custom-board-bundle-sample-.../firmware/hw_layer/drivers/gpio/l9779.cpp

765 lines
18 KiB
C++

/*
* l9779.cpp
*
* Created on: Jan 10, 2022
*
* Andrey Gusakov, (c) 2022
*
* Masks/inputs bits:
* 0..3 - IGN1 .. 4 - Ignition pre-drivers
* Driven by logical-AND of SPI control bit and dedicated parallel input IGNI1...IGNI4
* 4..7 - OUT1 .. 4 - Protected low-side drivers with max current 2.2A
* Driven by logical-AND of SPI control bit and dedicated parallel input IN1...IN4
* 8 - OUT5 - Protected low-side driver with max current 3A
* Driven by logical-AND of SPI control bit and dedicated parallel input IN5
* 9..10 - OUT6,7 - Protected low-side drivers with max current 5A (O2 heaters)
* Driven by logical-AND of SPI control bit and dedicated parallel input IN6, IN7.
* 11 - Unused (no OUT8), IN8-PWM is used for stepper
* 12..15 - OUT9..12 - Not exist on L9779WD-SPI, TODO: check L9779WD
* 16..17 - OUT13..14 - Protected low side relay drivers with max current 600 mA and Low Battery Volatage function
* 18..21 - OUT15..18 - Protected low side relay drivers with max current 600 mA
* 22 - Unused (no OUT19)
* 23 - OUT20 - Protected low side low current driver with max current 50 mA
* 24..27 - OUTA..D - Configurable outputs (OD, PP) with max current 0.6 A (for low and high side FETs)
* Can be configured for stepper motor driving.
* Stepper is controlled by the logic AND between PWM (IN8) input pin and PWM SPI bit.
* 28..31 - OUT25..27 - Unused on L9779WD-SPI, TODO for L9779WD
* 32 - MR - Main Relay low side driver with max current 0.6 A, automaticly controlled
*/
#include "pch.h"
#include "gpio/l9779.h"
#if (BOARD_L9779_COUNT > 0)
#include "persistent_configuration.h"
#include "hardware.h"
#include "gpio/gpio_ext.h"
/*
* TODO list:
* - just write code
*/
/*==========================================================================*/
/* Driver local definitions. */
/*==========================================================================*/
#define DRIVER_NAME "l9779"
#define DIAG_PERIOD_MS (7)
typedef enum {
L9779_DISABLED = 0,
L9779_WAIT_INIT,
L9779_READY,
L9779_FAILED
} l9779_drv_state;
/* SPI communication helpers */
/* Out frame */
/* D0 - parity */
/* D8:D1 - DATA OUT or SUBADDRESS if ADD[4:0] = 0x10 (for read) */
#define MSG_SET_DATA(d) (((d) & 0xff) << 1)
/* sub-address is 5 bit */
#define MSG_SET_SUBADDR(s) (((s) & 0x1f) << 1)
/* D9 - x */
/* D14:D10 - ADDRESS */
#define MSG_SET_ADDR(a) (((a) & 0x1f) << 10)
/* D15 - x */
/* ADD user for read commands */
#define MSG_READ_ADDR (0x10)
#define MSG_W(a, d) (static_cast<uint16_t>((MSG_SET_ADDR(a) | MSG_SET_DATA(d))))
#define MSG_R(a) (static_cast<uint16_t>((MSG_SET_ADDR(MSG_READ_ADDR) | MSG_SET_SUBADDR(d))))
/* Both DIN and DO */
/* D0 - parity */
#define MSG_GET_PARITY(x) (((x) >> 0) & 0x01)
