-- $Id: testes/math.lua $ -- See Copyright Notice in file all.lua print("testing numbers and math lib") local minint = math.mininteger local maxint = math.maxinteger local intbits = math.floor(math.log(maxint, 2) + 0.5) + 1 assert((1 << intbits) == 0) assert(minint == 1 << (intbits - 1)) assert(maxint == minint - 1) -- number of bits in the mantissa of a floating-point number local floatbits = 24 do local p = 2.0^floatbits while p < p + 1.0 do p = p * 2.0 floatbits = floatbits + 1 end end local function isNaN (x) return (x ~= x) end assert(isNaN(0/0)) assert(not isNaN(1/0)) do local x = 2.0^floatbits assert(x > x - 1.0 and x == x + 1.0) print(string.format("%d-bit integers, %d-bit (mantissa) floats", intbits, floatbits)) end assert(math.type(0) == "integer" and math.type(0.0) == "float" and not math.type("10")) local function checkerror (msg, f, ...) local s, err = pcall(f, ...) assert(not s and string.find(err, msg)) end local msgf2i = "number.* has no integer representation" -- float equality function eq (a,b,limit) if not limit then if floatbits >= 50 then limit = 1E-11 else limit = 1E-5 end end -- a == b needed for +inf/-inf return a == b or math.abs(a-b) <= limit end -- equality with types function eqT (a,b) return a == b and math.type(a) == math.type(b) end -- basic float notation assert(0e12 == 0 and .0 == 0 and 0. == 0 and .2e2 == 20 and 2.E-1 == 0.2) do local a,b,c = "2", " 3e0 ", " 10 " assert(a+b == 5 and -b == -3 and b+"2" == 5 and "10"-c == 0) assert(type(a) == 'string' and type(b) == 'string' and type(c) == 'string') assert(a == "2" and b == " 3e0 " and c == " 10 " and -c == -" 10 ") assert(c%a == 0 and a^b == 08) a = 0 assert(a == -a and 0 == -0) end do local x = -1 local mz = 0/x -- minus zero t = {[0] = 10, 20, 30, 40, 50} assert(t[mz] == t[0] and t[-0] == t[0]) end do -- tests for 'modf' local a,b = math.modf(3.5) assert(a == 3.0 and b == 0.5) a,b = math.modf(-2.5) assert(a == -2.0 and b == -0.5) a,b = math.modf(-3e23) assert(a == -3e23 and b == 0.0) a,b = math.modf(3e35) assert(a == 3e35 and b == 0.0) a,b = math.modf(-1/0) -- -inf assert(a == -1/0 and b == 0.0) a,b = math.modf(1/0) -- inf assert(a == 1/0 and b == 0.0) a,b = math.modf(0/0) -- NaN assert(isNaN(a) and isNaN(b)) a,b = math.modf(3) -- integer argument assert(eqT(a, 3) and eqT(b, 0.0)) a,b = math.modf(minint) assert(eqT(a, minint) and eqT(b, 0.0)) end assert(math.huge > 10e30) assert(-math.huge < -10e30) -- integer arithmetic assert(minint < minint + 1) assert(maxint - 1 < maxint) assert(0 - minint == minint) assert(minint * minint == 0) assert(maxint * maxint * maxint == maxint) -- testing floor division and conversions for _, i in pairs{-16, -15, -3, -2, -1, 0, 1, 2, 3, 15} do for _, j in pairs{-16, -15, -3, -2, -1, 1, 2, 3, 15} do for _, ti in pairs{0, 0.0} do -- try 'i' as integer and as float for _, tj in pairs{0, 0.0} do -- try 'j' as integer and as float local x = i + ti local y = j + tj assert(i//j == math.floor(i/j)) end end end end assert(1//0.0 == 1/0) assert(-1 // 0.0 == -1/0) assert(eqT(3.5 // 1.5, 2.0)) assert(eqT(3.5 // -1.5, -3.0)) do -- tests for different kinds of opcodes local x, y x = 1; assert(x // 0.0 == 1/0) x = 1.0; assert(x // 0 == 1/0) x = 3.5; assert(eqT(x // 1, 3.0)) assert(eqT(x // -1, -4.0)) x = 3.5; y = 1.5; assert(eqT(x // y, 2.0)) x = 3.5; y = -1.5; assert(eqT(x // y, -3.0)) end assert(maxint // maxint == 1) assert(maxint // 1 == maxint) assert((maxint - 1) // maxint == 0) assert(maxint // (maxint - 1) == 1) assert(minint // minint == 1) assert(minint // minint == 1) assert((minint + 1) // minint == 0) assert(minint // (minint + 1) == 1) assert(minint // 1 == minint) assert(minint // -1 == -minint) assert(minint // -2 == 2^(intbits - 2)) assert(maxint // -1 == -maxint) -- negative exponents do assert(2^-3 == 1 / 2^3) assert(eq((-3)^-3, 1 / (-3)^3)) for i = -3, 3 do -- variables avoid constant folding for j = -3, 3 do -- domain errors (0^(-n)) are not portable if not _port or i ~= 0 or j > 0 then assert(eq(i^j, 1 / i^(-j))) end end end end -- comparison between floats and integers (border cases) if floatbits < intbits then assert(2.0^floatbits == (1 << floatbits)) assert(2.0^floatbits - 1.0 == (1 << floatbits) - 1.0) assert(2.0^floatbits - 1.0 ~= (1 << floatbits)) -- float is rounded, int is not assert(2.0^floatbits + 1.0 ~= (1 << floatbits) + 1) else -- floats can express all integers with full accuracy assert(maxint == maxint + 0.0) assert(maxint - 1 == maxint - 1.0) assert(minint + 1 == minint + 1.0) assert(maxint ~= maxint - 1.0) end assert(maxint + 0.0 == 2.0^(intbits - 1) - 1.0) assert(minint + 0.0 == minint) assert(minint + 0.0 == -2.0^(intbits - 1)) -- order between floats and integers assert(1 < 1.1); assert(not (1 < 0.9)) assert(1 <= 1.1); assert(not (1 <= 0.9)) assert(-1 < -0.9); assert(not (-1 < -1.1)) assert(1 <= 1.1); assert(not (-1 <= -1.1)) assert(-1 < -0.9); assert(not (-1 < -1.1)) assert(-1 <= -0.9); assert(not (-1 <= -1.1)) assert(minint <= minint + 0.0) assert(minint + 0.0 <= minint) assert(not (minint < minint + 0.0)) assert(not (minint + 0.0 < minint)) assert(maxint < minint * -1.0) assert(maxint <= minint * -1.0) do local fmaxi1 = 2^(intbits - 1) assert(maxint < fmaxi1) assert(maxint <= fmaxi1) assert(not (fmaxi1 <= maxint)) assert(minint <= -2^(intbits - 1)) assert(-2^(intbits - 1) <= minint) end if floatbits < intbits then print("testing order (floats cannot represent all integers)") local fmax = 2^floatbits local ifmax = fmax | 0 assert(fmax < ifmax + 1) assert(fmax - 1 < ifmax) assert(-(fmax - 1) > -ifmax) assert(not (fmax <= ifmax - 1)) assert(-fmax > -(ifmax + 1)) assert(not (-fmax >= -(ifmax - 1))) assert(fmax/2 - 0.5 < ifmax//2) assert(-(fmax/2 - 0.5) > -ifmax//2) assert(maxint < 2^intbits) assert(minint > -2^intbits) assert(maxint <= 2^intbits) assert(minint >= -2^intbits) else print("testing order (floats can represent all integers)") assert(maxint < maxint + 1.0) assert(maxint < maxint + 0.5) assert(maxint - 1.0 < maxint) assert(maxint - 0.5 < maxint) assert(not (maxint + 0.0 < maxint)) assert(maxint + 0.0 <= maxint) assert(not (maxint < maxint + 0.0)) assert(maxint + 0.0 <= maxint) assert(maxint <= maxint + 0.0) assert(not (maxint + 1.0 <= maxint)) assert(not (maxint + 0.5 <= maxint)) assert(not (maxint <= maxint - 1.0)) assert(not (maxint <= maxint - 0.5)) assert(minint < minint + 1.0) assert(minint < minint + 0.5) assert(minint <= minint + 0.5) assert(minint - 1.0 < minint) assert(minint - 1.0 <= minint) assert(not (minint + 0.0 < minint)) assert(not (minint + 0.5 < minint)) assert(not (minint < minint + 0.0)) assert(minint + 0.0 <= minint) assert(minint <= minint + 0.0) assert(not (minint + 1.0 <= minint)) assert(not (minint + 0.5 <= minint)) assert(not (minint <= minint - 1.0)) end do local NaN = 0/0 assert(not (NaN < 0)) assert(not (NaN > minint)) assert(not (NaN <= -9)) assert(not (NaN <= maxint)) assert(not (NaN < maxint)) assert(not (minint <= NaN)) assert(not (minint < NaN)) assert(not (4 <= NaN)) assert(not (4 < NaN)) end -- avoiding errors at compile time local function checkcompt (msg, code) checkerror(msg, assert(load(code))) end checkcompt("divide by zero", "return 2 // 0") checkcompt(msgf2i, "return 2.3 >> 0") checkcompt(msgf2i, ("return 2.0^%d & 1"):format(intbits - 1)) checkcompt("field 'huge'", "return math.huge << 1") checkcompt(msgf2i, ("return 1 | 2.0^%d"):format(intbits - 1)) checkcompt(msgf2i, "return 2.3 ~ 0.0") -- testing overflow errors when converting from float to integer (runtime) local function f2i (x) return x | x end checkerror(msgf2i, f2i, math.huge) -- +inf checkerror(msgf2i, f2i, -math.huge) -- -inf checkerror(msgf2i, f2i, 0/0) -- NaN if floatbits < intbits then -- conversion tests when float cannot represent all integers assert(maxint + 1.0 == maxint + 0.0) assert(minint - 1.0 == minint + 0.0) checkerror(msgf2i, f2i, maxint + 0.0) assert(f2i(2.0^(intbits - 2)) == 1 << (intbits - 2)) assert(f2i(-2.0^(intbits - 2)) == -(1 << (intbits - 2))) assert((2.0^(floatbits - 1) + 1.0) // 1 == (1 << (floatbits - 1)) + 1) -- maximum integer representable as a float local mf = maxint - (1 << (floatbits - intbits)) + 1 assert(f2i(mf + 0.0) == mf) -- OK up to here mf = mf + 1 assert(f2i(mf + 0.0) ~= mf) -- no more representable else -- conversion tests when float can represent all integers assert(maxint + 1.0 > maxint) assert(minint - 1.0 < minint) assert(f2i(maxint + 0.0) == maxint) checkerror("no integer rep", f2i, maxint + 1.0) checkerror("no integer rep", f2i, minint - 1.0) end -- 'minint' should be representable as a float no matter the precision assert(f2i(minint + 0.0) == minint) -- testing numeric strings assert("2" + 1 == 3) assert("2 " + 1 == 3) assert(" -2 " + 1 == -1) assert(" -0xa " + 1 == -9) -- Literal integer Overflows (new behavior in 5.3.3) do -- no overflows assert(eqT(tonumber(tostring(maxint)), maxint)) assert(eqT(tonumber(tostring(minint)), minint)) -- add 1 to last digit as a string (it cannot be 9...) local function incd (n) local s = string.format("%d", n) s = string.gsub(s, "%d$", function (d) assert(d ~= '9') return string.char(string.byte(d) + 1) end) return s end -- 'tonumber' with overflow by 1 assert(eqT(tonumber(incd(maxint)), maxint + 1.0)) assert(eqT(tonumber(incd(minint)), minint - 1.0)) -- large numbers assert(eqT(tonumber("1"..string.rep("0", 30)), 1e30)) assert(eqT(tonumber("-1"..string.rep("0", 30)), -1e30)) -- hexa format still wraps around assert(eqT(tonumber("0x1"..string.rep("0", 30)), 0)) -- lexer in the limits assert(minint == load("return " .. minint)()) assert(eqT(maxint, load("return " .. maxint)())) assert(eqT(10000000000000000000000.0, 10000000000000000000000)) assert(eqT(-10000000000000000000000.0, -10000000000000000000000)) end -- testing 'tonumber' -- 'tonumber' with numbers assert(tonumber(3.4) == 3.4) assert(eqT(tonumber(3), 3)) assert(eqT(tonumber(maxint), maxint) and eqT(tonumber(minint), minint)) assert(tonumber(1/0) == 1/0) -- 'tonumber' with strings assert(tonumber("0") == 0) assert(not tonumber("")) assert(not tonumber(" ")) assert(not tonumber("-")) assert(not tonumber(" -0x ")) assert(not tonumber{}) assert(tonumber'+0.01' == 1/100 and tonumber'+.01' == 0.01 and tonumber'.01' == 0.01 and tonumber'-1.' == -1 and tonumber'+1.' == 1) assert(not tonumber'+ 0.01' and not tonumber'+.e1' and not tonumber'1e' and not tonumber'1.0e+' and not