/* ** $Id: lcode.c,v 1.5 2000/03/03 20:30:47 roberto Exp roberto $ ** Code generator for Lua ** See Copyright Notice in lua.h */ #define LUA_REENTRANT #include "lcode.h" #include "ldo.h" #include "llex.h" #include "lmem.h" #include "lobject.h" #include "lopcodes.h" #include "lparser.h" #include "lstring.h" void luaK_error (LexState *ls, const char *msg) { luaX_error(ls, msg, ls->token); } /* ** Returns the address of the previous instruction, for optimizations. ** If there is a jump target between this and the current instruction, ** returns the address of a dummy instruction to avoid wrong optimizations. */ static Instruction *previous_instruction (LexState *ls) { FuncState *fs = ls->fs; if (fs->pc > fs->lasttarget) /* no jumps to current position? */ return &fs->f->code[fs->pc-1]; /* returns previous instruction */ else { static Instruction dummy = CREATE_0(ENDCODE); return &dummy; /* no optimizations after an `ENDCODE' */ } } int luaK_primitivecode (LexState *ls, Instruction i) { FuncState *fs = ls->fs; luaM_growvector(ls->L, fs->f->code, fs->pc, 1, Instruction, codeEM, MAXARG_S); fs->f->code[fs->pc] = i; return fs->pc++; } static void luaK_minus (LexState *ls) { Instruction *previous = previous_instruction(ls); switch(GET_OPCODE(*previous)) { case PUSHINT: SETARG_S(*previous, -GETARG_S(*previous)); return; case PUSHNUM: SET_OPCODE(*previous, PUSHNEGNUM); return; case PUSHNEGNUM: SET_OPCODE(*previous, PUSHNUM); return; default: luaK_primitivecode(ls, CREATE_0(MINUSOP)); } } static void luaK_gettable (LexState *ls) { Instruction *previous = previous_instruction(ls); luaK_deltastack(ls, -1); switch(GET_OPCODE(*previous)) { case PUSHSTRING: SET_OPCODE(*previous, GETDOTTED); break; default: luaK_primitivecode(ls, CREATE_0(GETTABLE)); } } static void luaK_add (LexState *ls) { Instruction *previous = previous_instruction(ls); luaK_deltastack(ls, -1); switch(GET_OPCODE(*previous)) { case PUSHINT: SET_OPCODE(*previous, ADDI); break; default: luaK_primitivecode(ls, CREATE_0(ADDOP)); } } static void luaK_sub (LexState *ls) { Instruction *previous = previous_instruction(ls); luaK_deltastack(ls, -1); switch(GET_OPCODE(*previous)) { case PUSHINT: SET_OPCODE(*previous, ADDI); SETARG_S(*previous, -GETARG_S(*previous)); break; default: luaK_primitivecode(ls, CREATE_0(SUBOP)); } } static void luaK_conc (LexState *ls) { Instruction *previous = previous_instruction(ls); luaK_deltastack(ls, -1); switch(GET_OPCODE(*previous)) { case CONCOP: SETARG_U(*previous, GETARG_U(*previous)+1); break; default: luaK_primitivecode(ls, CREATE_U(CONCOP, 2)); } } void luaK_retcode (LexState *ls, int nlocals, int nexps) { Instruction *previous = previous_instruction(ls); if (nexps > 0 && GET_OPCODE(*previous) == CALL) { LUA_ASSERT(ls->L, GETARG_B(*previous) == MULT_RET, "call should be open"); SET_OPCODE(*previous, TAILCALL); SETARG_B(*previous, nlocals); } else luaK_primitivecode(ls, CREATE_U(RETCODE, nlocals)); } static void luaK_pushnil (LexState *ls, int n) { Instruction *previous = previous_instruction(ls); luaK_deltastack(ls, n); switch(GET_OPCODE(*previous)) { case PUSHNIL: SETARG_U(*previous, GETARG_U(*previous)+n); break; default: luaK_primitivecode(ls, CREATE_U(PUSHNIL, n)); } } int luaK_code (LexState *ls, Instruction i, int delta) { luaK_deltastack(ls, delta); return luaK_primitivecode(ls, i); } void luaK_fixjump (LexState *ls, int pc, int dest) { FuncState *fs = ls->fs; Instruction *jmp = &fs->f->code[pc]; /* jump is relative to position following jump instruction */ SETARG_S(*jmp, dest-(pc+1)); } /* ** returns current `pc' and marks it as a jump target (to avoid wrong ** optimizations with consecutive instructions not in the same basic block). */ int luaK_getlabel (LexState *ls) { FuncState *fs = ls->fs; fs->lasttarget = fs->pc; return fs->pc; } void luaK_deltastack (LexState *ls, int delta) { FuncState *fs = ls->fs; fs->stacksize += delta; if (delta > 0 && fs->stacksize > fs->f->maxstacksize) { if (fs->stacksize > MAXSTACK) luaK_error(ls, "function or expression too complex"); fs->f->maxstacksize = fs->stacksize; } } void luaK_kstr (LexState *ls, int c) { luaK_U(ls, PUSHSTRING, c, 1); } #ifndef LOOKBACKNUMS #define LOOKBACKNUMS 20 /* arbitrary limit */ #endif static int real_constant (LexState *ls, real r) { /* check whether `r' has appeared within the last LOOKBACKNUMS entries */ TProtoFunc *f = ls->fs->f; int c = f->nknum; int lim = c < LOOKBACKNUMS ? 0 : c-LOOKBACKNUMS; while (--c >= lim) if (f->knum[c] == r) return c; /* not found; create a new entry */ luaM_growvector(ls->L, f->knum, f->nknum, 1, real, constantEM, MAXARG_U); c = f->nknum++; f->knum[c] = r; return c; } void luaK_number (LexState *ls, real f) { if (f <= (real)MAXARG_S && (int)f == f) luaK_S(ls, PUSHINT, (int)f, 1); /* f has a short integer value */ else luaK_U(ls, PUSHNUM, real_constant(ls, f), 1); } void luaK_adjuststack (LexState *ls, int n) { if (n > 0) luaK_U(ls, POP, n, -n); else if (n < 0) luaK_pushnil(ls, -n); } int luaK_lastisopen (LexState *ls) { /* check whether last instruction is an (open) function call */ Instruction *i = previous_instruction(ls); if (GET_OPCODE(*i) == CALL) { LUA_ASSERT(ls->L, GETARG_B(*i) == MULT_RET, "call should be open"); return 1; } else return 0; } void luaK_setcallreturns (LexState *ls, int nresults) { Instruction *i = previous_instruction(ls); if (GET_OPCODE(*i) == CALL) { /* expression is a function call? */ LUA_ASSERT(ls->L, GETARG_B(*i) == MULT_RET, "call should be open"); SETARG_B(*i, nresults); /* set nresults */ luaK_deltastack(ls, nresults); /* push results */ } } static void assertglobal (LexState *ls, int index) { luaS_assertglobal(ls->L, ls->fs->f->kstr[index]); } static int discharge (LexState *ls, expdesc *var) { switch (var->k) { case VLOCAL: luaK_U(ls, PUSHLOCAL, var->u.index, 1); break; case VGLOBAL: luaK_U(ls, GETGLOBAL, var->u.index, 1); assertglobal(ls, var->u.index); /* make sure that there is a global */ break; case VINDEXED: luaK_gettable(ls); break; case VEXP: return 0; /* nothing to do */ } var->k = VEXP; var->u.l.t = var->u.l.f = 0; return 1; } static void discharge1 (LexState *ls, expdesc *var) { discharge(ls, var); /* if it has jumps it is already discharged */ if (var->u.l.t == 0 && var->u.l.f == 0) luaK_setcallreturns(ls, 1); /* call must return 1 value */ } void luaK_storevar (LexState *ls, const expdesc *var) { switch (var->k) { case VLOCAL: luaK_U(ls, SETLOCAL, var->u.index, -1); break; case VGLOBAL: luaK_U(ls, SETGLOBAL, var->u.index, -1); assertglobal(ls, var->u.index); /* make sure that there is a global */ break; case VINDEXED: luaK_0(ls, SETTABLEPOP, -3); break; default: LUA_INTERNALERROR(ls->L, "invalid var kind to store"); } } static OpCode invertjump (OpCode op) { switch (op) { case IFNEQJMP: return IFEQJMP; case IFEQJMP: return IFNEQJMP; case IFLTJMP: return IFGEJMP; case IFLEJMP: return IFGTJMP; case IFGTJMP: return IFLEJMP; case IFGEJMP: return IFLTJMP; default: LUA_INTERNALERROR(NULL, "invalid jump instruction"); return ENDCODE; /* to avoid warnings */ } } static void insert_last (FuncState *fs, int *list) { int temp = *list; *list = fs->pc-1; if (temp == 0) /* chain list */ SETARG_S(fs->f->code[*list], 0); else SETARG_S(fs->f->code[*list], temp-fs->pc); } static void luaK_patchlistaux (LexState *ls, int list, int target, OpCode special, int special_target) { if (list != 0) { Instruction *code = ls->fs->f->code; for (;;) { Instruction *i = &code[list]; OpCode op = GET_OPCODE(*i); int temp = GETARG_S(*i); if (op == special) SETARG_S(*i, special_target-(list+1)); else { SETARG_S(*i, target-(list+1)); if (op == ONTJMP) SET_OPCODE(*i, IFTJMP); else if (op == ONFJMP) SET_OPCODE(*i, IFFJMP); } if (temp == 0) return; list += temp+1; } } } void luaK_patchlist (LexState *ls, int list, int target) { luaK_patchlistaux(ls, list, target, ENDCODE, 0); } static int has_jumps (FuncState *fs, int list, OpCode ignore) { if (list == 0) return 0; else { Instruction *code = fs->f->code; for (;;) { int temp = GETARG_S(code[list]); if (GET_OPCODE(code[list]) != ignore) return 1; else if (temp == 0) return 0; list += temp+1; } } } static void concatlists (LexState *ls, int *l1, int l2) { if (*l1 == 0) *l1 = l2; else if (l2 != 0) { FuncState *fs = ls->fs; int list = *l1; for (;;) { /* traverse `l1' */ int temp = GETARG_S(fs->f->code[list]); if (temp == 0) { /* end of list? */ SETARG_S(fs->f->code[list], l2-(list+1)); /* end points to `l2' */ return; } list += temp+1; } } } void luaK_goiftrue (LexState *ls, expdesc *v, int keepvalue) { FuncState *fs = ls->fs; Instruction *previous; discharge1(ls, v); previous = &fs->f->code[fs->pc-1]; if (ISJUMP(GET_OPCODE(*previous))) SET_OPCODE(*previous, invertjump(GET_OPCODE(*previous))); else { OpCode jump = keepvalue ? ONFJMP : IFFJMP; luaK_S(ls, jump, 0, -1); } insert_last(fs, &v->u.l.f); luaK_patchlist(ls, v->u.l.t, luaK_getlabel(ls)); v->u.l.t = 0; } void luaK_goiffalse (LexState *ls, expdesc *v, int keepvalue) { FuncState *fs = ls->fs; Instruction *previous; discharge1(ls, v); previous = &fs->f->code[fs->pc-1]; if (!ISJUMP(GET_OPCODE(*previous))) { OpCode jump = keepvalue ? ONTJMP : IFTJMP; luaK_S(ls, jump, 