custom-board-bundle-sample-.../firmware/hw_layer/ports/stm32/stm32_common.cpp

326 lines
7.8 KiB
C++

/**
* @file stm32_common.cpp
* @brief Low level common STM32 code
*
* @date Mar 28, 2019
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#include "global.h"
#include "efi_gpio.h"
#include "expected.h"
#ifndef EFI_PIN_ADC9
#define EFI_PIN_ADC9 GPIOB_1
#endif /* EFI_PIN_ADC9 */
#if EFI_PROD_CODE
#include "mpu_util.h"
#include "backup_ram.h"
#endif /* EFI_PROD_CODE */
#if HAL_USE_ADC
// ADC_CHANNEL_IN0 // PA0
// ADC_CHANNEL_IN1 // PA1
// ADC_CHANNEL_IN2 // PA2
// ADC_CHANNEL_IN3 // PA3
// ADC_CHANNEL_IN4 // PA4
// ADC_CHANNEL_IN5 // PA5 - this is also TIM2_CH1
// ADC_CHANNEL_IN6 // PA6
// ADC_CHANNEL_IN7 // PA7
// ADC_CHANNEL_IN8 // PB0
// ADC_CHANNEL_IN9 // PB1
// ADC_CHANNEL_IN10 // PC0
// ADC_CHANNEL_IN11 // PC1
// ADC_CHANNEL_IN12 // PC2
// ADC_CHANNEL_IN13 // PC3
// ADC_CHANNEL_IN14 // PC4
// ADC_CHANNEL_IN15 // PC5
brain_pin_e getAdcChannelBrainPin(const char *msg, adc_channel_e hwChannel) {
// todo: replace this with an array :)
switch (hwChannel) {
case EFI_ADC_0:
return GPIOA_0;
case EFI_ADC_1:
return GPIOA_1;
case EFI_ADC_2:
return GPIOA_2;
case EFI_ADC_3:
return GPIOA_3;
case EFI_ADC_4:
return GPIOA_4;
case EFI_ADC_5:
return GPIOA_5;
case EFI_ADC_6:
return GPIOA_6;
case EFI_ADC_7:
return GPIOA_7;
case EFI_ADC_8:
return GPIOB_0;
case EFI_ADC_9:
return EFI_PIN_ADC9;
case EFI_ADC_10:
return GPIOC_0;
case EFI_ADC_11:
return GPIOC_1;
case EFI_ADC_12:
return GPIOC_2;
case EFI_ADC_13:
return GPIOC_3;
case EFI_ADC_14:
return GPIOC_4;
case EFI_ADC_15:
return GPIOC_5;
default:
firmwareError(CUSTOM_ERR_ADC_UNKNOWN_CHANNEL, "Unknown hw channel %d [%s]", hwChannel, msg);
return GPIO_INVALID;
}
}
adc_channel_e getAdcChannel(brain_pin_e pin) {
switch (pin) {
case GPIOA_0:
return EFI_ADC_0;
case GPIOA_1:
return EFI_ADC_1;
case GPIOA_2:
return EFI_ADC_2;
case GPIOA_3:
return EFI_ADC_3;
case GPIOA_4:
return EFI_ADC_4;
case GPIOA_5:
return EFI_ADC_5;
case GPIOA_6:
return EFI_ADC_6;
case GPIOA_7:
return EFI_ADC_7;
case GPIOB_0:
return EFI_ADC_8;
case EFI_PIN_ADC9:
return EFI_ADC_9;
case GPIOC_0:
return EFI_ADC_10;
case GPIOC_1:
return EFI_ADC_11;
case GPIOC_2:
return EFI_ADC_12;
case GPIOC_3:
return EFI_ADC_13;
case GPIOC_4:
return EFI_ADC_14;
case GPIOC_5:
return EFI_ADC_15;
case GPIO_UNASSIGNED:
return EFI_ADC_NONE;
default:
return EFI_ADC_ERROR;
}
}
// deprecated - inline?
ioportid_t getAdcChannelPort(const char *msg, adc_channel_e hwChannel) {
brain_pin_e brainPin = getAdcChannelBrainPin(msg, hwChannel);
return getHwPort(msg, brainPin);
}
// deprecated - inline?
int getAdcChannelPin(adc_channel_e hwChannel) {
brain_pin_e brainPin = getAdcChannelBrainPin("get_pin", hwChannel);
return getHwPin("get_pin", brainPin);
}
#endif /* HAL_USE_ADC */
#if EFI_PROD_CODE
#if HAL_USE_PWM
namespace {
struct stm32_pwm_config {
PWMDriver* const Driver;
const uint8_t Channel;
const uint8_t AlternateFunc;
};
class stm32_hardware_pwm : public hardware_pwm {
public:
bool hasInit() const {
return m_driver != nullptr;
}
// 2MHz, 16-bit timer gets us a usable frequency range of 31hz to 10khz
static constexpr uint32_t c_timerFrequency = 2000000;
void start(const char* msg, const stm32_pwm_config& config, float frequency, float duty) {
m_driver = config.Driver;
m_channel = config.Channel;
m_period = c_timerFrequency / frequency;
// These timers are only 16 bit - don't risk overflow
if (m_period > 0xFFF0) {
firmwareError(CUSTOM_OBD_LOW_FREQUENCY, "PWM Frequency too low %f hz on pin \"%s\"", frequency, msg);
return;
}
// If we have too few usable bits, we run out of resolution, so don't allow that either.
