custom-board-bundle-sample-.../firmware/controllers/trigger/trigger_central.cpp

728 lines
26 KiB
C++

/*
* @file trigger_central.cpp
* Here we have a bunch of higher-level methods which are not directly related to actual signal decoding
*
* @date Feb 23, 2014
* @author Andrey Belomutskiy, (c) 2012-2018
*/
#include "global.h"
#if EFI_SHAFT_POSITION_INPUT || defined(__DOXYGEN__)
#include "trigger_central.h"
#include "trigger_decoder.h"
#include "main_trigger_callback.h"
#include "engine_configuration.h"
#include "listener_array.h"
#include "data_buffer.h"
#include "histogram.h"
#include "pwm_generator_logic.h"
#include "efilib2.h"
#include "settings.h"
#include "engine_math.h"
#include "LocalVersionHolder.h"
#include "trigger_simulator.h"
#include "rpm_calculator.h"
#if EFI_PROD_CODE || defined(__DOXYGEN__)
#include "rfiutil.h"
#include "pin_repository.h"
#endif /* EFI_PROD_CODE */
#if EFI_TUNER_STUDIO || defined(__DOXYGEN__)
#include "tunerstudio.h"
extern TunerStudioOutputChannels tsOutputChannels;
#endif /* EFI_TUNER_STUDIO */
#if EFI_ENGINE_SNIFFER || defined(__DOXYGEN__)
#include "engine_sniffer.h"
WaveChart waveChart;
#endif /* EFI_ENGINE_SNIFFER */
EXTERN_ENGINE;
/**
* true if a recent configuration change has changed any of the trigger settings which
* we have not adjusted for yet
*/
static bool isTriggerConfigChanged = false;
#if EFI_HISTOGRAMS || defined(__DOXYGEN__)
static histogram_s triggerCallbackHistogram;
#endif /* EFI_HISTOGRAMS */
static Logging *logger;
static LocalVersionHolder triggerVersion;
efitime_t getCrankEventCounter(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
return engine->triggerCentral.triggerState.getTotalEventCounter();
}
efitime_t getStartOfRevolutionIndex(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
return engine->triggerCentral.triggerState.getStartOfRevolutionIndex();
}
void TriggerCentral::addEventListener(ShaftPositionListener listener, const char *name, Engine *engine) {
print("registerCkpListener: %s\r\n", name);
triggerListeneres.registerCallback((VoidInt) listener, engine);
}
/**
* @brief Adds a trigger event listener
*
* Trigger event listener would be invoked on each trigger event. For example, for a 60/2 wheel
* that would be 116 events: 58 SHAFT_PRIMARY_RISING and 58 SHAFT_PRIMARY_FALLING events.
*/
void addTriggerEventListener(ShaftPositionListener listener, const char *name, Engine *engine) {
engine->triggerCentral.addEventListener(listener, name, engine);
}
#if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__)
int triggerReentraint = 0;
int maxTriggerReentraint = 0;
uint32_t triggerDuration;
uint32_t triggerMaxDuration = 0;
static bool isInsideTriggerHandler = false;
static efitick_t previousVvtCamTime = 0;
static efitick_t previousVvtCamDuration = 0;
void hwHandleVvtCamSignal(trigger_value_e front) {
addEngineSnifferEvent(VVT_NAME, front == TV_RISE ? WC_UP : WC_DOWN);
if (boardConfiguration->vvtCamSensorUseRise ^ (front != TV_FALL)) {
return;
}
floatus_t oneDegreeUs = engine->rpmCalculator.oneDegreeUs;
if (cisnan(oneDegreeUs)) {
// we are here if we are getting VVT position signals while engine is not running
// for example if crank position sensor is broken :)
return;
}
TriggerCentral *tc = &engine->triggerCentral;
efitick_t nowNt = getTimeNowNt();
if (engineConfiguration->vvtMode == MIATA_NB2) {
uint32_t currentDuration = nowNt - previousVvtCamTime;
float ratio = ((float) currentDuration) / previousVvtCamDuration;
previousVvtCamDuration = currentDuration;