tonumber'.') assert(tonumber('-012') == -010-2) assert(tonumber('-1.2e2') == - - -120) assert(tonumber("0xffffffffffff") == (1 << (4*12)) - 1) assert(tonumber("0x"..string.rep("f", (intbits//4))) == -1) assert(tonumber("-0x"..string.rep("f", (intbits//4))) == 1) -- testing 'tonumber' with base assert(tonumber(' 001010 ', 2) == 10) assert(tonumber(' 001010 ', 10) == 001010) assert(tonumber(' -1010 ', 2) == -10) assert(tonumber('10', 36) == 36) assert(tonumber(' -10 ', 36) == -36) assert(tonumber(' +1Z ', 36) == 36 + 35) assert(tonumber(' -1z ', 36) == -36 + -35) assert(tonumber('-fFfa', 16) == -(10+(16*(15+(16*(15+(16*15))))))) assert(tonumber(string.rep('1', (intbits - 2)), 2) + 1 == 2^(intbits - 2)) assert(tonumber('ffffFFFF', 16)+1 == (1 << 32)) assert(tonumber('0ffffFFFF', 16)+1 == (1 << 32)) assert(tonumber('-0ffffffFFFF', 16) - 1 == -(1 << 40)) for i = 2,36 do local i2 = i * i local i10 = i2 * i2 * i2 * i2 * i2 -- i^10 assert(tonumber('\t10000000000\t', i) == i10) end if not _soft then -- tests with very long numerals assert(tonumber("0x"..string.rep("f", 13)..".0") == 2.0^(4*13) - 1) assert(tonumber("0x"..string.rep("f", 150)..".0") == 2.0^(4*150) - 1) assert(tonumber("0x"..string.rep("f", 300)..".0") == 2.0^(4*300) - 1) assert(tonumber("0x"..string.rep("f", 500)..".0") == 2.0^(4*500) - 1) assert(tonumber('0x3.' .. string.rep('0', 1000)) == 3) assert(tonumber('0x' .. string.rep('0', 1000) .. 'a') == 10) assert(tonumber('0x0.' .. string.rep('0', 13).."1") == 2.0^(-4*14)) assert(tonumber('0x0.' .. string.rep('0', 150).."1") == 2.0^(-4*151)) assert(tonumber('0x0.' .. string.rep('0', 300).."1") == 2.0^(-4*301)) assert(tonumber('0x0.' .. string.rep('0', 500).."1") == 2.0^(-4*501)) assert(tonumber('0xe03' .. string.rep('0', 1000) .. 'p-4000') == 3587.0) assert(tonumber('0x.' .. string.rep('0', 1000) .. '74p4004') == 0x7.4) end -- testing 'tonumber' for invalid formats local function f (...) if select('#', ...) == 1 then return (...) else return "***" end end assert(not f(tonumber('fFfa', 15))) assert(not f(tonumber('099', 8))) assert(not f(tonumber('1\0', 2))) assert(not f(tonumber('', 8))) assert(not f(tonumber(' ', 9))) assert(not f(tonumber(' ', 9))) assert(not f(tonumber('0xf', 10))) assert(not f(tonumber('inf'))) assert(not f(tonumber(' INF '))) assert(not f(tonumber('Nan'))) assert(not f(tonumber('nan'))) assert(not f(tonumber(' '))) assert(not f(tonumber(''))) assert(not f(tonumber('1 a'))) assert(not f(tonumber('1 a', 2))) assert(not f(tonumber('1\0'))) assert(not f(tonumber('1 \0'))) assert(not f(tonumber('1\0 '))) assert(not f(tonumber('e1'))) assert(not f(tonumber('e 1'))) assert(not f(tonumber(' 3.4.5 '))) -- testing 'tonumber' for invalid hexadecimal formats assert(not tonumber('0x')) assert(not tonumber('x')) assert(not tonumber('x3')) assert(not tonumber('0x3.3.3')) -- two decimal points assert(not tonumber('00x2')) assert(not tonumber('0x 2')) assert(not tonumber('0 x2')) assert(not tonumber('23x')) assert(not tonumber('- 0xaa')) assert(not tonumber('-0xaaP ')) -- no exponent assert(not tonumber('0x0.51p')) assert(not tonumber('0x5p+-2')) -- testing hexadecimal numerals assert(0x10 == 16 and 0xfff == 2^12 - 1 and 0XFB == 251) assert(0x0p12 == 0 and 0x.0p-3 == 0) assert(0xFFFFFFFF == (1 << 32) - 1) assert(tonumber('+0x2') == 2) assert(tonumber('-0xaA') == -170) assert(tonumber('-0xffFFFfff') == -(1 << 32) + 1) -- possible confusion with decimal exponent assert(0E+1 == 0 and 0xE+1 == 15 and 0xe-1 == 13) -- floating hexas assert(tonumber(' 0x2.5 ') == 0x25/16) assert(tonumber(' -0x2.5 ') == -0x25/16) assert(tonumber(' +0x0.51p+8 ') == 0x51) assert(0x.FfffFFFF == 1 - '0x.00000001') assert('0xA.a' + 0 == 10 + 10/16) assert(0xa.aP4 == 0XAA) assert(0x4P-2 == 1) assert(0x1.1 == '0x1.' + '+0x.1') assert(0Xabcdef.0 == 0x.ABCDEFp+24) assert(1.1 == 1.