// 200 counts = 0.5% resolution
if (m_period < 200) {
firmwareError(CUSTOM_OBD_HIGH_FREQUENCY, "PWM Frequency too high % hz on pin \"%s\"", frequency, msg);
return;
}
const PWMConfig pwmcfg = {
c_timerFrequency,
m_period,
nullptr,
{
{PWM_OUTPUT_ACTIVE_HIGH, nullptr},
{PWM_OUTPUT_ACTIVE_HIGH, nullptr},
{PWM_OUTPUT_ACTIVE_HIGH, nullptr},
{PWM_OUTPUT_ACTIVE_HIGH, nullptr}
},
0,
0
};
// Start the timer running
pwmStart(m_driver, &pwmcfg);
// Set initial duty cycle
setDuty(duty);
}
void setDuty(float duty) override {
if (!m_driver) {
firmwareError(OBD_PCM_Processor_Fault, "Attempted to set duty on null hard PWM device");
return;
}
pwm_lld_enable_channel(m_driver, m_channel, getHighTime(duty));
}
private:
PWMDriver* m_driver = nullptr;
uint8_t m_channel = 0;
uint32_t m_period = 0;
pwmcnt_t getHighTime(float duty) const {
return m_period * duty;
}
};
}
static expected<stm32_pwm_config> getConfigForPin(brain_pin_e pin) {
switch (pin) {
#if STM32_PWM_USE_TIM1
case GPIOA_8: return stm32_pwm_config{&PWMD1, 0, 1};
case GPIOA_9: return stm32_pwm_config{&PWMD1, 1, 1};
case GPIOA_10: return stm32_pwm_config{&PWMD1, 2, 1};
case GPIOA_11: return stm32_pwm_config{&PWMD1, 3, 1};
case GPIOE_9: return stm32_pwm_config{&PWMD1, 0, 1};
case GPIOE_11: return stm32_pwm_config{&PWMD1, 1, 1};
case GPIOE_13: return stm32_pwm_config{&PWMD1, 2, 1};
case GPIOE_14: return stm32_pwm_config{&PWMD1, 3, 1};
#endif
#if STM32_PWM_USE_TIM2
case GPIOA_15: return stm32_pwm_config{&PWMD2, 0, 1};
case GPIOB_3: return stm32_pwm_config{&PWMD2, 1, 1};
case GPIOB_10: return stm32_pwm_config{&PWMD2, 2, 1};
case GPIOB_11: return stm32_pwm_config{&PWMD2, 3, 1};
#endif
#if STM32_PWM_USE_TIM3
case GPIOB_4: return stm32_pwm_config{&PWMD3, 0, 2};
case GPIOB_5: return stm32_pwm_config{&PWMD3, 1, 2};
#endif
#if STM32_PWM_USE_TIM4
case GPIOB_6: return stm32_pwm_config{&PWMD4, 0, 2};
case GPIOB_7: return stm32_pwm_config{&PWMD4, 1, 2};
case GPIOB_8: return stm32_pwm_config{&PWMD4, 2, 2};
case GPIOB_9: return stm32_pwm_config{&PWMD4, 3, 2};
case GPIOD_12: return stm32_pwm_config{&PWMD4, 0, 2};
case GPIOD_13: return stm32_pwm_config{&PWMD4, 1, 2};
case GPIOD_14: return stm32_pwm_config{&PWMD4, 2, 2};
case GPIOD_15: return stm32_pwm_config{&PWMD4, 3, 2};
#endif
#if STM32_PWM_USE_TIM8
case GPIOC_6: return stm32_pwm_config{&PWMD8, 0, 3};
case GPIOC_7: return stm32_pwm_config{&PWMD8, 1, 3};
case GPIOC_8: return stm32_pwm_config{&PWMD8, 2, 3};
case GPIOC_9: return stm32_pwm_config{&PWMD8, 3, 3};
#endif
default: return unexpected;
}
};
stm32_hardware_pwm pwms[5];
stm32_hardware_pwm* getNextPwmDevice() {
for (size_t i = 0; i < efi::size(pwms); i++) {
if (!pwms[i].hasInit()) {
return &pwms[i];
}
}
firmwareError(OBD_PCM_Processor_Fault, "Run out of hardware PWM devices!");
return nullptr;
}
/*static*/ hardware_pwm* hardware_pwm::tryInitPin(const char* msg, brain_pin_e pin, float frequencyHz, float duty) {
// Hardware PWM can't do very slow PWM - the timer counter is only 16 bits, so at 2MHz counting, that's a minimum of 31hz.
if (frequencyHz < 50) {
return nullptr;
}
auto cfg = getConfigForPin(pin);
// This pin can't do hardware PWM
if (!cfg) {
return nullptr;
}
if (stm32_hardware_pwm* device = getNextPwmDevice()) {
device->start(msg, cfg.Value, frequencyHz, duty);
// Finally connect the timer to physical pin
efiSetPadMode(msg, pin, PAL_MODE_ALTERNATE(cfg.Value.AlternateFunc));
return device;
}
return nullptr;
}
#endif
void jump_to_bootloader() {
// leave DFU breadcrumb which assmebly startup code would check, see [rusefi][DFU] section in assembly code
*((unsigned long *)0x2001FFF0) = 0xDEADBEEF; // End of RAM
// and now reboot
NVIC_SystemReset();
}
#endif /* EFI_PROD_CODE */
#if EFI_AUX_SERIAL
static bool isValidUART6TxPin(brain_pin_e pin) {
return pin == GPIOC_6 || pin == GPIOG_14;
}
static bool isValidUART6RxPin(brain_pin_e pin) {
return pin == GPIOC_7 || pin == GPIOG_9;
}
bool isValidSerialTxPin(brain_pin_e pin) {
return isValidUART6TxPin(pin);
}
bool isValidSerialRxPin(brain_pin_e pin) {
return isValidUART6RxPin(pin);
}
#endif /*EFI_AUX_SERIAL*/