previousVvtCamTime = nowNt;
if (engineConfiguration->isPrintTriggerSynchDetails) {
scheduleMsg(logger, "vvt ratio %.2f", ratio);
}
if (ratio < boardConfiguration->nb2ratioFrom || ratio > boardConfiguration->nb2ratioTo) {
return;
}
if (engineConfiguration->isPrintTriggerSynchDetails) {
scheduleMsg(logger, "looks good: vvt ratio %.2f", ratio);
}
if (engineConfiguration->debugMode == DBG_VVT) {
#if EFI_TUNER_STUDIO || defined(__DOXYGEN__)
tsOutputChannels.debugIntField1++;
#endif /* EFI_TUNER_STUDIO */
}
}
efitick_t offsetNt = nowNt - tc->timeAtVirtualZeroNt;
angle_t vvtPosition = NT2US(offsetNt) / oneDegreeUs;
// convert engine cycle angle into trigger cycle angle
vvtPosition -= tdcPosition();
fixAngle(vvtPosition, "vvtPosition", CUSTOM_ERR_6558);
tc->vvtPosition = (engineConfiguration->vvtDisplayInverted ? -vvtPosition : vvtPosition) + engineConfiguration->vvtOffset;
if (engineConfiguration->vvtMode == VVT_FIRST_HALF) {
bool isEven = tc->triggerState.isEvenRevolution();
if (!isEven) {
/**
* we are here if we've detected the cam sensor within the wrong crank phase
* let's increase the trigger event counter, that would adjust the state of
* virtual crank-based trigger
*/
tc->triggerState.incrementTotalEventCounter();
if (engineConfiguration->debugMode == DBG_VVT) {
#if EFI_TUNER_STUDIO || defined(__DOXYGEN__)
tsOutputChannels.debugIntField1++;
#endif /* EFI_TUNER_STUDIO */
}
}
} else if (engineConfiguration->vvtMode == VVT_SECOND_HALF) {
bool isEven = tc->triggerState.isEvenRevolution();
if (isEven) {
// see above comment
tc->triggerState.incrementTotalEventCounter();
if (engineConfiguration->debugMode == DBG_VVT) {
#if EFI_TUNER_STUDIO || defined(__DOXYGEN__)
tsOutputChannels.debugIntField1++;
#endif /* EFI_TUNER_STUDIO */
}
}
} else if (engineConfiguration->vvtMode == MIATA_NB2) {
/**
* NB2 is a symmetrical crank, there are four phases total
*/
while (tc->triggerState.getTotalRevolutionCounter() % 4 != engineConfiguration->nbVvtIndex) {
tc->triggerState.incrementTotalEventCounter();
}
}
}
void hwHandleShaftSignal(trigger_event_e signal) {
// for effective noise filtering, we need both signal edges,
// so we pass them to handleShaftSignal() and defer this test
if (!boardConfiguration->useNoiselessTriggerDecoder) {
if (!isUsefulSignal(signal, engineConfiguration)) {
return;
}
}
uint32_t triggerHandlerEntryTime = GET_TIMESTAMP();
isInsideTriggerHandler = true;
if (triggerReentraint > maxTriggerReentraint)
maxTriggerReentraint = triggerReentraint;
triggerReentraint++;
efiAssertVoid(CUSTOM_ERR_6636, getRemainingStack(chThdGetSelfX()) > 128, "lowstck#8");
engine->triggerCentral.handleShaftSignal(signal PASS_ENGINE_PARAMETER_SUFFIX);
triggerReentraint--;
triggerDuration = GET_TIMESTAMP() - triggerHandlerEntryTime;
isInsideTriggerHandler = false;
if (triggerDuration > triggerMaxDuration)
triggerMaxDuration = triggerDuration;
}
#endif /* EFI_PROD_CODE */
TriggerCentral::TriggerCentral() {
nowNt = 0;
vvtPosition = 0;
timeAtVirtualZeroNt = 0;
// we need this initial to have not_running at first invocation
previousShaftEventTimeNt = (efitimems_t) -10 * US2NT(US_PER_SECOND_LL);
memset(hwEventCounters, 0, sizeof(hwEventCounters));
clearCallbacks(&triggerListeneres);
triggerState.reset();
resetAccumSignalData();
}
int TriggerCentral::getHwEventCounter(int index) {
return hwEventCounters[index];
}
void TriggerCentral::resetCounters() {
memset(hwEventCounters, 0, sizeof(hwEventCounters));
triggerState.resetRunningCounters();
}
