TICKS_IN_MS (CH_CFG_ST_FREQUENCY / 1000)
// todo: this overflows pretty fast!
efitimems_t currentTimeMillis(void) {
// todo: migrate to getTimeNowUs? or not?
return chVTGetSystemTimeX() / TICKS_IN_MS;
}
// todo: this overflows pretty fast!
efitimesec_t getTimeNowSeconds(void) {
return currentTimeMillis() / 1000;
}
#endif /* EFI_UNIT_TEST */
static void resetAccel(void) {
engine->engineLoadAccelEnrichment.resetAE();
engine->tpsAccelEnrichment.resetAE();
for (unsigned int i = 0; i < sizeof(engine->wallFuel) / sizeof(engine->wallFuel[0]); i++)
{
engine->wallFuel[i].resetWF();
}
}
#if ENABLE_PERF_TRACE
void irqEnterHook(void) {
perfEventBegin(PE::ISR);
}
void irqExitHook(void) {
perfEventEnd(PE::ISR);
}
void contextSwitchHook() {
perfEventInstantGlobal(PE::ContextSwitch);
}
#endif /* ENABLE_PERF_TRACE */
static void doPeriodicSlowCallback(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
#if EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT
efiAssertVoid(CUSTOM_ERR_6661, getCurrentRemainingStack() > 64, "lowStckOnEv");
#if EFI_PROD_CODE
/**
* We need to push current value into the 64 bit counter often enough so that we do not miss an overflow
*/
/* Entering a reentrant critical zone.*/
syssts_t sts = chSysGetStatusAndLockX();
updateAndSet(&halTime.state, getTimeNowLowerNt());
/* Leaving the critical zone.*/
chSysRestoreStatusX(sts);
#endif /* EFI_PROD_CODE */
/**
* Update engine RPM state if needed (check timeouts).
*/
bool isSpinning = engine->rpmCalculator.checkIfSpinning(getTimeNowNt() PASS_ENGINE_PARAMETER_SUFFIX);
if (!isSpinning) {
engine->rpmCalculator.setStopSpinning(PASS_ENGINE_PARAMETER_SIGNATURE);
}
if (engine->rpmCalculator.isStopped(PASS_ENGINE_PARAMETER_SIGNATURE)) {
#if EFI_INTERNAL_FLASH
writeToFlashIfPending();
#endif /* EFI_INTERNAL_FLASH */
resetAccel();
} else {
updatePrimeInjectionPulseState(PASS_ENGINE_PARAMETER_SIGNATURE);
}
if (engine->versionForConfigurationListeners.isOld(engine->getGlobalConfigurationVersion())) {
updateAccelParameters();
}
engine->periodicSlowCallback(PASS_ENGINE_PARAMETER_SIGNATURE);
#endif
}
void initPeriodicEvents(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
slowController.Start();
fastController.Start();
}
char * getPinNameByAdcChannel(const char *msg, adc_channel_e hwChannel, char *buffer) {
#if HAL_USE_ADC
if (hwChannel == EFI_ADC_NONE) {
strcpy(buffer, "NONE");
} else {
strcpy((char*) buffer, portname(getAdcChannelPort(msg, hwChannel)));
itoa10(&buffer[2], getAdcChannelPin(hwChannel));
}
#else
strcpy(buffer, "NONE");
#endif
return (char*) buffer;
}
static char pinNameBuffer[16];
#if HAL_USE_ADC
extern AdcDevice fastAdc;
#endif
static void printAnalogChannelInfoExt(const char *name, adc_channel_e hwChannel, float adcVoltage,
float dividerCoeff) {
#if HAL_USE_ADC
if (hwChannel == EFI_ADC_NONE) {
scheduleMsg(&logger, "ADC is not assigned for %s", name);
return;
}
if (fastAdc.isHwUsed(hwChannel)) {
scheduleMsg(&logger, "fast enabled=%s", boolToString(CONFIG(isFastAdcEnabled)));
}
float voltage = adcVoltage * dividerCoeff;
scheduleMsg(&logger, "%s ADC%d %s %s adc=%.2f/input=%.2fv/divider=%.2f", name, hwChannel, getAdcMode(hwChannel),
getPinNameByAdcChannel(name, hwChannel, pinNameBuffer), adcVoltage, voltage, dividerCoeff);
