openblt/Host/Source/LibOpenBLT/bindings/csharp/openblt.cs

1418 lines
69 KiB
C#
Raw Normal View History

//***************************************************************************************
// Description: Class for accessing the OpenBLT shared library in C#.
// File Name: openblt.cs
//
//---------------------------------------------------------------------------------------
// C O P Y R I G H T
//---------------------------------------------------------------------------------------
// Copyright (c) 2021 by Feaser http://www.feaser.com All rights reserved
//
// This software has been carefully tested, but is not guaranteed for any particular
// purpose. The author does not offer any warranties and does not guarantee the accuracy,
// adequacy, or completeness of the software and is not responsible for any errors or
// omissions or the results obtained from use of the software.
//
//---------------------------------------------------------------------------------------
// L I C E N S E
//---------------------------------------------------------------------------------------
// This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published by the Free
// Software Foundation, either version 3 of the License, or (at your option) any later
// version.
//
// OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
// without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the GNU General Public License for more details.
//
// You have received a copy of the GNU General Public License along with OpenBLT. It
// should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy.
//
//***************************************************************************************
using System;
using System.Runtime.InteropServices;
using System.Diagnostics;
namespace OpenBLT
{
/// <summary>
/// C# wrapper class for the OpenBLT host library called LibOpenBLT. For more
/// information about LibOpenBLT, refer to:
/// https://www.feaser.com/openblt/doku.php?id=manual:libopenblt
/// </summary>
/// <remarks>
/// Note that under Microsoft Windows, the LibOpenBLT shared library (libopenblt.dll)
/// is 64-bit, ever since OpenBLT version 1.14 . For this reason, whatever project
/// uses this wrapper class needs to be built as a 64-bit application.
///
/// To configure this, go to your project's properties in Microsoft Visual Studio.
/// In the "Build" settings, set "Platform target" to "x64".
///
/// When using LibOpenBLT from before OpenBLT version 1.14 or if you rebuild the
/// LibOpenBLT shared library yourself as 32-bit, then your project that uses this
/// wrapper class needs to be built as a 32-bit application.
///
/// To configure this, go to your project's properties in Microsoft Visual Studio.
/// In the "Build" settings, set "Platform target" to "x86".
/// </remarks>
public static class Lib
{
/// <summary>
/// The name of the shared library file. Luckily there is no need to specify the
/// file extension (.dll on Windows and .so on Linux), so this wrapper class
/// should be cross-platform.
/// </summary>
/// <remarks>
/// Note that this file and the other related run-time library files must be
/// located either someone accessible on the searchpath or in the same
/// directory as your application's executable.
/// For an overview of the LibOpenBLT run-time library files, refer to:
/// https://www.feaser.com/openblt/doku.php?id=manual:libopenblt#run-time_libraries
/// </remarks>
private const String LIBNAME = "libopenblt";
/// <summary>
/// Function return value for when everything went okay.
/// </summary>
public const UInt32 RESULT_OK = 0;
/// <summary>
/// Function return value for when a generic error occured.
/// </summary>
public const UInt32 RESULT_ERROR_GENERIC = 1;
/// <summary>
/// Wrapper for the version module of LibOpenBLT.
/// </summary>
public static class Version
{
[DllImport(LIBNAME, CharSet = CharSet.Ansi, CallingConvention = CallingConvention.Cdecl)]
private static extern UInt32 BltVersionGetNumber();
/// <summary>
/// Obtains the version number of the library as an integer. The number has two
/// digits for major-, minor-, and patch-version.Version 1.05.12 would for
/// example return 10512.
/// </summary>
/// <returns>Library version number as an integer.</returns>
/// <example>
/// <code>
/// Console.WriteLine("LibOpenBLT version number: {0}", OpenBLT.Lib.Version.GetNumber());
/// </code>
/// </example>
public static UInt32 GetNumber()
{
return BltVersionGetNumber();
}
[DllImport(LIBNAME, CharSet = CharSet.Ansi, CallingConvention = CallingConvention.Cdecl)]
private static extern IntPtr BltVersionGetString();
/// <summary>
/// Obtains the version number of the library as a null-terminated string. Version
/// 1.05.12 would for example return "1.05.12".