void TriggerCentral::resetAccumSignalData() {
memset(lastSignalTimes, 0xff, sizeof(lastSignalTimes)); // = -1
memset(accumSignalPeriods, 0, sizeof(accumSignalPeriods));
memset(accumSignalPrevPeriods, 0, sizeof(accumSignalPrevPeriods));
}
static char shaft_signal_msg_index[15];
static bool isUpEvent[6] = { false, true, false, true, false, true };
static const char *eventId[6] = { CRANK1, CRANK1, CRANK2, CRANK2, CRANK3, CRANK3 };
static ALWAYS_INLINE void reportEventToWaveChart(trigger_event_e ckpSignalType, int index DECLARE_ENGINE_PARAMETER_SUFFIX) {
if (!ENGINE(isEngineChartEnabled)) { // this is here just as a shortcut so that we avoid engine sniffer as soon as possible
return; // engineSnifferRpmThreshold is accounted for inside ENGINE(isEngineChartEnabled)
}
itoa10(&shaft_signal_msg_index[2], index);
bool isUp = isUpEvent[(int) ckpSignalType];
shaft_signal_msg_index[0] = isUp ? 'u' : 'd';
addEngineSnifferEvent(eventId[(int )ckpSignalType], (char* ) shaft_signal_msg_index);
if (engineConfiguration->useOnlyRisingEdgeForTrigger) {
// let's add the opposite event right away
shaft_signal_msg_index[0] = isUp ? 'd' : 'u';
addEngineSnifferEvent(eventId[(int )ckpSignalType], (char* ) shaft_signal_msg_index);
}
}
/**
* This is used to filter noise spikes (interference) in trigger signal. See
* The basic idea is to use not just edges, but the average amount of time the signal stays in '0' or '1'.
* So we update 'accumulated periods' to track where the signal is.
* And then compare between the current period and previous, with some tolerance (allowing for the wheel speed change).
* @return true if the signal is passed through.
*/
bool TriggerCentral::noiseFilter(efitick_t nowNt, trigger_event_e signal DECLARE_ENGINE_PARAMETER_SUFFIX) {
// todo: find a better place for these defs
static const trigger_event_e opposite[6] = { SHAFT_PRIMARY_RISING, SHAFT_PRIMARY_FALLING, SHAFT_SECONDARY_RISING, SHAFT_SECONDARY_FALLING,
SHAFT_3RD_RISING, SHAFT_3RD_FALLING };
static const trigger_wheel_e triggerIdx[6] = { T_PRIMARY, T_PRIMARY, T_SECONDARY, T_SECONDARY, T_CHANNEL_3, T_CHANNEL_3 };
// we process all trigger channels independently
trigger_wheel_e ti = triggerIdx[signal];
// falling is opposite to rising, and vise versa
trigger_event_e os = opposite[signal];
// todo: currently only primary channel is filtered, because there are some weird trigger types on other channels
if (ti != T_PRIMARY)
return true;
// update period accumulator: for rising signal, we update '0' accumulator, and for falling - '1'
if (lastSignalTimes[signal] != -1)
accumSignalPeriods[signal] += nowNt - lastSignalTimes[signal];
// save current time for this trigger channel
lastSignalTimes[signal] = nowNt;
// now we want to compare current accumulated period to the stored one
efitick_t currentPeriod = accumSignalPeriods[signal];
// the trick is to compare between different
efitick_t allowedPeriod = accumSignalPrevPeriods[os];
// but first check if we're expecting a gap
bool isGapExpected = TRIGGER_SHAPE(isSynchronizationNeeded) && triggerState.shaft_is_synchronized &&
(triggerState.currentCycle.eventCount[ti] + 1) == TRIGGER_SHAPE(expectedEventCount[ti]);
if (isGapExpected) {
// usually we need to extend the period for gaps, based on the trigger info
allowedPeriod *= TRIGGER_SHAPE(syncRatioAvg);
}
// also we need some margin for rapidly changing trigger-wheel speed,
// that's why we expect the period to be no less than 2/3 of the previous period (this is just an empirical 'magic' coef.)