#endif
}
static void printAnalogChannelInfo(const char *name, adc_channel_e hwChannel) {
#if HAL_USE_ADC
printAnalogChannelInfoExt(name, hwChannel, getVoltage("print", hwChannel PASS_ENGINE_PARAMETER_SUFFIX), engineConfiguration->analogInputDividerCoefficient);
#endif
}
static void printAnalogInfo(void) {
scheduleMsg(&logger, "analogInputDividerCoefficient: %.2f", engineConfiguration->analogInputDividerCoefficient);
printAnalogChannelInfo("hip9011", engineConfiguration->hipOutputChannel);
printAnalogChannelInfo("fuel gauge", engineConfiguration->fuelLevelSensor);
printAnalogChannelInfo("TPS", engineConfiguration->tps1_1AdcChannel);
printAnalogChannelInfo("pPS", engineConfiguration->throttlePedalPositionAdcChannel);
if (engineConfiguration->clt.adcChannel != EFI_ADC_NONE) {
printAnalogChannelInfo("CLT", engineConfiguration->clt.adcChannel);
}
if (engineConfiguration->iat.adcChannel != EFI_ADC_NONE) {
printAnalogChannelInfo("IAT", engineConfiguration->iat.adcChannel);
}
if (hasMafSensor()) {
printAnalogChannelInfo("MAF", engineConfiguration->mafAdcChannel);
}
for (int i = 0; i < FSIO_ANALOG_INPUT_COUNT ; i++) {
adc_channel_e ch = engineConfiguration->fsioAdc[i];
if (ch != EFI_ADC_NONE) {
printAnalogChannelInfo("fsio", ch);
}
}
printAnalogChannelInfo("AFR", engineConfiguration->afr.hwChannel);
if (hasMapSensor(PASS_ENGINE_PARAMETER_SIGNATURE)) {
printAnalogChannelInfo("MAP", engineConfiguration->map.sensor.hwChannel);
}
if (hasBaroSensor(PASS_ENGINE_PARAMETER_SIGNATURE)) {
printAnalogChannelInfo("BARO", engineConfiguration->baroSensor.hwChannel);
}
if (engineConfiguration->externalKnockSenseAdc != EFI_ADC_NONE) {
printAnalogChannelInfo("extKno", engineConfiguration->externalKnockSenseAdc);
}
printAnalogChannelInfo("OilP", engineConfiguration->oilPressure.hwChannel);
printAnalogChannelInfo("A/C sw", engineConfiguration->acSwitchAdc);
printAnalogChannelInfo("HIP9011", engineConfiguration->hipOutputChannel);
printAnalogChannelInfoExt("Vbatt", engineConfiguration->vbattAdcChannel, getVoltage("vbatt", engineConfiguration->vbattAdcChannel PASS_ENGINE_PARAMETER_SUFFIX),
engineConfiguration->vbattDividerCoeff);
}
#define isOutOfBounds(offset) ((offset<0) || (offset) >= (int) sizeof(engine_configuration_s))
static void getShort(int offset) {
if (isOutOfBounds(offset))
return;
uint16_t *ptr = (uint16_t *) (&((char *) engineConfiguration)[offset]);
uint16_t value = *ptr;
/**
* this response is part of rusEfi console API
*/
scheduleMsg(&logger, "short%s%d is %d", CONSOLE_DATA_PROTOCOL_TAG, offset, value);
}
static void getByte(int offset) {
if (isOutOfBounds(offset))
return;
uint8_t *ptr = (uint8_t *) (&((char *) engineConfiguration)[offset]);
uint8_t value = *ptr;
/**
* this response is part of rusEfi console API
*/
scheduleMsg(&logger, "byte%s%d is %d", CONSOLE_DATA_PROTOCOL_TAG, offset, value);
}
static void onConfigurationChanged() {
#if EFI_TUNER_STUDIO
// on start-up rusEfi would read from working copy of TS while
// we have a lot of console commands which write into real copy of configuration directly
// we have a bit of a mess here
syncTunerStudioCopy();
#endif /* EFI_TUNER_STUDIO */
incrementGlobalConfigurationVersion(PASS_ENGINE_PARAMETER_SIGNATURE);