/// </summary>
/// <returns>Library version number as a string.</returns>
/// <example>
/// <code>
/// Console.WriteLine("LibOpenBLT version string: {0}", OpenBLT.Lib.Version.GetString());
/// </code>
/// </example>
public static String GetString()
{
return Marshal.PtrToStringAnsi(BltVersionGetString());
}
}
/// <summary>
/// Wrapper for the session module of LibOpenBLT.
/// </summary>
public static class Session
{
/// <summary>
/// XCP protocol version 1.0. XCP is a universal measurement and calibration
/// communication protocol. It contains functionality for reading, programming,
/// and erasing (non-volatile) memory making it a good fit for bootloader
/// purposes.
/// </summary>
private const UInt32 SESSION_XCP_V10 = 0;
/// <summary>
/// Transport layer for the XCP v1.0 protocol that uses RS-232 serial
/// communication for data exchange.
/// </summary>
private const UInt32 TRANSPORT_XCP_V10_RS232 = 0;
/// <summary>
/// Transport layer for the XCP v1.0 protocol that uses Controller Area Network
/// (CAN) for data exchange.
/// </summary>
private const UInt32 TRANSPORT_XCP_V10_CAN = 1;
/// <summary>
/// Transport layer for the XCP v1.0 protocol that uses USB Bulk for data
/// exchange.
/// </summary>
private const UInt32 TRANSPORT_XCP_V10_USB = 2;
/// <summary>
/// Transport layer for the XCP v1.0 protocol that uses TCP/IP for data
/// exchange.
/// </summary>
private const UInt32 TRANSPORT_XCP_V10_NET = 3;
/// <summary>
/// Structure layout of the XCP version 1.0 session settings.
/// </summary>
public struct SessionSettingsXcpV10
{
/// <summary>
/// Command response timeout in milliseconds.
/// </summary>
public UInt16 timeoutT1;
/// <summary>
/// Start programming timeout in milliseconds.
/// </summary>
public UInt16 timeoutT3;
/// <summary>
/// Erase memory timeout in milliseconds.
/// </summary>
public UInt16 timeoutT4;
/// <summary>
/// Program memory and reset timeout in milliseconds.
/// </summary>
public UInt16 timeoutT5;
/// <summary>
/// Connect response timeout in milliseconds.
/// </summary>
public UInt16 timeoutT6;
/// <summary>
/// Busy wait timer timeout in milliseonds.
/// </summary>
public UInt16 timeoutT7;
/// <summary>
/// Seed/key algorithm library filename.
/// </summary>
public String seedKeyFile;
/// <summary>
/// Connection mode parameter in XCP connect command.
/// </summary>
public Byte connectMode;
}
/// <summary>
/// Unmanaged structure layout of the XCP version 1.0 session settings.
/// </summary>
/// <remarks>
/// Only used internally when calling the API function inside the DLL.
/// </remarks>
[StructLayout(LayoutKind.Sequential)]
private struct SessionSettingsXcpV10Unmanaged
{
public UInt16 timeoutT1;
public UInt16 timeoutT3;
public UInt16 timeoutT4;
public UInt16 timeoutT5;
public UInt16 timeoutT6;
public UInt16 timeoutT7;
public IntPtr seedKeyFile;
public Byte connectMode;
}
/// <summary>
/// Structure layout of the XCP version 1.0 RS232 transport layer settings.
/// </summary>
/// <remarks>
/// The portName field is platform dependent. On Linux based systems this should be
/// the filename of the tty-device, such as "/dev/tty0". On Windows based systems
/// it should be the name of the COM-port, such as "COM1".
/// </remarks>
public struct TransportSettingsXcpV10Rs232
{
/// <summary>
/// Communication port name such as /dev/tty0.
/// </summary>
public String portName;
/// <summary>
/// Communication speed in bits/sec.
/// </summary>
public UInt32 baudrate;
}
/// <summary>
/// Unmanaged structure layout of the XCP version 1.0 RS232 transport layer settings.
/// </summary>
/// <remarks>
/// Only used internally when calling the API function inside the DLL.
/// </remarks>
[StructLayout(LayoutKind.Sequential)]
private struct TransportSettingsXcpV10Rs232Unmanaged
{
public IntPtr portName;
public UInt32 baudrate;
}
/// <summary>
/// Structure layout of the XCP version 1.0 CAN transport layer settings.