/* D14:D10 - Addr of DATA IN or DATA OUT */
#define MSG_GET_ADDR(x) (((x) >> 10) & 0x1f)
/* D8:D1 - DATA IN */
#define MSG_GET_DATA(x) (((x) >> 1) & 0xff)
/* DIN / to chip */
/* D8:D1 or 5 bits of subaddr in case of read access */
#define MSG_GET_SUBADDR(tx) (MSG_GET_DATA(tx) & 0x1f)
/* DOUT / from chip */
/* D 9 - W/R flag, 1 if we read */
#define MSG_GET_WR(rx) (((rx) >> 9) & 0x01)
/* D15 - SPI error flag */
#define MSG_GET_SPIERROR(rx) (((rx) >> 15) & 0x01)
/* register address that never can be replyed */
#define REG_INVALID 0xff
/* Write only registers */
#define CMD_CLOCK_UNLOCK_SW_RST(d) MSG_W(0x0c, (d))
#define CMD_START_REACT(d) MSG_W(0x0d, (d))
#define CMD_CONTR_REG(n, d) MSG_W(0x08 + (n), (d))
/* Read only registers */
/* IGN1..4 + OUT1..7 */
#define OUT_DIRECT_DRIVE_MASK 0x7ff
/*==========================================================================*/
/* Driver exported variables. */
/*==========================================================================*/
/*==========================================================================*/
/* Driver local variables and types. */
/*==========================================================================*/
/* Driver private data */
struct L9779 : public GpioChip {
int init() override;
int deinit() override;
int setPadMode(size_t pin, iomode_t mode) override;
int writePad(size_t pin, int value) override;
int readPad(size_t pin) override;
brain_pin_diag_e getDiag(size_t pin) override;
bool spi_parity_odd(uint16_t x);
int spi_validate(uint16_t rx);
int spi_rw(uint16_t tx, uint16_t *rx_ptr);
int spi_rw_array(const uint16_t *tx, uint16_t *rx, int n);
int update_output();
int update_direct_output(size_t pin, int value);
int wake_driver();
int chip_reset();
int chip_init_data();
int chip_init();
brain_pin_diag_e getOutputDiag(size_t pin);
brain_pin_diag_e getInputDiag(size_t pin);
const l9779_config *cfg;
/* thread stuff */
thread_t *thread;
THD_WORKING_AREA(thread_wa, 256);
semaphore_t wake;
/* state to be sent to chip */
uint32_t o_state;
/* output enabled mask */
uint32_t o_oe_mask;
/* cached output registers state - value last send to chip */
uint32_t o_data_cached;
l9779_drv_state drv_state;
/* last accesed register */
uint8_t last_addr;
/* last requested subaddr in case of read */
uint8_t last_subaddr;
/* chip needs reintialization due to some critical issue */
bool need_init;
/* statistic */
//int por_cnt;
//int wdr_cnt;
//int comfe_cnt;
int init_cnt;
//int init_req_cnt;
int spi_cnt;
int spi_err_parity; /* parity errors in rx data */
int spi_err_frame; /* rx messages with bit 15 set */
int spi_err; /* rx messages with incorrect ADDR or WR fields */
uint16_t tx;
uint16_t rx;
};
static L9779 chips[BOARD_L9779_COUNT];
static const char* l9779_pin_names[L9779_SIGNALS] = {