efitick_t minAllowedPeriod = 2 * allowedPeriod / 3;
// but no longer than 5/4 of the previous 'normal' period
efitick_t maxAllowedPeriod = 5 * allowedPeriod / 4;
// above all, check if the signal comes not too early
if (currentPeriod >= minAllowedPeriod) {
// now we store this period as a reference for the next time,
// BUT we store only 'normal' periods, and ignore too long periods (i.e. gaps)
if (!isGapExpected && (maxAllowedPeriod == 0 || currentPeriod <= maxAllowedPeriod)) {
accumSignalPrevPeriods[signal] = currentPeriod;
}
// reset accumulator
accumSignalPeriods[signal] = 0;
return true;
}
// all premature or extra-long events are ignored - treated as interference
return false;
}
void TriggerCentral::handleShaftSignal(trigger_event_e signal DECLARE_ENGINE_PARAMETER_SUFFIX) {
efiAssertVoid(CUSTOM_CONF_NULL, engine!=NULL, "configuration");
if (triggerShape.shapeDefinitionError) {
// trigger is broken, we cannot do anything here
warning(CUSTOM_ERR_UNEXPECTED_SHAFT_EVENT, "Shaft event while trigger is mis-configured");
return;
}
nowNt = getTimeNowNt();
// This code gathers some statistics on signals and compares accumulated periods to filter interference
if (boardConfiguration->useNoiselessTriggerDecoder) {
if (!noiseFilter(nowNt, signal PASS_ENGINE_PARAMETER_SUFFIX)) {
return;
}
// moved here from hwHandleShaftSignal()
if (!isUsefulSignal(signal, engineConfiguration)) {
return;
}
}
engine->onTriggerSignalEvent(nowNt);
#if EFI_HISTOGRAMS && EFI_PROD_CODE
int beforeCallback = hal_lld_get_counter_value();
#endif
int eventIndex = (int) signal;
efiAssertVoid(CUSTOM_ERR_6638, eventIndex >= 0 && eventIndex < HW_EVENT_TYPES, "signal type");
hwEventCounters[eventIndex]++;
if (nowNt - previousShaftEventTimeNt > US2NT(US_PER_SECOND_LL)) {
/**
* We are here if there is a time gap between now and previous shaft event - that means the engine is not runnig.
* That means we have lost synchronization since the engine is not running :)
*/
triggerState.onSynchronizationLost(PASS_ENGINE_PARAMETER_SIGNATURE);
}
previousShaftEventTimeNt = nowNt;
/**
* This invocation changes the state of triggerState
*/
triggerState.decodeTriggerEvent(signal, nowNt PASS_ENGINE_PARAMETER_SUFFIX);
/**
* If we only have a crank position sensor with four stroke, here we are extending crank revolutions with a 360 degree
* cycle into a four stroke, 720 degrees cycle.