/// </summary>
/// <remarks>
/// The deviceName field is platform dependent.On Linux based systems this should
/// be the socketCAN interface name such as "can0". The terminal command "ip addr"
/// can be issued to view a list of interfaces that are up and available. Under
/// Linux it is assumed that the socketCAN interface is already configured on the
/// system, before using the OpenBLT library.When baudrate is configured when
/// bringing up the system, so the baudrate field in this structure is don't care
/// when using the library on a Linux was system. On Windows based systems, the
/// device name is a name that is pre-defined by this library for the supported
/// CAN adapters. The device name should be one of the following: "peak_pcanusb",
/// "kvaser_leaflight", or "lawicel_canusb". Field use extended is a boolean
/// field.When set to 0, the specified transmitId and receiveId are assumed to
/// be 11-bit standard CAN identifier. If the field is True, these identifiers
/// are assumed to be 29-bit extended CAN identifiers.
/// </remarks>
public struct TransportSettingsXcpV10Can
{
/// <summary>
/// Device name such as can0, peak_pcanusb etc.
/// </summary>
public String deviceName;
/// <summary>
/// Channel on the device to use.
/// </summary>
public UInt32 deviceChannel;
/// <summary>
/// Communication speed in bits/sec.
/// </summary>
public UInt32 baudrate;
/// <summary>
/// Transmit CAN identifier.
/// </summary>
public UInt32 transmitId;
/// <summary>
/// Receive CAN identifier.
/// </summary>
public UInt32 receiveId;
/// <summary>
/// Boolean to configure 29-bit CAN identifiers.
/// </summary>
public Boolean useExtended;
}
/// <summary>
/// Unmanaged structure layout of the XCP version 1.0 CAN transport layer settings.
/// </summary>
/// <remarks>
/// Only used internally when calling the API function inside the DLL.
/// </remarks>
[StructLayout(LayoutKind.Sequential)]
private struct TransportSettingsXcpV10CanUnmanaged
{
public IntPtr deviceName;
public UInt32 deviceChannel;
public UInt32 baudrate;
public UInt32 transmitId;
public UInt32 receiveId;
public UInt32 useExtended;
}
/// <summary>
/// Structure layout of the XCP version 1.0 NET transport layer settings.
/// </summary>
/// <remarks>
/// The address field can be set to either the IP address or the hostname, such
/// as "192.168.178.23" or "mymicro.mydomain.com". The port should be set to the
/// TCP port number that the bootloader target listens on.
/// </remarks>
public struct TransportSettingsXcpV10Net
{
/// <summary>
/// Target IP-address or hostname on the network.
/// </summary>
public String address;
/// <summary>
/// TCP port to use.
/// </summary>
public UInt16 port;
}
/// <summary>
/// Unmanaged structure layout of the XCP version 1.0 TCP/IP transport layer settings.
/// </summary>
/// <remarks>
/// Only used internally when calling the API function inside the DLL.
/// </remarks>
[StructLayout(LayoutKind.Sequential)]
private struct TransportSettingsXcpV10NetUnmanaged
{
public IntPtr address;
public UInt16 port;
}
[DllImport(LIBNAME, CharSet = CharSet.Ansi, CallingConvention = CallingConvention.Cdecl)]
private static extern void BltSessionInit(UInt32 sessionType, IntPtr sessionSettings, UInt32 transportType, IntPtr transportSettings);
/// <summary>
/// Initializes the firmware update session for the XCP v1.0 communication
/// protocol and RS232 as the transport layer. This function is typically
/// called once at the start of the firmware update.
/// </summary>
/// <param name="sessionSettings">XCP V1.0 protocol settings</param>
/// <param name="transportSettings">RS232 transport layer settings</param>
/// <example>
/// <code>
/// OpenBLT.Lib.Session.SessionSettingsXcpV10 sessionSettings;
/// sessionSettings.timeoutT1 = 1000;
/// sessionSettings.timeoutT3 = 2000;
/// sessionSettings.timeoutT4 = 10000;
/// sessionSettings.timeoutT5 = 1000;
/// sessionSettings.timeoutT6 = 50;
/// sessionSettings.timeoutT7 = 2000;
/// sessionSettings.seedKeyFile = "";
/// sessionSettings.connectMode = 0;
///
/// OpenBLT.Lib.Session.TransportSettingsXcpV10Rs232 transportSettings;
/// transportSettings.portName = "COM8";
/// transportSettings.baudrate = 57600;
///
/// OpenBLT.Lib.Session.Init(sessionSettings, transportSettings);
/// </code>
/// </example>
public static void Init(SessionSettingsXcpV10 sessionSettings, TransportSettingsXcpV10Rs232 transportSettings)
{
// Copy the managed session settings to an unmanaged structure.