}
static void setBit(const char *offsetStr, const char *bitStr, const char *valueStr) {
int offset = atoi(offsetStr);
if (absI(offset) == absI(ERROR_CODE)) {
scheduleMsg(&logger, "invalid offset [%s]", offsetStr);
return;
}
if (isOutOfBounds(offset)) {
return;
}
int bit = atoi(bitStr);
if (absI(bit) == absI(ERROR_CODE)) {
scheduleMsg(&logger, "invalid bit [%s]", bitStr);
return;
}
int value = atoi(valueStr);
if (absI(value) == absI(ERROR_CODE)) {
scheduleMsg(&logger, "invalid value [%s]", valueStr);
return;
}
int *ptr = (int *) (&((char *) engineConfiguration)[offset]);
*ptr ^= (-value ^ *ptr) & (1 << bit);
/**
* this response is part of rusEfi console API
*/
scheduleMsg(&logger, "bit%s%d/%d is %d", CONSOLE_DATA_PROTOCOL_TAG, offset, bit, value);
onConfigurationChanged();
}
static void setShort(const int offset, const int value) {
if (isOutOfBounds(offset))
return;
uint16_t *ptr = (uint16_t *) (&((char *) engineConfiguration)[offset]);
*ptr = (uint16_t) value;
getShort(offset);
onConfigurationChanged();
}
static void setByte(const int offset, const int value) {
if (isOutOfBounds(offset))
return;
uint8_t *ptr = (uint8_t *) (&((char *) engineConfiguration)[offset]);
*ptr = (uint8_t) value;
getByte(offset);
onConfigurationChanged();
}
static void getBit(int offset, int bit) {
if (isOutOfBounds(offset))
return;
int *ptr = (int *) (&((char *) engineConfiguration)[offset]);
int value = (*ptr >> bit) & 1;
/**
* this response is part of rusEfi console API
*/
scheduleMsg(&logger, "bit%s%d/%d is %d", CONSOLE_DATA_PROTOCOL_TAG, offset, bit, value);
}
static void getInt(int offset) {
if (isOutOfBounds(offset))
return;
int *ptr = (int *) (&((char *) engineConfiguration)[offset]);
int value = *ptr;
/**
* this response is part of rusEfi console API
*/
scheduleMsg(&logger, "int%s%d is %d", CONSOLE_DATA_PROTOCOL_TAG, offset, value);
}
static void setInt(const int offset, const int value) {
if (isOutOfBounds(offset))
return;
int *ptr = (int *) (&((char *) engineConfiguration)[offset]);
*ptr = value;
getInt(offset);
onConfigurationChanged();
}
static void getFloat(int offset) {
if (isOutOfBounds(offset))
return;
float *ptr = (float *) (&((char *) engineConfiguration)[offset]);
float value = *ptr;
/**
* this response is part of rusEfi console API
*/
scheduleMsg(&logger, "float%s%d is %.5f", CONSOLE_DATA_PROTOCOL_TAG, offset, value);
}
static void setFloat(const char *offsetStr, const char *valueStr) {
int offset = atoi(offsetStr);
if (absI(offset) == absI(ERROR_CODE)) {
scheduleMsg(&logger, "invalid offset [%s]", offsetStr);
return;
}
if (isOutOfBounds(offset))
return;
float value = atoff(valueStr);
if (cisnan(value)) {
scheduleMsg(&logger, "invalid value [%s]", valueStr);
return;
}
float *ptr = (float *) (&((char *) engineConfiguration)[offset]);
*ptr = value;
getFloat(offset);
onConfigurationChanged();
}
#endif /* EFI_UNIT_TEST */
#if EFI_ENABLE_MOCK_ADC
void setMockCltVoltage(float voltage DECLARE_ENGINE_PARAMETER_SUFFIX) {
setMockVoltage(engineConfiguration->clt.adcChannel, voltage PASS_ENGINE_PARAMETER_SUFFIX);
}
void setMockIatVoltage(float voltage DECLARE_ENGINE_PARAMETER_SUFFIX) {
setMockVoltage(engineConfiguration->iat.adcChannel, voltage PASS_ENGINE_PARAMETER_SUFFIX);