+.1) assert(100.0 == 1E2 and .01 == 1e-2) assert(1111111111 - 1111111110 == 1000.00e-03) assert(1.1 == '1.'+'.1') assert(tonumber'1111111111' - tonumber'1111111110' == tonumber" +0.001e+3 \n\t") assert(0.1e-30 > 0.9E-31 and 0.9E30 < 0.1e31) assert(0.123456 > 0.123455) assert(tonumber('+1.23E18') == 1.23*10.0^18) -- testing order operators assert(not(1<1) and (1<2) and not(2<1)) assert(not('a'<'a') and ('a'<'b') and not('b'<'a')) assert((1<=1) and (1<=2) and not(2<=1)) assert(('a'<='a') and ('a'<='b') and not('b'<='a')) assert(not(1>1) and not(1>2) and (2>1)) assert(not('a'>'a') and not('a'>'b') and ('b'>'a')) assert((1>=1) and not(1>=2) and (2>=1)) assert(('a'>='a') and not('a'>='b') and ('b'>='a')) assert(1.3 < 1.4 and 1.3 <= 1.4 and not (1.3 < 1.3) and 1.3 <= 1.3) -- testing mod operator assert(eqT(-4 % 3, 2)) assert(eqT(4 % -3, -2)) assert(eqT(-4.0 % 3, 2.0)) assert(eqT(4 % -3.0, -2.0)) assert(eqT(4 % -5, -1)) assert(eqT(4 % -5.0, -1.0)) assert(eqT(4 % 5, 4)) assert(eqT(4 % 5.0, 4.0)) assert(eqT(-4 % -5, -4)) assert(eqT(-4 % -5.0, -4.0)) assert(eqT(-4 % 5, 1)) assert(eqT(-4 % 5.0, 1.0)) assert(eqT(4.25 % 4, 0.25)) assert(eqT(10.0 % 2, 0.0)) assert(eqT(-10.0 % 2, 0.0)) assert(eqT(-10.0 % -2, 0.0)) assert(math.pi - math.pi % 1 == 3) assert(math.pi - math.pi % 0.001 == 3.141) do -- very small numbers local i, j = 0, 20000 while i < j do local m = (i + j) // 2 if 10^-m > 0 then i = m + 1 else j = m end end -- 'i' is the smallest possible ten-exponent local b = 10^-(i - (i // 10)) -- a very small number assert(b > 0 and b * b == 0) local delta = b / 1000 assert(eq((2.1 * b) % (2 * b), (0.1 * b), delta)) assert(eq((-2.1 * b) % (2 * b), (2 * b) - (0.1 * b), delta)) assert(eq((2.1 * b) % (-2 * b), (0.1 * b) - (2 * b), delta)) assert(eq((-2.1 * b) % (-2 * b), (-0.1 * b), delta)) end -- basic consistency between integer modulo and float modulo for i = -10, 10 do for j = -10, 10 do if j ~= 0 then assert((i + 0.0) % j == i % j) end end end for i = 0, 10 do for j = -10, 10 do if j ~= 0 then assert((2^i) % j == (1 << i) % j) end end end do -- precision of module for large numbers local i = 10 while (1 << i) > 0 do assert((1 << i) % 3 == i % 2 + 1) i = i + 1 end i = 10 while 2^i < math.huge do assert(2^i % 3 == i % 2 + 1) i = i + 1 end end assert(eqT(minint % minint, 0)) assert(eqT(maxint % maxint, 0)) assert((minint + 1) % minint == minint + 1) assert((maxint - 1) % maxint == maxint - 1) assert(minint % maxint == maxint - 1) assert(minint % -1 == 0) assert(minint % -2 == 0) assert(maxint % -2 == -1) -- non-portable tests because Windows C library cannot compute -- fmod(1, huge) correctly if not _port then local function anan (x) assert(isNaN(x)) end -- assert Not a Number anan(0.0 % 0) anan(1.3 % 0) anan(math.huge % 1) anan(math.huge % 1e30) anan(-math.huge % 1e30) anan(-math.huge % -1e30) assert(1 % math.huge == 1) assert(1e30 % math.huge == 1e30) assert(1e30 % -math.huge == -math.huge) assert(-1 % math.huge == math.huge) assert(-1 % -math.huge == -1) end -- testing unsigned comparisons assert(math.ult(3, 4)) assert(not math.ult(4, 