SessionSettingsXcpV10Unmanaged sessionSettingsUnmanaged;
sessionSettingsUnmanaged.timeoutT1 = sessionSettings.timeoutT1;
sessionSettingsUnmanaged.timeoutT3 = sessionSettings.timeoutT3;
sessionSettingsUnmanaged.timeoutT4 = sessionSettings.timeoutT4;
sessionSettingsUnmanaged.timeoutT5 = sessionSettings.timeoutT5;
sessionSettingsUnmanaged.timeoutT6 = sessionSettings.timeoutT6;
sessionSettingsUnmanaged.timeoutT7 = sessionSettings.timeoutT7;
// Convert string to unmanged string.
sessionSettingsUnmanaged.seedKeyFile = (IntPtr)Marshal.StringToHGlobalAnsi(sessionSettings.seedKeyFile);
sessionSettingsUnmanaged.connectMode = sessionSettings.connectMode;
// Copy the managed transport settings to an unmanaged structure.
TransportSettingsXcpV10Rs232Unmanaged transportSettingsUnmanaged;
// Convert string to unmanaged string.
transportSettingsUnmanaged.portName = (IntPtr)Marshal.StringToHGlobalAnsi(transportSettings.portName);
transportSettingsUnmanaged.baudrate = transportSettings.baudrate;
// The structures are now formatted to be converted to unmanaged memory. Start by allocating
// memory on the heap for this.
IntPtr sessionSettingsUnmanagedPtr = Marshal.AllocHGlobal(Marshal.SizeOf(sessionSettingsUnmanaged));
IntPtr transportSettingsUnmanagedPtr = Marshal.AllocHGlobal(Marshal.SizeOf(transportSettingsUnmanaged));
// Assert the heap allocations.
Debug.Assert(sessionSettingsUnmanaged.seedKeyFile != IntPtr.Zero);
Debug.Assert(transportSettingsUnmanaged.portName != IntPtr.Zero);
Debug.Assert(sessionSettingsUnmanagedPtr != IntPtr.Zero);
Debug.Assert(transportSettingsUnmanagedPtr != IntPtr.Zero);
// Only continue if all the heap allocations were successful.
if ((sessionSettingsUnmanaged.seedKeyFile != IntPtr.Zero) &&
(transportSettingsUnmanaged.portName != IntPtr.Zero) &&
(sessionSettingsUnmanagedPtr != IntPtr.Zero) &&
(transportSettingsUnmanagedPtr != IntPtr.Zero))
{
// Copy the structures to unmanaged memory.
Marshal.StructureToPtr(sessionSettingsUnmanaged, sessionSettingsUnmanagedPtr, false);
Marshal.StructureToPtr(transportSettingsUnmanaged, transportSettingsUnmanagedPtr, false);
// Call the API function inside the DLL.
BltSessionInit(SESSION_XCP_V10, sessionSettingsUnmanagedPtr, TRANSPORT_XCP_V10_RS232, transportSettingsUnmanagedPtr);
// Free memory allocated on the heap.
Marshal.FreeHGlobal(transportSettingsUnmanagedPtr);
Marshal.FreeHGlobal(sessionSettingsUnmanagedPtr);
Marshal.FreeHGlobal(transportSettingsUnmanaged.portName);
Marshal.FreeHGlobal(sessionSettingsUnmanaged.seedKeyFile);
}
}
/// <summary>
/// Initializes the firmware update session for the XCP v1.0 communication
/// protocol and CAN as the transport layer. This function is typically
/// called once at the start of the firmware update.
