The parser were mixing compiler indices of variables with stack indices,
so that when a to-be-closed variable was used inside the scope of
compile-time constants (which may be optimized away), it might be closed
in the wrong place. (See new tests for examples.)
Besides fixing the bugs, this commit also changed comments and variable
names to avoid that kind of confusion and added tests.
The code should not compute an instruction address before checking that
it exists. (Virtually no machine complains of computing an invalid
address, as long as the address is not used, but for ISO C that is
undefined behavior.)
This function was computing invalid instruction addresses when the
expression was not a multi-return instruction. (Virtually all machines
don't raise errors when computing an invalid address, as long as the
address is not accessed, but this computation is undefined behavior in
ISO C.)
Attributes changed to posfixed ('x <const>', instead of '<const> x'),
and "toclose" renamed to "close". Posfixed attributes seem to make it
clearer that it applies to only one variable when there are multiple
variables.
- OP_NEWTABLE can use 'ra + 1' to set top (instead of ci->top);
- OP_CLOSE doesn't need to set top ('Protect' already does that);
- OP_TFORCALL must use 'ProtectNT', to preserve the top already set.
(That was a small bug, because iterators could be called with
extra parameters besides the state and the control variable.)
- Comments and an extra test for the bug in previous item.
String literal expressions have their own kind VKSTR, instead of the
generic VK. This allows strings to "cross" functions without entering
their constant tables (e.g., if they are used only by some nested
function).
Opcodes OP_NEWTABLE and OP_SETLIST use the same representation to
store the size of the array part of a table. This new representation
can go up to 2^33 (8 + 25 bits).
OP_NEWTABLE is followed by an OP_EXTRAARG, so that it can keep
the exact size of the array part of the table to be created.
(Functions 'luaO_int2fb'/'luaO_fb2int' were removed.)
In the generic for loop, it is simpler for OP_TFORLOOP to use the
same 'ra' as OP_TFORCALL. Moreover, the internal names of the loop
temporaries "(for ...)" don't need to leak internal details (even
because the numerical for loop doesn't have a fixed role for each of
its temporaries).
This commit detaches the number of active variables from the
number of variables in the stack, during compilation. Soon,
compile-time constants will be propagated and therefore will
not exist during run time (in the stack).
VLOCAL expressions keep a reference to their corresponding 'Vardesc',
and 'Upvaldesc' (for upvalues) has a field 'ro' (read-only). So, it is
easier to check whether a variable is read-only. The decoupling in
VLOCAL between 'vidx' ('Vardesc' index) and 'sidx' (stack index)
should also help the forthcoming implementation of compile-time
constant propagation.
The syntax for local attributes ('const'/'toclose') was unified with
the regular syntax for local variables, so that we can have variables
with attributes in local definitions with multiple names; for instance:
local <toclose> f, <const> err = io.open(fname)
This new syntax does not implement constant propagation, yet.
This commit also has some small improvements to the manual.
Removed the field 'name' from the structure 'Vardesc', as the name
of the local variable is already available in the prototype of the
function, through the index 'idx'.
- new error message for "attempt to assign to const variable"
- note in the manual about compatibility options
- comments
- small changes in 'read_line' and 'pushstr'
The flag for to-be-closed variables was changed from '*toclose'
to '<toclose>'. Several people found confusing the old syntax and
the new one has a clear terminator, making it more flexible for
future changes.
When calling metamethods for things like 'a < 3.0', which generates
the opcode OP_LTI, the C register tells that the operand was
converted to an integer, so that it can be corrected to float when
calling a metamethod.
This commit also includes some other stuff:
- file 'onelua.c' added to the project
- opcode OP_PREPVARARG renamed to OP_VARARGPREP
- comparison opcodes rewritten through macros
The numerical 'for' loop over integers now uses a precomputed counter
to control its number of iteractions. This change eliminates several
weird cases caused by overflows (wrap-around) in the control variable.
(It also ensures that every integer loop halts.)
Also, the special opcodes for the usual case of step==1 were removed.
(The new code is already somewhat complex for the usual case,
but efficient.)
* unification of the 'nny' and 'nCcalls' counters;
* external C functions ('lua_CFunction') count more "slots" in
the C stack (to allow for their possible use of buffers)
* added a new test script specific for C-stack overflows. (Most
of those tests were already present, but concentrating them
in a single script easies the task of checking whether
'LUAI_MAXCCALLS' is adequate in a system.)
A to-be-closed variable must be closed when a block ends, so even
a 'return foo()' cannot directly returns the results of 'foo'; the
function must close the scope before returning.
The variable to be closed in a generic 'for' loop now is the
4th value produced in the loop initialization, instead of being
the loop state (the 2nd value produced). That allows a loop to
use a state with a '__toclose' metamethod but do not close it.
(As an example, 'f:lines()' might use the file 'f' as a state
for the loop, but it should not close the file when the loop ends.)
The new syntax is <local *toclose x = f()>. The mark '*' allows other
attributes to be added later without the need of new keywords; it
also allows better error messages. The API function was also renamed
('lua_tobeclosed' -> 'lua_toclose').
The implicit variable 'state' in a generic 'for' is marked as a
to-be-closed variable, so that the state will be closed as soon
as the loop ends, no matter how.
Taking advantage of this new facility, the call 'io.lines(filename)'
now returns the open file as a second result. Therefore,
an iteraction like 'for l in io.lines(name)...' will close the
file even when the loop ends with a break or an error.
Statements like 'if cond then goto label' generate code so that the
jump in the 'if' goes directly to the given label. This optimization
cannot be done when the jump is backwards leaving the scope of some
variable, as it cannot add the needed 'close' instruction. (The jumps
were already generated by the 'if'.)
This commit also added 'likely'/'unlikely' for tests for errors in
the parser, and it changed the way breaks outside loops are detected.
(Now they are detected like other goto's with undefined labels.)
Added restriction that, when a label is created, there cannot be
another label with the same name visible. That allows backward goto's
to be resolved when they are read. Backward goto's get a close if
they jump out of the scope of some variable; labels get a close only
if previous goto to it jumps out of the scope of some upvalue.
Added new instruction 'OP_TFORPREP' to prepare a generic for loop.
Currently it is equivalent to a jump (but with a format 'iABx',
similar to other for-loop preparing instructions), but soon it will
be the place to create upvalues for closing loop states.
A closing method cannot be called in its own stack slot, as there may
be returning values in the stack after that slot, and the call would
corrupt those values. Instead, the closing method must be copied to the
top of the stack to be called.
Moreover, even when a function returns no value, its return istruction
still has to have its position (which will set the stack top) after
the local variables, otherwise a closing method might corrupt another
not-yet-called closing method.
Start of the implementation of "scoped variables" or "to be closed"
variables, local variables whose '__close' (or themselves) are called
when they go out of scope. This commit implements the syntax, the
opcode, and the creation of the corresponding upvalue, but it still
does not call the finalizations when the variable goes out of scope
(the most important part).
Currently, the syntax is 'local scoped name = exp', but that will
probably change.