"L9779.IGN1", "L9779.IGN2", "L9779.IGN3", "L9779.IGN4",
"L9779.OUT1", "L9779.OUT2", "L9779.OUT3", "L9779.OUT4",
"L9779.OUT5", "L9779.OUT6", "L9779.OUT7", "L9779.OUT8",
"L9779.OUT9", "L9779.OUT10", "L9779.OUT11", "L9779.OUT12",
"L9779.OUT13", "L9779.OUT14", "L9779.OUT15", "L9779.OUT16",
"L9779.OUT17", "L9779.OUT18", "L9779.OUT19", "L9779.OUT20",
"L9779.OUTA", "L9779.OUTB", "L9779.OUTC", "L9779.OUTD",
"L9779.OUT25", "L9779.OUT26", "L9779.OUT27", "L9779.OUT28",
"L9779.MRD", "L9779.KEY"
};
/*==========================================================================*/
/* Driver local functions. */
/*==========================================================================*/
/* true if parity of input x is odd */
bool L9779::spi_parity_odd(uint16_t x)
{
x ^= x >> 8;
x ^= x >> 4;
x ^= x >> 2;
x ^= x >> 1;
return (x & 1);
}
int L9779::spi_validate(uint16_t rx)
{
if (!spi_parity_odd(rx)) {
spi_err_parity++;
return -1;
}
if (MSG_GET_SPIERROR(rx)) {
/* not clear what does this means */
spi_err_frame++;
return -1;
}
/* check that correct register is returned */
if (last_subaddr != REG_INVALID) {
/* MISO DO returns 1 at D9 bit and 5bit sub address in
* ADD[4:0] field */
if (!MSG_GET_WR(rx)) {
return -2;
}
if (MSG_GET_ADDR(rx) != last_subaddr) {
/* unexpected SPI answer */
spi_err++;
/* should ve restart? */
//need_init = true;
return -1;
}
}
/* LOCK_UNLOCK_SW_RST */
if (last_addr == 0x0c) {
/* BIT(0) = LOCK flag */
/* START_REACT */
} else if (last_addr == 0x0d) {
/* BIT(0) = OUT_DIS */
}
return 0;
}
/**
* @returns -1 in case of communication error
*/
int L9779::spi_rw(uint16_t tx, uint16_t *rx_ptr)
{
int ret;
uint16_t rx;
SPIDriver *spi = cfg->spi_bus;
/* set parity */
tx |= !spi_parity_odd(tx);
/* Acquire ownership of the bus. */
spiAcquireBus(spi);
/* Setup transfer parameters. */
spiStart(spi, &cfg->spi_config);
/* Slave Select assertion. */
spiSelect(spi);
/* Atomic transfer operations. */
rx = spiPolledExchange(spi, tx);
/* Slave Select de-assertion. */
spiUnselect(spi);
/* Ownership release. */
spiReleaseBus(spi);
/* statisctic and debug */
this->tx = tx;
this->rx = rx;
this->spi_cnt++;
if (rx_ptr)
*rx_ptr = rx;
/* validate reply */
ret = spi_validate(rx);
/* save last accessed register */
last_addr = MSG_GET_ADDR(this->tx);
if (last_addr == MSG_READ_ADDR)
last_subaddr = MSG_GET_SUBADDR(this->tx);
else
last_subaddr = REG_INVALID;
return ret;
}
/**
* @return -1 in case of communication error
*/
int L9779::spi_rw_array(const uint16_t *tx, uint16_t *rx, int n)
{
int ret = 0;
SPIDriver *spi = cfg->spi_bus;
if (n <= 0) {
return -2;
}
/* Acquire ownership of the bus. */
spiAcquireBus(spi);
/* Setup transfer parameters. */
spiStart(spi, &cfg->spi_config);
for (int i = 0; i < n; i++) {
/* Slave Select assertion. */
spiSelect(spi);
/* data transfer */