/// </summary>
/// <param name="sessionSettings">XCP V1.0 protocol settings</param>
/// <param name="transportSettings">CAN transport layer settings</param>
/// <example>
/// <code>
/// OpenBLT.Lib.Session.SessionSettingsXcpV10 sessionSettings;
/// sessionSettings.timeoutT1 = 1000;
/// sessionSettings.timeoutT3 = 2000;
/// sessionSettings.timeoutT4 = 10000;
/// sessionSettings.timeoutT5 = 1000;
/// sessionSettings.timeoutT6 = 50;
/// sessionSettings.timeoutT7 = 2000;
/// sessionSettings.seedKeyFile = "";
/// sessionSettings.connectMode = 0;
///
/// OpenBLT.Lib.Session.TransportSettingsXcpV10Can transportSettings;
/// transportSettings.deviceName = "peak_pcanusb";
/// transportSettings.deviceChannel = 0;
/// transportSettings.baudrate = 500000;
/// transportSettings.transmitId = 0x667;
/// transportSettings.receiveId = 0x7E1;
/// transportSettings.useExtended = false;
///
/// OpenBLT.Lib.Session.Init(sessionSettings, transportSettings);
/// </code>
/// </example>
public static void Init(SessionSettingsXcpV10 sessionSettings, TransportSettingsXcpV10Can transportSettings)
{
// Copy the managed session settings to an unmanaged structure.
SessionSettingsXcpV10Unmanaged sessionSettingsUnmanaged;
sessionSettingsUnmanaged.timeoutT1 = sessionSettings.timeoutT1;
sessionSettingsUnmanaged.timeoutT3 = sessionSettings.timeoutT3;
sessionSettingsUnmanaged.timeoutT4 = sessionSettings.timeoutT4;
sessionSettingsUnmanaged.timeoutT5 = sessionSettings.timeoutT5;
sessionSettingsUnmanaged.timeoutT6 = sessionSettings.timeoutT6;
sessionSettingsUnmanaged.timeoutT7 = sessionSettings.timeoutT7;
// Convert string to unmanged string.
sessionSettingsUnmanaged.seedKeyFile = (IntPtr)Marshal.StringToHGlobalAnsi(sessionSettings.seedKeyFile);
sessionSettingsUnmanaged.connectMode = sessionSettings.connectMode;
// Copy the managed transport settings to an unmanaged structure.
TransportSettingsXcpV10CanUnmanaged transportSettingsUnmanaged;
// Convert string to unmanaged string.
transportSettingsUnmanaged.deviceName = (IntPtr)Marshal.StringToHGlobalAnsi(transportSettings.deviceName);
transportSettingsUnmanaged.deviceChannel = transportSettings.deviceChannel;
transportSettingsUnmanaged.baudrate = transportSettings.baudrate;
transportSettingsUnmanaged.transmitId = transportSettings.transmitId;
transportSettingsUnmanaged.receiveId = transportSettings.receiveId;
transportSettingsUnmanaged.useExtended = 0;
if (transportSettings.useExtended)
{
transportSettingsUnmanaged.useExtended = 1;
}
// The structures are now formatted to be converted to unmanaged memory. Start by allocating
// memory on the heap for this.
IntPtr sessionSettingsUnmanagedPtr = Marshal.AllocHGlobal(Marshal.SizeOf(sessionSettingsUnmanaged));
IntPtr transportSettingsUnmanagedPtr = Marshal.AllocHGlobal(Marshal.SizeOf(transportSettingsUnmanaged));
// Assert the heap allocations.
Debug.Assert(sessionSettingsUnmanaged.seedKeyFile != IntPtr.Zero);
Debug.Assert(transportSettingsUnmanaged.deviceName != IntPtr.Zero);
Debug.Assert(sessionSettingsUnmanagedPtr != IntPtr.Zero);
Debug.Assert(transportSettingsUnmanagedPtr != IntPtr.Zero);
// Only continue if all the heap allocations were successful.
if ((sessionSettingsUnmanaged.seedKeyFile != IntPtr.Zero) &&
(transportSettingsUnmanaged.deviceName != IntPtr.Zero) &&
(sessionSettingsUnmanagedPtr != IntPtr.Zero) &&
(transportSettingsUnmanagedPtr != IntPtr.Zero))
{
// Copy the structures to unmanaged memory.
Marshal.StructureToPtr(sessionSettingsUnmanaged, sessionSettingsUnmanagedPtr, false);
Marshal.StructureToPtr(transportSettingsUnmanaged, transportSettingsUnmanagedPtr, false);
// Call the API function inside the DLL.
BltSessionInit(SESSION_XCP_V10, sessionSettingsUnmanagedPtr, TRANSPORT_XCP_V10_CAN, transportSettingsUnmanagedPtr);
// Free memory allocated on the heap.