4)) assert(math.ult(-2, -1)) assert(math.ult(2, -1)) assert(not math.ult(-2, -2)) assert(math.ult(maxint, minint)) assert(not math.ult(minint, maxint)) assert(eq(math.sin(-9.8)^2 + math.cos(-9.8)^2, 1)) assert(eq(math.tan(math.pi/4), 1)) assert(eq(math.sin(math.pi/2), 1) and eq(math.cos(math.pi/2), 0)) assert(eq(math.atan(1), math.pi/4) and eq(math.acos(0), math.pi/2) and eq(math.asin(1), math.pi/2)) assert(eq(math.deg(math.pi/2), 90) and eq(math.rad(90), math.pi/2)) assert(math.abs(-10.43) == 10.43) assert(eqT(math.abs(minint), minint)) assert(eqT(math.abs(maxint), maxint)) assert(eqT(math.abs(-maxint), maxint)) assert(eq(math.atan(1,0), math.pi/2)) assert(math.fmod(10,3) == 1) assert(eq(math.sqrt(10)^2, 10)) assert(eq(math.log(2, 10), math.log(2)/math.log(10))) assert(eq(math.log(2, 2), 1)) assert(eq(math.log(9, 3), 2)) assert(eq(math.exp(0), 1)) assert(eq(math.sin(10), math.sin(10%(2*math.pi)))) assert(tonumber(' 1.3e-2 ') == 1.3e-2) assert(tonumber(' -1.00000000000001 ') == -1.00000000000001) -- testing constant limits -- 2^23 = 8388608 assert(8388609 + -8388609 == 0) assert(8388608 + -8388608 == 0) assert(8388607 + -8388607 == 0) do -- testing floor & ceil assert(eqT(math.floor(3.4), 3)) assert(eqT(math.ceil(3.4), 4)) assert(eqT(math.floor(-3.4), -4)) assert(eqT(math.ceil(-3.4), -3)) assert(eqT(math.floor(maxint), maxint)) assert(eqT(math.ceil(maxint), maxint)) assert(eqT(math.floor(minint), minint)) assert(eqT(math.floor(minint + 0.0), minint)) assert(eqT(math.ceil(minint), minint)) assert(eqT(math.ceil(minint + 0.0), minint)) assert(math.floor(1e50) == 1e50) assert(math.ceil(1e50) == 1e50) assert(math.floor(-1e50) == -1e50) assert(math.ceil(-1e50) == -1e50) for _, p in pairs{31,32,63,64} do assert(math.floor(2^p) == 2^p) assert(math.floor(2^p + 0.5) == 2^p) assert(math.ceil(2^p) == 2^p) assert(math.ceil(2^p - 0.5) == 2^p) end checkerror("number expected", math.floor, {}) checkerror("number expected", math.ceil, print) assert(eqT(math.tointeger(minint), minint)) assert(eqT(math.tointeger(minint .. ""), minint)) assert(eqT(math.tointeger(maxint), maxint)) assert(eqT(math.tointeger(maxint .. ""), maxint)) assert(eqT(math.tointeger(minint + 0.0), minint)) assert(not math.tointeger(0.0 - minint)) assert(not math.tointeger(math.pi)) assert(not math.tointeger(-math.pi)) assert(math.floor(math.huge) == math.huge) assert(math.ceil(math.huge) == math.huge) assert(not math.tointeger(math.huge)) assert(math.floor(-math.huge) == -math.huge) assert(math.ceil(-math.huge) == -math.huge) assert(not math.tointeger(-math.huge)) assert(math.tointeger("34.0") == 34) assert(not math.tointeger("34.3")) assert(not math.tointeger({})) assert(not math.tointeger(0/0)) -- NaN end -- testing fmod for integers for i = -6, 6 do for j = -6, 6 do if j ~= 0 then local mi = math.fmod(i, j) local mf = math.fmod(i + 0.0, j) assert(mi == mf) assert(math.type(mi) == 'integer' and math.type(mf) == 'float') if (i >= 0 and j >= 0) or (i <= 0 and j <= 0) or mi == 0 then assert(eqT(mi, i % j)) end end end end assert(eqT(math.fmod(minint, minint), 0)) assert(eqT(math.fmod(maxint, maxint), 0)) assert(eqT(math.fmod(minint + 1, minint), minint + 1)) assert(eqT(math.fmod(maxint - 1, maxint), maxint - 1)) checkerror("zero", math.fmod, 3, 0) do -- testing max/min checkerror("value expected", math.max) checkerror("value expected", math.min) assert(eqT(math.max(3), 3)) assert(eqT(math.max(3, 5, 9, 1), 9)) assert(math.max(maxint, 10e60) == 