*/
int triggerIndexForListeners;
if (engineConfiguration->operationMode == FOUR_STROKE_CAM_SENSOR ||
engineConfiguration->operationMode == TWO_STROKE) {
// That's easy - trigger cycle matches engine cycle
triggerIndexForListeners = triggerState.getCurrentIndex();
} else {
int crankDivider = engineConfiguration->operationMode == FOUR_STROKE_CRANK_SENSOR ? 2 : 4;
int crankInternalIndex = triggerState.getTotalRevolutionCounter() % crankDivider;
triggerIndexForListeners = triggerState.getCurrentIndex() + (crankInternalIndex * getTriggerSize());
}
if (triggerIndexForListeners == 0) {
timeAtVirtualZeroNt = nowNt;
}
reportEventToWaveChart(signal, triggerIndexForListeners PASS_ENGINE_PARAMETER_SUFFIX);
if (!triggerState.shaft_is_synchronized) {
// we should not propagate event if we do not know where we are
return;
}
if (triggerState.isValidIndex(PASS_ENGINE_PARAMETER_SIGNATURE)) {
#if TRIGGER_EXTREME_LOGGING || defined(__DOXYGEN__)
scheduleMsg(logger, "trigger %d %d %d", triggerIndexForListeners, getRevolutionCounter(), (int)getTimeNowUs());
#endif /* FUEL_MATH_EXTREME_LOGGING */
/**
* Here we invoke all the listeners - the main engine control logic is inside these listeners
*/
for (int i = 0; i < triggerListeneres.currentListenersCount; i++) {
ShaftPositionListener listener = (ShaftPositionListener) triggerListeneres.callbacks[i];
(listener)(signal, triggerIndexForListeners PASS_ENGINE_PARAMETER_SUFFIX);
}
}
#if EFI_HISTOGRAMS || defined(__DOXYGEN__)
int afterCallback = hal_lld_get_counter_value();
int diff = afterCallback - beforeCallback;
// this counter is only 32 bits so it overflows every minute, let's ignore the value in case of the overflow for simplicity
if (diff > 0) {
hsAdd(&triggerCallbackHistogram, diff);
}
#endif /* EFI_HISTOGRAMS */
}
void printAllCallbacksHistogram(void) {
#if EFI_HISTOGRAMS || defined(__DOXYGEN__)
printHistogram(logger, &triggerCallbackHistogram);
#endif
}
EXTERN_ENGINE
;
static void triggerShapeInfo(void) {
#if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__)
TriggerShape *s = &engine->triggerCentral.triggerShape;
scheduleMsg(logger, "useRise=%s", boolToString(TRIGGER_SHAPE(useRiseEdge)));
scheduleMsg(logger, "gap from %.2f to %.2f", TRIGGER_SHAPE(syncronizationRatioFrom[0]), TRIGGER_SHAPE(syncronizationRatioTo[0]));
for (int i = 0; i < s->getSize(); i++) {
scheduleMsg(logger, "event %d %.2f", i, s->eventAngles[i]);
}
#endif
}
#if EFI_UNIT_TEST || defined(__DOXYGEN__)
#include <stdlib.h>
#define TRIGGERS_FILE_NAME "triggers.txt"
/**
* This is used to generate trigger info which is later used by TriggerImage java class
* to generate images for documentation
*/
extern bool printTriggerDebug;
void printAllTriggers() {
FILE * fp = fopen (TRIGGERS_FILE_NAME, "w+");
fprintf(fp, "# Generated by rusEfi unit test suite\n");
fprintf(fp, "# This file is used by TriggerImage tool\n");
fprintf(fp, "# See 'gen_trigger_images.bat'\n");
printTriggerDebug = true;
for (int triggerId = 1; triggerId < TT_UNUSED; triggerId++) {
trigger_type_e tt = (trigger_type_e) triggerId;
printf("Exporting %s\r\n", getTrigger_type_e(tt));
persistent_config_s pc;
Engine e(&pc);
Engine *engine = &e;
persistent_config_s *config = &pc;
engine_configuration_s *engineConfiguration = &pc.engineConfiguration;
board_configuration_s *boardConfiguration = &engineConfiguration->bc;