Marshal.FreeHGlobal(transportSettingsUnmanagedPtr);
Marshal.FreeHGlobal(sessionSettingsUnmanagedPtr);
Marshal.FreeHGlobal(transportSettingsUnmanaged.deviceName);
Marshal.FreeHGlobal(sessionSettingsUnmanaged.seedKeyFile);
}
}
/// <summary>
/// Initializes the firmware update session for the XCP v1.0 communication
/// protocol and USB as the transport layer. This function is typically
/// called once at the start of the firmware update.
/// </summary>
/// <remarks>
/// Note that the USB transport layer does not need any configuration
/// settings. Therefore, this function only needs the session
/// settings as a parameter.
/// </remarks>
/// <param name="sessionSettings">XCP V1.0 protocol settings</param>
/// <example>
/// <code>
/// OpenBLT.Lib.Session.SessionSettingsXcpV10 sessionSettings;
/// sessionSettings.timeoutT1 = 1000;
/// sessionSettings.timeoutT3 = 2000;
/// sessionSettings.timeoutT4 = 10000;
/// sessionSettings.timeoutT5 = 1000;
/// sessionSettings.timeoutT6 = 50;
/// sessionSettings.timeoutT7 = 2000;
/// sessionSettings.seedKeyFile = "";
/// sessionSettings.connectMode = 0;
///
/// OpenBLT.Lib.Session.Init(sessionSettings);
/// </code>
/// </example>
public static void Init(SessionSettingsXcpV10 sessionSettings)
{
// Copy the managed session settings to an unmanaged structure.
SessionSettingsXcpV10Unmanaged sessionSettingsUnmanaged;
sessionSettingsUnmanaged.timeoutT1 = sessionSettings.timeoutT1;
sessionSettingsUnmanaged.timeoutT3 = sessionSettings.timeoutT3;
sessionSettingsUnmanaged.timeoutT4 = sessionSettings.timeoutT4;
sessionSettingsUnmanaged.timeoutT5 = sessionSettings.timeoutT5;
sessionSettingsUnmanaged.timeoutT6 = sessionSettings.timeoutT6;
sessionSettingsUnmanaged.timeoutT7 = sessionSettings.timeoutT7;
// Convert string to unmanged string.
sessionSettingsUnmanaged.seedKeyFile = (IntPtr)Marshal.StringToHGlobalAnsi(sessionSettings.seedKeyFile);
sessionSettingsUnmanaged.connectMode = sessionSettings.connectMode;
// Note that the USB transport layer does not require any settings. The settings structure is
// now formatted to be converted to unmanaged memory. Start by allocating memory on the heap for this.
IntPtr sessionSettingsUnmanagedPtr = Marshal.AllocHGlobal(Marshal.SizeOf(sessionSettingsUnmanaged));
// Assert the heap allocations.
Debug.Assert(sessionSettingsUnmanaged.seedKeyFile != IntPtr.Zero);
Debug.Assert(sessionSettingsUnmanagedPtr != IntPtr.Zero);
// Only continue if all the heap allocations were successful.
if ((sessionSettingsUnmanaged.seedKeyFile != IntPtr.Zero) &&
(sessionSettingsUnmanagedPtr != IntPtr.Zero))
{
// Copy the structure to unmanaged memory.
Marshal.StructureToPtr(sessionSettingsUnmanaged, sessionSettingsUnmanagedPtr, false);
// Call the API function inside the DLL.
BltSessionInit(SESSION_XCP_V10, sessionSettingsUnmanagedPtr, TRANSPORT_XCP_V10_USB, IntPtr.Zero);
// Free memory allocated on the heap.
Marshal.FreeHGlobal(sessionSettingsUnmanagedPtr);
Marshal.FreeHGlobal(sessionSettingsUnmanaged.seedKeyFile);
}
}
/// <summary>
/// Initializes the firmware update session for the XCP v1.0 communication
/// protocol and TCP/IP as the transport layer. This function is typically
/// called once at the start of the firmware update.