10e60) assert(eqT(math.max(minint, minint + 1), minint + 1)) assert(eqT(math.min(3), 3)) assert(eqT(math.min(3, 5, 9, 1), 1)) assert(math.min(3.2, 5.9, -9.2, 1.1) == -9.2) assert(math.min(1.9, 1.7, 1.72) == 1.7) assert(math.min(-10e60, minint) == -10e60) assert(eqT(math.min(maxint, maxint - 1), maxint - 1)) assert(eqT(math.min(maxint - 2, maxint, maxint - 1), maxint - 2)) end -- testing implicit conversions local a,b = '10', '20' assert(a*b == 200 and a+b == 30 and a-b == -10 and a/b == 0.5 and -b == -20) assert(a == '10' and b == '20') do print("testing -0 and NaN") local mz = -0.0 local z = 0.0 assert(mz == z) assert(1/mz < 0 and 0 < 1/z) local a = {[mz] = 1} assert(a[z] == 1 and a[mz] == 1) a[z] = 2 assert(a[z] == 2 and a[mz] == 2) local inf = math.huge * 2 + 1 local mz = -1/inf local z = 1/inf assert(mz == z) assert(1/mz < 0 and 0 < 1/z) local NaN = inf - inf assert(NaN ~= NaN) assert(not (NaN < NaN)) assert(not (NaN <= NaN)) assert(not (NaN > NaN)) assert(not (NaN >= NaN)) assert(not (0 < NaN) and not (NaN < 0)) local NaN1 = 0/0 assert(NaN ~= NaN1 and not (NaN <= NaN1) and not (NaN1 <= NaN)) local a = {} assert(not pcall(rawset, a, NaN, 1)) assert(a[NaN] == undef) a[1] = 1 assert(not pcall(rawset, a, NaN, 1)) assert(a[NaN] == undef) -- strings with same binary representation as 0.0 (might create problems -- for constant manipulation in the pre-compiler) local a1, a2, a3, a4, a5 = 0, 0, "\0\0\0\0\0\0\0\0", 0, "\0\0\0\0\0\0\0\0" assert(a1 == a2 and a2 == a4 and a1 ~= a3) assert(a3 == a5) end print("testing 'math.random'") local random, max, min = math.random, math.max, math.min local function testnear (val, ref, tol) return (math.abs(val - ref) < ref * tol) end -- low-level!! For the current implementation of random in Lua, -- the first call after seed 1007 should return 0x7a7040a5a323c9d6 do -- all computations should work with 32-bit integers local h = 0x7a7040a5 -- higher half local l = 0xa323c9d6 -- lower half math.randomseed(1007) -- get the low 'intbits' of the 64-bit expected result local res = (h << 32 | l) & ~(~0 << intbits) assert(random(0) == res) math.randomseed(1007, 0) -- using higher bits to generate random floats; (the '% 2^32' converts -- 32-bit integers to floats as unsigned) local res if floatbits <= 32 then -- get all bits from the higher half res = (h >> (32 - floatbits)) % 2^32 else -- get 32 bits from the higher half and the rest from the lower half res = (h % 2^32) * 2^(floatbits - 32) + ((l >> (64 - floatbits)) % 2^32) end local rand = random() assert(eq(rand, 0x0.7a7040a5a323c9d6, 2^-floatbits)) assert(rand * 2^floatbits == res) end do -- testing return of 'randomseed' local x, y = math.randomseed() local res = math.random(0) x, y = math.randomseed(x, y) -- should repeat the state assert(math.random(0) == res) math.randomseed(x, y) -- again should repeat the state assert(math.random(0) == res) -- keep the random seed for following tests end do -- test random for floats local randbits = math.min(floatbits, 64) -- at most 64 random bits local mult = 2^randbits -- to make random float into an integral local counts = {} -- counts for bits for i = 1, randbits do counts[i] = 0 end local up = -math.huge local low = math.huge local rounds = 100 * randbits -- 100 times for each bit local totalrounds = 0 ::doagain:: -- will repeat test until we get good statistics for i = 0, rounds do local t = random() assert(0 <= t and t < 1) up = max(up, t) low = min(low, t) assert(t * mult % 1 == 0) -- no extra bits local bit = i % randbits -- bit to be tested if (t * 2^bit) % 1 >= 0.5 then -- is bit set? counts[bit + 1] = counts[bit + 1] + 1 -- increment its count end end totalrounds = totalrounds + rounds if not (eq(up, 1, 0.001) and eq(low, 0, 0.001)) then goto doagain end -- all bit counts should be near 50% local expected = (totalrounds / randbits / 2) for i = 1, randbits do if not testnear(counts[i], expected, 0.10) then goto doagain end end print(string.format("float random range in %d calls: [%f, %f]", totalrounds, low, up)) end do -- test random for full integers local up = 0 local low = 0 local counts = {} -- counts for bits for i = 1, intbits do counts[i] = 0 end local rounds = 100 * intbits -- 100 times for each bit local totalrounds = 0 ::doagain:: -- will repeat test until we get good statistics for i = 0, rounds do local t = random(0) up = max(up, t) low = min(low, t) local bit = i % intbits -- bit to be tested -- increment its count if it is set counts[bit + 1] = counts[bit + 1] + ((t >> bit) & 1) end totalrounds = totalrounds + rounds local lim = maxint >> 10 if not (maxint - up < lim and low - minint < lim) then goto doagain end -- all bit counts should be near 50% local expected = (totalrounds / intbits / 2) for i = 1, intbits do if not testnear(counts[i], expected, 0.10) then goto doagain end end print(string.format( "integer random range in %d calls: [minint + %.0fppm, maxint - %.0fppm]", totalrounds, (minint - low) / minint * 1e6, (maxint - up) / maxint * 1e6)) end do -- test distribution for a dice local count = {0, 0, 0, 0, 0, 0} local rep = 200 local totalrep = 0 ::doagain:: for i = 1, rep * 6 do local r = random(6) count[r] = count[r] + 1 end totalrep = totalrep + rep for i = 1, 6 do if not testnear(count[i], totalrep, 0.05) then goto doagain end end end do local function aux (x1, x2) -- test random for small intervals local mark = {}; local count = 0 -- to check that all values appeared while true do local t = random(x1, x2) assert(x1 <= t and t <= x2) if not mark[t] then -- new value mark[t] = true count = count + 1 if count == x2 - x1 + 1 then -- all values appeared; OK goto ok end end end ::ok:: end aux(-10,0) aux(1, 6) aux(1, 2) aux(1, 13) aux(1, 31) aux(1, 32) aux(1, 33) aux(-10, 10) aux(-10,-10) -- unit set aux(minint, minint) -- unit set aux(maxint, maxint) -- unit set aux(minint, minint + 9) aux(maxint - 3, maxint) end do local function aux(p1, p2) -- test random for large intervals local max = minint local min = maxint local n = 100 local mark = {}; local count = 0 -- to count how many different values ::doagain:: for _ = 1, n do local t = random(p1, p2) if not mark[t] then -- new value assert(p1 <= t and t <= p2) max = math.max(max, t) min = math.min(min, t) mark[t] = true count = count + 1 end end -- at least 80% of values are different if not (count >= n * 0.8) then goto doagain end -- min and max not too far from formal min and max local diff = (p2 - p1) >> 4 if not (min < p1 + diff and max > p2 - diff) then goto doagain end end aux(0, maxint) aux(1, maxint) aux(3, maxint // 3) aux(minint, -1) aux(minint // 2, maxint // 2) aux(minint, maxint) aux(minint + 1, maxint) aux(minint, maxint - 1) aux(0, 1 << (intbits - 5)) end assert(not pcall(random, 1, 2, 3)) -- too many arguments -- empty interval assert(not pcall(random, minint + 1, minint)) assert(not pcall(random, maxint, maxint - 1)) assert(not pcall(random, maxint, minint)) print('OK')