engineConfiguration->trigger.type = tt;
engineConfiguration->operationMode = FOUR_STROKE_CAM_SENSOR;
TriggerShape *s = &engine->triggerCentral.triggerShape;
s->initializeTriggerShape(NULL, engineConfiguration->useOnlyRisingEdgeForTrigger PASS_ENGINE_PARAMETER_SUFFIX);
if (s->shapeDefinitionError) {
printf("Trigger error %d\r\n", triggerId);
exit(-1);
}
fprintf(fp, "TRIGGERTYPE %d %d %s %.2f\n", triggerId, s->getLength(), getTrigger_type_e(tt), s->tdcPosition);
fprintf(fp, "# duty %.2f %.2f\n", s->expectedDutyCycle[0], s->expectedDutyCycle[1]);
for (int i = 0; i < s->getLength(); i++) {
int triggerDefinitionCoordinate = (s->getTriggerShapeSynchPointIndex() + i) % s->getSize();
fprintf(fp, "event %d %d %.2f\n", i, s->triggerSignals[triggerDefinitionCoordinate], s->eventAngles[i]);
}
}
fclose(fp);
printf("All triggers exported to %s\n", TRIGGERS_FILE_NAME);
}
#endif
#if EFI_PROD_CODE || defined(__DOXYGEN__)
extern PwmConfig triggerSignal;
#endif /* #if EFI_PROD_CODE */
extern uint32_t hipLastExecutionCount;
extern uint32_t hwSetTimerDuration;
extern uint32_t maxLockedDuration;
extern uint32_t maxEventCallbackDuration;
extern int perSecondIrqDuration;
extern int perSecondIrqCounter;
#if (EFI_PROD_CODE) || defined(__DOXYGEN__)
extern uint32_t maxPrecisionCallbackDuration;
#endif /* EFI_PROD_CODE */
extern uint32_t maxSchedulingPrecisionLoss;
extern uint32_t *cyccnt;
extern int vvtEventRiseCounter;
extern int vvtEventFallCounter;
void resetMaxValues() {
#if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__)
maxEventCallbackDuration = triggerMaxDuration = 0;
#endif /* EFI_PROD_CODE || EFI_SIMULATOR */
maxSchedulingPrecisionLoss = 0;
#if EFI_CLOCK_LOCKS || defined(__DOXYGEN__)
maxLockedDuration = 0;
#endif /* EFI_CLOCK_LOCKS */
#if (EFI_PROD_CODE) || defined(__DOXYGEN__)
maxPrecisionCallbackDuration = 0;
#endif /* EFI_PROD_CODE */
}
void triggerInfo(void) {
#if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__)
TriggerShape *ts = &engine->triggerCentral.triggerShape;
scheduleMsg(logger, "Template %s (%d) trigger %s (%d) useRiseEdge=%s onlyFront=%s useOnlyFirstChannel=%s tdcOffset=%.2f",
getConfigurationName(engineConfiguration->engineType), engineConfiguration->engineType,
getTrigger_type_e(engineConfiguration->trigger.type), engineConfiguration->trigger.type,
boolToString(TRIGGER_SHAPE(useRiseEdge)), boolToString(engineConfiguration->useOnlyRisingEdgeForTrigger),
boolToString(engineConfiguration->trigger.useOnlyFirstChannel), TRIGGER_SHAPE(tdcPosition));
if (engineConfiguration->trigger.type == TT_TOOTHED_WHEEL) {
scheduleMsg(logger, "total %d/skipped %d", engineConfiguration->trigger.customTotalToothCount,
engineConfiguration->trigger.customSkippedToothCount);
}
scheduleMsg(logger, "trigger#1 event counters up=%d/down=%d", engine->triggerCentral.getHwEventCounter(0),
engine->triggerCentral.getHwEventCounter(1));
if (ts->needSecondTriggerInput) {
scheduleMsg(logger, "trigger#2 event counters up=%d/down=%d", engine->triggerCentral.getHwEventCounter(2),
engine->triggerCentral.getHwEventCounter(3));
}
scheduleMsg(logger, "expected cycle events %d/%d/%d", TRIGGER_SHAPE(expectedEventCount[0]),
TRIGGER_SHAPE(expectedEventCount[1]), TRIGGER_SHAPE(expectedEventCount[2]));
scheduleMsg(logger, "trigger type=%d/need2ndChannel=%s", engineConfiguration->trigger.type,
boolToString(TRIGGER_SHAPE(needSecondTriggerInput)));