uint16_t rxdata = spiPolledExchange(spi, tx[i]);
if (rx)
rx[i] = rxdata;
/* Slave Select de-assertion. */
spiUnselect(spi);
/* statistic and debug */
this->tx = tx[i];
this->rx = rxdata;
this->spi_cnt++;
/* validate reply */
ret = spi_validate(rxdata);
/* save last accessed register */
last_addr = MSG_GET_ADDR(this->tx);
if (last_addr == MSG_READ_ADDR)
last_subaddr = MSG_GET_SUBADDR(this->tx);
else
last_subaddr = REG_INVALID;
if (ret < 0)
break;
}
/* Ownership release. */
spiReleaseBus(spi);
/* no errors for now */
return ret;
}
/* use datasheet numbering, starting from 1, skip 4 ignition channels */
#define OUT_ENABLED(n) (!!(o_state & BIT((n) + L9779_OUTPUTS_IGN - 1)))
#define SHIFT_N_OUT_TO_M(n, m) (OUT_ENABLED(n) << (m))
/* use datasheet numbering, starting from 1 */
#define IGN_ENABLED(n) (!!(o_state & BIT((n) - 1)))
#define SHIFT_N_IGN_TO_M(n, m) (IGN_ENABLED(n) << (m))
int L9779::update_output()
{
int ret;
uint8_t regs[4];
/* set value only for non-direct driven pins */
uint32_t o_data = o_state & ~OUT_DIRECT_DRIVE_MASK;
/* direct driven outputs are logicaly-AND spi bit and dedicated input
* set bits to all enabled direct driven outputs */
o_data = o_state | (o_oe_mask & OUT_DIRECT_DRIVE_MASK);
/* nightmare... briliant mapping */
regs[0] =
SHIFT_N_OUT_TO_M( 1, 7) | /* bit 7 - OUT1 */
SHIFT_N_OUT_TO_M( 2, 6) | /* and so on, refer to datasheet */
SHIFT_N_OUT_TO_M( 3, 5) |
SHIFT_N_OUT_TO_M( 4, 4) |
SHIFT_N_OUT_TO_M( 5, 3) |
SHIFT_N_OUT_TO_M(20, 2);
regs[1] =
SHIFT_N_OUT_TO_M(15, 7) |
SHIFT_N_OUT_TO_M(14, 6) |
/* reserved + don't care */
SHIFT_N_IGN_TO_M( 1, 3) |
SHIFT_N_IGN_TO_M( 2, 2) |
SHIFT_N_IGN_TO_M( 3, 1) |
SHIFT_N_IGN_TO_M( 4, 0);
regs[2] =
SHIFT_N_OUT_TO_M(22, 7) | /* TODO: stepper DIR */
SHIFT_N_OUT_TO_M(21, 6) | /* TODO: stepper enable */
SHIFT_N_OUT_TO_M(16, 5) |
SHIFT_N_OUT_TO_M(14, 4) |
SHIFT_N_OUT_TO_M(17, 3) |
SHIFT_N_OUT_TO_M(18, 2) |
SHIFT_N_OUT_TO_M( 7, 1) |
SHIFT_N_OUT_TO_M( 6, 0);
regs[3] =
SHIFT_N_OUT_TO_M(28, 5) |
SHIFT_N_OUT_TO_M(27, 4) |
SHIFT_N_OUT_TO_M(26, 3) |
SHIFT_N_OUT_TO_M(25, 2) |
SHIFT_N_OUT_TO_M(24, 1) |
SHIFT_N_OUT_TO_M(23, 0); /* TODO: stepper PWM */
uint16_t tx[] = {
/* output enables */
CMD_CONTR_REG(0, regs[0]),
CMD_CONTR_REG(1, regs[1]),
CMD_CONTR_REG(2, regs[2]),
CMD_CONTR_REG(3, regs[3])
};
ret = spi_rw_array(tx, NULL, efi::size(tx));
if (ret == 0) {
/* atomic */
o_data_cached = o_data;
}
return ret;
}
int L9779::update_direct_output(size_t pin, int value)
{
/* no direct-drive gpio is allocated for this output */
if (cfg->direct_gpio[pin].port == NULL)
return -1;
if (value)
palSetPort(cfg->direct_gpio[pin].port,
PAL_PORT_BIT(cfg->direct_gpio[pin].pad));
else
palClearPort(cfg->direct_gpio[pin].port,
PAL_PORT_BIT(cfg->direct_gpio[pin].pad));
return 0;
}
/**
* @brief L9779 chip driver wakeup.