/// </summary>
/// <param name="sessionSettings">XCP V1.0 protocol settings</param>
/// <param name="transportSettings">TCP/IP transport layer settings</param>
/// <example>
/// <code>
/// OpenBLT.Lib.Session.SessionSettingsXcpV10 sessionSettings;
/// sessionSettings.timeoutT1 = 1000;
/// sessionSettings.timeoutT3 = 2000;
/// sessionSettings.timeoutT4 = 10000;
/// sessionSettings.timeoutT5 = 1000;
/// sessionSettings.timeoutT6 = 50;
/// sessionSettings.timeoutT7 = 2000;
/// sessionSettings.seedKeyFile = "";
/// sessionSettings.connectMode = 0;
///
/// OpenBLT.Lib.Session.TransportSettingsXcpV10Net transportSettings;
/// transportSettings.address = "192.168.178.30";
/// transportSettings.port = 1000;
///
/// OpenBLT.Lib.Session.Init(sessionSettings, transportSettings);
/// </code>
/// </example>
public static void Init(SessionSettingsXcpV10 sessionSettings, TransportSettingsXcpV10Net transportSettings)
{
// Copy the managed session settings to an unmanaged structure.
SessionSettingsXcpV10Unmanaged sessionSettingsUnmanaged;
sessionSettingsUnmanaged.timeoutT1 = sessionSettings.timeoutT1;
sessionSettingsUnmanaged.timeoutT3 = sessionSettings.timeoutT3;
sessionSettingsUnmanaged.timeoutT4 = sessionSettings.timeoutT4;
sessionSettingsUnmanaged.timeoutT5 = sessionSettings.timeoutT5;
sessionSettingsUnmanaged.timeoutT6 = sessionSettings.timeoutT6;
sessionSettingsUnmanaged.timeoutT7 = sessionSettings.timeoutT7;
// Convert string to unmanged string.
sessionSettingsUnmanaged.seedKeyFile = (IntPtr)Marshal.StringToHGlobalAnsi(sessionSettings.seedKeyFile);
sessionSettingsUnmanaged.connectMode = sessionSettings.connectMode;
// Copy the managed transport settings to an unmanaged structure.
TransportSettingsXcpV10NetUnmanaged transportSettingsUnmanaged;
// Convert string to unmanaged string.
transportSettingsUnmanaged.address = (IntPtr)Marshal.StringToHGlobalAnsi(transportSettings.address);
transportSettingsUnmanaged.port = transportSettings.port;
// The structures are now formatted to be converted to unmanaged memory. Start by allocating
// memory on the heap for this.
IntPtr sessionSettingsUnmanagedPtr = Marshal.AllocHGlobal(Marshal.SizeOf(sessionSettingsUnmanaged));
IntPtr transportSettingsUnmanagedPtr = Marshal.AllocHGlobal(Marshal.SizeOf(transportSettingsUnmanaged));
// Assert the heap allocations.
Debug.Assert(sessionSettingsUnmanaged.seedKeyFile != IntPtr.Zero);
Debug.Assert(transportSettingsUnmanaged.address != IntPtr.Zero);
Debug.Assert(sessionSettingsUnmanagedPtr != IntPtr.Zero);
Debug.Assert(transportSettingsUnmanagedPtr != IntPtr.Zero);
// Only continue if all the heap allocations were successful.
if ((sessionSettingsUnmanaged.seedKeyFile != IntPtr.Zero) &&
(transportSettingsUnmanaged.address != IntPtr.Zero) &&
(sessionSettingsUnmanagedPtr != IntPtr.Zero) &&
(transportSettingsUnmanagedPtr != IntPtr.Zero))
{
// Copy the structures to unmanaged memory.
Marshal.StructureToPtr(sessionSettingsUnmanaged, sessionSettingsUnmanagedPtr, false);
Marshal.StructureToPtr(transportSettingsUnmanaged, transportSettingsUnmanagedPtr, false);
// Call the API function inside the DLL.
BltSessionInit(SESSION_XCP_V10, sessionSettingsUnmanagedPtr, TRANSPORT_XCP_V10_NET, transportSettingsUnmanagedPtr);
// Free memory allocated on the heap.
Marshal.FreeHGlobal(transportSettingsUnmanagedPtr);
Marshal.FreeHGlobal(sessionSettingsUnmanagedPtr);
Marshal.FreeHGlobal(transportSettingsUnmanaged.address);
Marshal.FreeHGlobal(sessionSettingsUnmanaged.seedKeyFile);
}
}
[DllImport(LIBNAME, CharSet = CharSet.Ansi, CallingConvention = CallingConvention.Cdecl)]
private static extern void BltSessionTerminate();
/// <summary>
/// Terminates the firmware update session. This function is typically called
/// once at the end of the firmware update.