scheduleMsg(logger, "expected duty #0=%.2f/#1=%.2f", TRIGGER_SHAPE(expectedDutyCycle[0]), TRIGGER_SHAPE(expectedDutyCycle[1]));
scheduleMsg(logger, "synchronizationNeeded=%s/isError=%s/total errors=%d ord_err=%d/total revolutions=%d/self=%s",
boolToString(ts->isSynchronizationNeeded),
boolToString(isTriggerDecoderError()), engine->triggerCentral.triggerState.totalTriggerErrorCounter,
engine->triggerCentral.triggerState.orderingErrorCounter, engine->triggerCentral.triggerState.getTotalRevolutionCounter(),
boolToString(engineConfiguration->directSelfStimulation));
if (TRIGGER_SHAPE(isSynchronizationNeeded)) {
scheduleMsg(logger, "gap from %.2f to %.2f", TRIGGER_SHAPE(syncronizationRatioFrom[0]), TRIGGER_SHAPE(syncronizationRatioTo[0]));
}
#endif /* EFI_PROD_CODE || EFI_SIMULATOR */
#if EFI_PROD_CODE || defined(__DOXYGEN__)
if (engineConfiguration->camInput != GPIO_UNASSIGNED) {
scheduleMsg(logger, "VVT input: %s mode %s", hwPortname(engineConfiguration->camInput),
getVvt_mode_e(engineConfiguration->vvtMode));
scheduleMsg(logger, "VVT event counters: %d/%d", vvtEventRiseCounter, vvtEventFallCounter);
}
scheduleMsg(logger, "primary trigger input: %s", hwPortname(boardConfiguration->triggerInputPins[0]));
scheduleMsg(logger, "primary trigger simulator: %s %s freq=%d",
hwPortname(boardConfiguration->triggerSimulatorPins[0]),
getPin_output_mode_e(boardConfiguration->triggerSimulatorPinModes[0]),
boardConfiguration->triggerSimulatorFrequency);
if (ts->needSecondTriggerInput) {
scheduleMsg(logger, "secondary trigger input: %s", hwPortname(boardConfiguration->triggerInputPins[1]));
#if EFI_EMULATE_POSITION_SENSORS || defined(__DOXYGEN__)
scheduleMsg(logger, "secondary trigger simulator: %s %s phase=%d",
hwPortname(boardConfiguration->triggerSimulatorPins[1]),
getPin_output_mode_e(boardConfiguration->triggerSimulatorPinModes[1]), triggerSignal.safe.phaseIndex);
#endif /* EFI_EMULATE_POSITION_SENSORS */
}
// scheduleMsg(logger, "3rd trigger simulator: %s %s", hwPortname(boardConfiguration->triggerSimulatorPins[2]),
// getPin_output_mode_e(boardConfiguration->triggerSimulatorPinModes[2]));
scheduleMsg(logger, "trigger error extra LED: %s %s", hwPortname(boardConfiguration->triggerErrorPin),
getPin_output_mode_e(boardConfiguration->triggerErrorPinMode));
scheduleMsg(logger, "primary logic input: %s", hwPortname(boardConfiguration->logicAnalyzerPins[0]));
scheduleMsg(logger, "secondary logic input: %s", hwPortname(boardConfiguration->logicAnalyzerPins[1]));
scheduleMsg(logger, "zeroTestTime=%d maxSchedulingPrecisionLoss=%d", engine->m.zeroTestTime, maxSchedulingPrecisionLoss);
scheduleMsg(logger, "advanceLookupTime=%d now=%d fuelCalcTime=%d",
engine->m.advanceLookupTime, *cyccnt,
engine->m.fuelCalcTime);
scheduleMsg(logger,
"ignitionSchTime=%d injectonSchTime=%d",
engine->m.ignitionSchTime,
engine->m.injectonSchTime);
scheduleMsg(logger, "mapTime=%d/hipTime=%d/rpmTime=%d/mainTriggerCallbackTime=%d",
engine->m.mapAveragingCbTime,
engine->m.hipCbTime,
engine->m.rpmCbTime,
engine->m.mainTriggerCallbackTime);
#if EFI_CLOCK_LOCKS || defined(__DOXYGEN__)
scheduleMsg(logger, "maxLockedDuration=%d / maxTriggerReentraint=%d", maxLockedDuration, maxTriggerReentraint);
scheduleMsg(logger, "perSecondIrqDuration=%d ticks / perSecondIrqCounter=%d", perSecondIrqDuration, perSecondIrqCounter);