}
void setMockMafVoltage(float voltage DECLARE_ENGINE_PARAMETER_SUFFIX) {
setMockVoltage(engineConfiguration->mafAdcChannel, voltage PASS_ENGINE_PARAMETER_SUFFIX);
}
void setMockAfrVoltage(float voltage DECLARE_ENGINE_PARAMETER_SUFFIX) {
setMockVoltage(engineConfiguration->afr.hwChannel, voltage PASS_ENGINE_PARAMETER_SUFFIX);
}
void setMockThrottlePedalSensorVoltage(float voltage DECLARE_ENGINE_PARAMETER_SUFFIX) {
setMockVoltage(engineConfiguration->throttlePedalPositionAdcChannel, voltage PASS_ENGINE_PARAMETER_SUFFIX);
}
void setMockThrottlePositionSensorVoltage(float voltage DECLARE_ENGINE_PARAMETER_SUFFIX) {
setMockVoltage(engineConfiguration->tps1_1AdcChannel, voltage PASS_ENGINE_PARAMETER_SUFFIX);
}
void setMockMapVoltage(float voltage DECLARE_ENGINE_PARAMETER_SUFFIX) {
setMockVoltage(engineConfiguration->map.sensor.hwChannel, voltage PASS_ENGINE_PARAMETER_SUFFIX);
}
void setMockVBattVoltage(float voltage DECLARE_ENGINE_PARAMETER_SUFFIX) {
setMockVoltage(engineConfiguration->vbattAdcChannel, voltage PASS_ENGINE_PARAMETER_SUFFIX);
}
static void initMockVoltage(void) {
#if EFI_SIMULATOR
setMockCltVoltage(2);
#endif /* EFI_SIMULATOR */
#if EFI_SIMULATOR
setMockIatVoltage(2);
#endif /* EFI_SIMULATOR */
}
#endif /* EFI_ENABLE_MOCK_ADC */
#if !EFI_UNIT_TEST
static void initConfigActions(void) {
addConsoleActionSS("set_float", (VoidCharPtrCharPtr) setFloat);
addConsoleActionII("set_int", (VoidIntInt) setInt);
addConsoleActionII("set_short", (VoidIntInt) setShort);
addConsoleActionII("set_byte", (VoidIntInt) setByte);
addConsoleActionSSS("set_bit", setBit);
addConsoleActionI("get_float", getFloat);
addConsoleActionI("get_int", getInt);
addConsoleActionI("get_short", getShort);
addConsoleActionI("get_byte", getByte);
addConsoleActionII("get_bit", getBit);
}
// todo: move this logic somewhere else?
static void getKnockInfo(void) {
adc_channel_e hwChannel = engineConfiguration->externalKnockSenseAdc;
scheduleMsg(&logger, "externalKnockSenseAdc on ADC", getPinNameByAdcChannel("knock", hwChannel, pinNameBuffer));
engine->printKnockState();
}
#endif /* EFI_UNIT_TEST */
// this method is used by real firmware and simulator and unit test
void commonInitEngineController(Logging *sharedLogger DECLARE_ENGINE_PARAMETER_SUFFIX) {
initInterpolation(sharedLogger);
#if EFI_SIMULATOR
printf("commonInitEngineController\n");
#endif
#if !EFI_UNIT_TEST
initConfigActions();
#endif /* EFI_UNIT_TEST */
#if EFI_ENGINE_CONTROL
/**
* This has to go after 'initInjectorCentral' in order to
* properly detect un-assigned output pins
*/
prepareShapes(PASS_ENGINE_PARAMETER_SIGNATURE);
#endif /* EFI_PROD_CODE && EFI_ENGINE_CONTROL */
#if EFI_ENABLE_MOCK_ADC
initMockVoltage();
#endif /* EFI_ENABLE_MOCK_ADC */
#if EFI_SENSOR_CHART
initSensorChart();
#endif /* EFI_SENSOR_CHART */
#if EFI_TUNER_STUDIO
if (engineConfiguration->isTunerStudioEnabled) {
startTunerStudioConnectivity();
}
#endif /* EFI_TUNER_STUDIO */
#if EFI_PROD_CODE || EFI_SIMULATOR
initSettings();
if (hasFirmwareError()) {
return;
}
#endif
mostCommonInitEngineController(sharedLogger PASS_ENGINE_PARAMETER_SUFFIX);
#if EFI_SHAFT_POSITION_INPUT
/**
* there is an implicit dependency on the fact that 'tachometer' listener is the 1st listener - this case