* @details Wake up driver. Will cause output register update
*/
int L9779::wake_driver()
{
/* Entering a reentrant critical zone.*/
chibios_rt::CriticalSectionLocker csl;
chSemSignalI(&wake);
if (!port_is_isr_context()) {
/**
* chSemSignalI above requires rescheduling
* interrupt handlers have implicit rescheduling
*/
chSchRescheduleS();
}
return 0;
}
int L9779::chip_reset() {
int ret;
ret = spi_rw(CMD_CLOCK_UNLOCK_SW_RST(BIT(1)), NULL);
/**
* ???
*/
chThdSleepMilliseconds(3);
last_addr = REG_INVALID;
last_subaddr = REG_INVALID;
return ret;
}
/*==========================================================================*/
/* Driver thread. */
/*==========================================================================*/
static THD_FUNCTION(l9779_driver_thread, p) {
L9779 *chip = reinterpret_cast<L9779*>(p);
sysinterval_t poll_interval = 0;
chRegSetThreadName(DRIVER_NAME);
while (1) {
int ret;
msg_t msg = chSemWaitTimeout(&chip->wake, poll_interval);
/* should we care about msg == MSG_TIMEOUT? */
(void)msg;
/* default polling interval */
poll_interval = TIME_MS2I(DIAG_PERIOD_MS);
if ((chip->cfg == NULL) ||
(chip->drv_state == L9779_DISABLED) ||
(chip->drv_state == L9779_FAILED))
continue;
#if 0
bool wd_happy = chip->wd_happy;
/* update outputs only if WD is happy */
if ((wd_happy) || (1)) {
ret = chip->update_output();
if (ret) {
/* set state to L9779_FAILED? */
}
}
ret = chip->wd_feed();
if (ret < 0) {
/* WD is not happy */
continue;
}
/* happiness state has changed! */
if ((chip->wd_happy != wd_happy) && (chip->wd_happy)) {
chip->need_init = true;
}
#endif
if (chip->need_init) {
/* clear first, as flag can be raised again during init */
chip->need_init = false;
/* re-init chip! */
chip->chip_init();
/* sync pins state */
chip->update_output();
}
/* Chip is ready to rock? */
if (chip->need_init == false) {
/* Just update outputs state */
ret = chip->update_output();
if (ret) {
/* set state to L9779_FAILED? */
}
}
#if 0
if (chip->diag_ts <= chVTGetSystemTimeX()) {
/* this is expensive call, will do a lot of spi transfers... */
ret = chip->update_status_and_diag();
if (ret) {
/* set state to L9779_FAILED or force reinit? */
} else {
diagResponse.reset();
}
/* TODO:
* Procedure to switch on after failure condition occurred:
* - Read out of diagnosis bits
* - Second read out to verify that the failure conditions are not
* remaining
* - Set of the dedicated output enable bit of the affected channel
* if the diagnosis bit is not active anymore
* - Switch on of the channel */
chip->diag_ts = chTimeAddX(chVTGetSystemTimeX(), TIME_MS2I(DIAG_PERIOD_MS));
}
poll_interval = chip->calc_sleep_interval();
#endif
/* default poll_interval */
}
}
/*==========================================================================*/
/* Driver interrupt handlers. */
/*==========================================================================*/
/*==========================================================================*/
/* Driver exported functions. */
/*==========================================================================*/
int L9779::setPadMode(unsigned int pin, iomode_t mode) {
if (pin >= L9779_SIGNALS)
return -1;
(void)mode;
return 0;
}
int L9779::writePad(unsigned int pin, int value) {