0, -1); } insert_last(fs, &v->u.l.t); luaK_patchlist(ls, v->u.l.f, luaK_getlabel(ls)); v->u.l.f = 0; } void luaK_tostack (LexState *ls, expdesc *v, int onlyone) { if (discharge(ls, v)) return; else { /* is an expression */ FuncState *fs = ls->fs; Instruction *previous = &fs->f->code[fs->pc-1]; if (!ISJUMP(GET_OPCODE(*previous)) && v->u.l.f == 0 && v->u.l.t == 0) { /* it is an expression without jumps */ if (onlyone && v->k == VEXP) luaK_setcallreturns(ls, 1); /* call must return 1 value */ return; } else { /* expression has jumps... */ int p_nil = 0; /* position of an eventual PUSHNIL */ int p_1 = 0; /* position of an eventual PUSHINT */ int final; /* position after whole expression */ if (ISJUMP(GET_OPCODE(*previous))) { insert_last(fs, &v->u.l.t); p_nil = luaK_0(ls, PUSHNILJMP, 0); p_1 = luaK_S(ls, PUSHINT, 1, 1); } else { /* still may need a PUSHNIL or a PUSHINT */ int need_nil = has_jumps(fs, v->u.l.f, ONFJMP); /* needs a PUSHNIL? */ int need_1 = has_jumps(fs, v->u.l.t, ONTJMP); /* needs a PUSHINT? */ if (need_nil && need_1) { luaK_S(ls, JMP, 2, 0); p_nil = luaK_0(ls, PUSHNILJMP, 0); p_1 = luaK_S(ls, PUSHINT, 1, 1); } else if (need_nil || need_1) { luaK_S(ls, JMP, 1, 0); if (need_nil) p_nil = luaK_0(ls, PUSHNIL, 1); else /* need_1 */ p_1 = luaK_S(ls, PUSHINT, 1, 1); } } final = luaK_getlabel(ls); luaK_patchlistaux(ls, v->u.l.f, p_nil, ONFJMP, final); luaK_patchlistaux(ls, v->u.l.t, p_1, ONTJMP, final); v->u.l.f = v->u.l.t = 0; } } } void luaK_prefix (LexState *ls, int op, expdesc *v) { if (op == '-') { luaK_tostack(ls, v, 1); luaK_minus(ls); } else { /* op == NOT */ FuncState *fs = ls->fs; Instruction *previous; discharge1(ls, v); previous = &fs->f->code[fs->pc-1]; if (ISJUMP(GET_OPCODE(*previous))) SET_OPCODE(*previous, invertjump(GET_OPCODE(*previous))); else luaK_0(ls, NOTOP, 0); /* interchange true and false lists */ { int temp = v->u.l.f; v->u.l.f = v->u.l.t; v->u.l.t = temp; } } } void luaK_infix (LexState *ls, int op, expdesc *v) { if (op == AND) luaK_goiftrue(ls, v, 1); else if (op == OR) luaK_goiffalse(ls, v, 1); else luaK_tostack(ls, v, 1); } void luaK_posfix (LexState *ls, int op, expdesc *v1, expdesc *v2) { if (op == AND) { LUA_ASSERT(ls->L, v1->u.l.t == 0, "list must be closed"); discharge1(ls, v2); v1->u.l.t = v2->u.l.t; concatlists(ls, &v1->u.l.f, v2->u.l.f); } else if (op == OR) { LUA_ASSERT(ls->L, v1->u.l.f == 0, "list must be closed"); discharge1(ls, v2); v1->u.l.f = v2->u.l.f; concatlists(ls, &v1->u.l.t, v2->u.l.t); } else { luaK_tostack(ls, v2, 1); /* `v2' must have a value */ switch (op) { case '+': luaK_add(ls); break; case '-': luaK_sub(ls); break; case '*': luaK_0(ls, MULTOP, -1); break; case '/': luaK_0(ls, DIVOP, -1); break; case '^': luaK_0(ls, POWOP, -1); break; case CONC: luaK_conc(ls); break; case EQ: luaK_S(ls, IFEQJMP, 0, -2); break; case NE: luaK_S(ls, IFNEQJMP, 0, -2); break; case '>': luaK_S(ls, IFGTJMP, 0, -2); break; case '<': luaK_S(ls, IFLTJMP, 0, -2); break; case GE: luaK_S(ls, IFGEJMP, 0, -2); break; case LE: luaK_S(ls, IFLEJMP, 0, -2); break; } } }