* other listeners can access current RPM value
*/
initRpmCalculator(sharedLogger PASS_ENGINE_PARAMETER_SUFFIX);
#endif /* EFI_SHAFT_POSITION_INPUT */
#if (EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT) || EFI_SIMULATOR || EFI_UNIT_TEST
if (CONFIG(isEngineControlEnabled)) {
initAuxValves(sharedLogger PASS_ENGINE_PARAMETER_SUFFIX);
/**
* This method adds trigger listener which actually schedules ignition
*/
initSparkLogic(sharedLogger);
initMainEventListener(sharedLogger PASS_ENGINE_PARAMETER_SUFFIX);
}
#endif /* EFI_ENGINE_CONTROL */
}
#if !EFI_UNIT_TEST
void initEngineContoller(Logging *sharedLogger DECLARE_ENGINE_PARAMETER_SUFFIX) {
#if EFI_SIMULATOR
printf("initEngineContoller\n");
#endif
addConsoleAction("analoginfo", printAnalogInfo);
#if EFI_PROD_CODE && EFI_ENGINE_CONTROL
initInjectorCentral(sharedLogger);
#endif /* EFI_PROD_CODE && EFI_ENGINE_CONTROL */
commonInitEngineController(sharedLogger);
#if EFI_PROD_CODE
initPwmGenerator();
#endif
#if EFI_LOGIC_ANALYZER
if (engineConfiguration->isWaveAnalyzerEnabled) {
initWaveAnalyzer(sharedLogger);
}
#endif /* EFI_LOGIC_ANALYZER */
#if EFI_CJ125
/**
* this uses SimplePwm which depends on scheduler, has to be initialized after scheduler
*/
initCJ125(sharedLogger PASS_ENGINE_PARAMETER_SUFFIX);
#endif /* EFI_CJ125 */
// periodic events need to be initialized after fuel&spark pins to avoid a warning
initPeriodicEvents(PASS_ENGINE_PARAMETER_SIGNATURE);
if (hasFirmwareError()) {
return;
}
engineStateBlinkingTask.Start();
#if EFI_PWM_TESTER
initPwmTester();
#endif /* EFI_PWM_TESTER */
initMalfunctionCentral();
#if EFI_ALTERNATOR_CONTROL
initAlternatorCtrl(sharedLogger PASS_ENGINE_PARAMETER_SUFFIX);
#endif
#if EFI_AUX_PID
initAuxPid(sharedLogger);
#endif
#if EFI_MALFUNCTION_INDICATOR
initMalfunctionIndicator();
#endif /* EFI_MALFUNCTION_INDICATOR */
initEgoAveraging(PASS_ENGINE_PARAMETER_SIGNATURE);
if (engineConfiguration->externalKnockSenseAdc != EFI_ADC_NONE) {
addConsoleAction("knockinfo", getKnockInfo);
}
#if EFI_PROD_CODE
addConsoleAction("reset_accel", resetAccel);
#endif /* EFI_PROD_CODE */
#if EFI_HD44780_LCD
initLcdController();
#endif /* EFI_HD44780_LCD */
#if EFI_PROD_CODE
initTachometer();
#endif /* EFI_PROD_CODE */
}
// these two variables are here only to let us know how much RAM is available, also these
// help to notice when RAM usage goes up - if a code change adds to RAM usage these variables would fail
// linking process which is the way to raise the alarm
#ifndef RAM_UNUSED_SIZE
#define RAM_UNUSED_SIZE 14500
#endif
#ifndef CCM_UNUSED_SIZE
#define CCM_UNUSED_SIZE 4100
#endif
static char UNUSED_RAM_SIZE[RAM_UNUSED_SIZE];
static char UNUSED_CCM_SIZE[CCM_UNUSED_SIZE] CCM_OPTIONAL;
/**
* See also VCS_VERSION
*/
int getRusEfiVersion(void) {
if (UNUSED_RAM_SIZE[0] != 0)
return 123; // this is here to make the compiler happy about the unused array
if (UNUSED_CCM_SIZE[0] * 0 != 0)
return 3211; // this is here to make the compiler happy about the unused array
#if defined(EFI_BOOTLOADER_INCLUDE_CODE)
// make bootloader code happy too
if (initBootloader() != 0)
return 123;
#endif /* EFI_BOOTLOADER_INCLUDE_CODE */
return 201200131;
}
#endif /* EFI_UNIT_TEST */