scheduleMsg(logger, "IRQ CPU utilization %f%%", perSecondIrqDuration / 168000000.0 * 100);
#endif /* EFI_CLOCK_LOCKS */
scheduleMsg(logger, "maxEventCallbackDuration=%d", maxEventCallbackDuration);
#if EFI_HIP_9011 || defined(__DOXYGEN__)
scheduleMsg(logger, "hipLastExecutionCount=%d", hipLastExecutionCount);
#endif /* EFI_HIP_9011 */
scheduleMsg(logger, "hwSetTimerDuration=%d", hwSetTimerDuration);
scheduleMsg(logger, "totalTriggerHandlerMaxTime=%d", triggerMaxDuration);
scheduleMsg(logger, "maxPrecisionCallbackDuration=%d", maxPrecisionCallbackDuration);
resetMaxValues();
#endif /* EFI_PROD_CODE */
}
static void resetRunningTriggerCounters() {
#if !EFI_UNIT_TEST || defined(__DOXYGEN__)
engine->triggerCentral.resetCounters();
triggerInfo();
#endif
}
#define COMPARE_CONFIG_PARAMS(param) (engineConfiguration->param != previousConfiguration->param)
void onConfigurationChangeTriggerCallback(engine_configuration_s *previousConfiguration DECLARE_ENGINE_PARAMETER_SUFFIX) {
bool changed = COMPARE_CONFIG_PARAMS(trigger.type) ||
COMPARE_CONFIG_PARAMS(operationMode) ||
COMPARE_CONFIG_PARAMS(useOnlyRisingEdgeForTrigger) ||
COMPARE_CONFIG_PARAMS(globalTriggerAngleOffset) ||
COMPARE_CONFIG_PARAMS(trigger.customTotalToothCount) ||
COMPARE_CONFIG_PARAMS(trigger.customSkippedToothCount) ||
COMPARE_CONFIG_PARAMS(bc.triggerInputPins[0]) ||
COMPARE_CONFIG_PARAMS(bc.triggerInputPins[1]) ||
COMPARE_CONFIG_PARAMS(bc.triggerInputPins[2]) ||
COMPARE_CONFIG_PARAMS(camInput) ||
COMPARE_CONFIG_PARAMS(vvtMode) ||
COMPARE_CONFIG_PARAMS(bc.vvtCamSensorUseRise) ||
COMPARE_CONFIG_PARAMS(vvtOffset) ||
COMPARE_CONFIG_PARAMS(vvtDisplayInverted) ||
COMPARE_CONFIG_PARAMS(bc.nb2ratioFrom) ||
COMPARE_CONFIG_PARAMS(bc.nb2ratioTo) ||
COMPARE_CONFIG_PARAMS(nbVvtIndex);
if (changed) {
assertEngineReference();
#if EFI_ENGINE_CONTROL || defined(__DOXYGEN__)
TRIGGER_SHAPE(initializeTriggerShape(logger, engineConfiguration->useOnlyRisingEdgeForTrigger PASS_ENGINE_PARAMETER_SUFFIX));
engine->triggerCentral.resetAccumSignalData();
#endif
}
#if EFI_DEFAILED_LOGGING
scheduleMsg(logger, "isTriggerConfigChanged=%d", isTriggerConfigChanged);
#endif /* EFI_DEFAILED_LOGGING */
// we do not want to miss two updates in a row
isTriggerConfigChanged = isTriggerConfigChanged || changed;
}
/**
* @returns true if configuration just changed, and if that change has affected trigger
*/
bool checkIfTriggerConfigChanged(void) {
bool result = triggerVersion.isOld() && isTriggerConfigChanged;
isTriggerConfigChanged = false; // whoever has called the method is supposed to react to changes
return result;
}
bool readIfTriggerConfigChangedForUnitTest(void) {
return isTriggerConfigChanged;
}
void resetTriggerConfigChangedForUnitTest(void) {
isTriggerConfigChanged = false;
}
void initTriggerCentral(Logging *sharedLogger) {
logger = sharedLogger;
strcpy((char*) shaft_signal_msg_index, "x_");
#if EFI_ENGINE_SNIFFER || defined(__DOXYGEN__)
initWaveChart(&waveChart);
#endif /* EFI_ENGINE_SNIFFER */
#if EFI_PROD_CODE || EFI_SIMULATOR || defined(__DOXYGEN__)
addConsoleAction("triggerinfo", triggerInfo);
addConsoleAction("trigger_shape_info", triggerShapeInfo);
addConsoleAction("reset_trigger", resetRunningTriggerCounters);
#endif
#if EFI_HISTOGRAMS || defined(__DOXYGEN__)
initHistogram(&triggerCallbackHistogram, "all callbacks");
#endif /* EFI_HISTOGRAMS */
}
#endif