if (pin >= L9779_OUTPUTS)
return -1;
{
chibios_rt::CriticalSectionLocker csl;
if (value) {
o_state |= (1 << pin);
} else {
o_state &= ~(1 << pin);
}
}
/* direct driven? */
if (OUT_DIRECT_DRIVE_MASK & BIT(pin)) {
return update_direct_output(pin, value);
} else {
return wake_driver();
}
return 0;
}
brain_pin_diag_e L9779::getOutputDiag(size_t pin)
{
(void)pin;
return PIN_OK;
}
brain_pin_diag_e L9779::getInputDiag(unsigned int pin)
{
(void)pin;
return PIN_OK;
}
int L9779::readPad(size_t pin) {
if (pin >= L9779_SIGNALS)
return -1;
/* unknown pin */
return -1;
}
brain_pin_diag_e L9779::getDiag(size_t pin)
{
if (pin >= L9779_SIGNALS)
return PIN_INVALID;
if (pin < L9779_OUTPUTS)
return getOutputDiag(pin);
else
return getInputDiag(pin);
}
int L9779::chip_init_data(void)
{
int i;
int ret = 0;
o_oe_mask = 0;
for (i = 0; i < L9779_DIRECT_OUTPUTS; i++) {
if (cfg->direct_gpio[i].port == NULL)
continue;
/* configure source gpio */
ret = gpio_pin_markUsed(cfg->direct_gpio[i].port, cfg->direct_gpio[i].pad, DRIVER_NAME " DIRECT IO");
if (ret) {
ret = -1;
goto err_gpios;
}
palSetPadMode(cfg->direct_gpio[i].port, cfg->direct_gpio[i].pad, PAL_MODE_OUTPUT_PUSHPULL);
palClearPort(cfg->direct_gpio[i].port, PAL_PORT_BIT(cfg->direct_gpio[i].pad));
/* enable output */
o_oe_mask |= BIT(i);
}
/* enable all spi-driven ouputs
* TODO: add API to enable/disable? */
o_oe_mask |= ~OUT_DIRECT_DRIVE_MASK;
return 0;
err_gpios:
/* unmark pins */
for (int i = 0; i < L9779_DIRECT_OUTPUTS; i++) {
if (cfg->direct_gpio[i].port) {
gpio_pin_markUnused(cfg->direct_gpio[i].port, cfg->direct_gpio[i].pad);
}
}
return ret;
}
int L9779::chip_init()
{
int ret;
/* statistic */
init_cnt++;
/* Unlock, while unlocked by default. */
ret = spi_rw(CMD_CLOCK_UNLOCK_SW_RST(0), NULL);
if (ret)
return ret;
/* Enable power stages */
ret = spi_rw(CMD_START_REACT(BIT(1)), NULL);
if (ret)
return ret;
/* TODO: add spi communication test: read IDENT_REG */
return ret;
}
int L9779::init()
{
int ret;
/* check for multiple init */
if (drv_state != L9779_WAIT_INIT)
return -1;
ret = chip_reset();
if (ret)
return ret;
ret = chip_init_data();
if (ret)
return ret;
/* force chip init from driver thread */
need_init = true;
/* instance is ready */
drv_state = L9779_READY;
/* init semaphore */
chSemObjectInit(&wake, 10);
/* start thread */
thread = chThdCreateStatic(thread_wa, sizeof(thread_wa),
PRIO_GPIOCHIP, l9779_driver_thread, this);
return 0;
}
int L9779::deinit()
{
return 0;
}
/**
* @brief L9779 driver add.
* @details Checks for valid config
* @return return gpio chip base
*/
int l9779_add(brain_pin_e base, unsigned int index, const l9779_config *cfg) {
efiAssert(OBD_PCM_Processor_Fault, cfg != NULL, "L9779CFG", 0)
/* no config or no such chip */
if ((!cfg) || (!cfg->spi_bus) || (index >= BOARD_L9779_COUNT))
return -1;
L9779* chip = &chips[index];
/* already initted? */
if (chip->cfg)
return -1;
/* config */
chip->cfg = cfg;
/* reset to defaults */
/* register */
int ret = gpiochip_register(base, DRIVER_NAME, *chip, L9779_SIGNALS);
if (ret < 0)
return ret;
/* set default pin names, board init code can rewrite */
gpiochips_setPinNames(base, l9779_pin_names);
return ret;
}
#endif /* (BOARD_L9779_COUNT > 0) */