/// </summary>
/// <example>
/// <code>
/// OpenBLT.Lib.Session.Terminate();
/// </code>
/// </example>
public static void Terminate()
{
BltSessionTerminate();
}
[DllImport(LIBNAME, CharSet = CharSet.Ansi, CallingConvention = CallingConvention.Cdecl)]
private static extern UInt32 BltSessionStart();
/// <summary>
/// Terminates the firmware update session. This function is typically called
/// once at the end of the firmware update.
/// </summary>
/// <returns>RESULT_OK if successful, RESULT_ERROR_xxx otherwise.</returns>
/// <example>
/// <code>
/// if (OpenBLT.Lib.Session.Start() != OpenBLT.Lib.RESULT_OK)
/// {
/// Console.WriteLine("Could not connect to the target.");
/// }
/// </code>
/// </example>
public static UInt32 Start()
{
return BltSessionStart();
}
[DllImport(LIBNAME, CharSet = CharSet.Ansi, CallingConvention = CallingConvention.Cdecl)]
private static extern void BltSessionStop();
/// <summary>
/// Terminates the firmware update session. This function is typically called
/// once at the end of the firmware update.
/// </summary>
/// <example>
/// <code>
/// OpenBLT.Lib.Session.Stop();
/// </code>
/// </example>
public static void Stop()
{
BltSessionStop();
}
[DllImport(LIBNAME, CharSet = CharSet.Ansi, CallingConvention = CallingConvention.Cdecl)]
private static extern UInt32 BltSessionClearMemory(UInt32 address, UInt32 len);
/// <summary>
/// Requests the target to erase the specified range of memory on the target.
/// </summary>
/// <remarks>
/// Note that the target automatically aligns this to the erasable memory
/// block sizes. This typically results in more memory being erased than the
/// range that was specified here. Refer to the target implementation for
/// details.
/// </remarks>
/// <param name="address">The starting memory address for the erase operation.</param>
/// <param name="len">The total number of bytes to erase from memory.</param>
/// <returns>RESULT_OK if successful, RESULT_ERROR_xxx otherwise.</returns>
/// <example>
/// <code>
/// if (OpenBLT.Lib.Session.ClearMemory(0x08004000, 8196) != OpenBLT.Lib.RESULT_OK)
/// {
/// Console.WriteLine("Could not erase memory.");
/// }
/// </code>
/// </example>
public static UInt32 ClearMemory(UInt32 address, Int32 len)
{
// Note that parameter length was made 32-bit signed, because you typically erase the
// length of a segment. When obtaining the segment info with GetSegment(), you would
// then pass the length of the segment's data-array into this function, which is 32-bit
// signed.
return BltSessionClearMemory(address, (UInt32)len);
}
[DllImport(LIBNAME, CharSet = CharSet.Ansi, CallingConvention = CallingConvention.Cdecl)]
private static extern UInt32 BltSessionWriteData(UInt32 address, UInt32 len, IntPtr data);
/// <summary>
/// Requests the target to program the specified data to memory.
/// </summary>
/// <remarks>
/// Note that it is the responsibility of the application to make sure the
/// memory range was erased beforehand. The length of the data array
/// determines how many bytes are programmed.
/// </remarks>
/// <param name="address">The starting memory address for the write operation.</param>
/// <param name="data">Byte array with data to write.</param>
/// <returns>RESULT_OK if successful, RESULT_ERROR_xxx otherwise.</returns>
/// <example>
/// <code>
/// byte[] firmwareDataAt08006000 = new byte[]
/// {
/// 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
/// 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
/// 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
/// 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F
/// };
/// byte[] flashData = new byte[8];
///
/// Array.Copy(firmwareDataAt08006000, 24, flashData, 0, 8);
///
/// if (OpenBLT.Lib.Session.WriteData(0x08006000 + 24, flashData) != OpenBLT.Lib.RESULT_OK)
/// {
/// Console.WriteLine("Could not program 8 bytes at 0x08006018 in memory.");
/// }
/// </code>
/// </example>
public static UInt32 WriteData(UInt32 address, byte[] data)
{
UInt32 result = RESULT_ERROR_GENERIC;
// Determine data size.
Int32 dataSize = Marshal.SizeOf(data[0]) * data.Length;
// Allocate memory on the heap for storing the data in unmanaged memory.
IntPtr dataPtr = Marshal.AllocHGlobal(dataSize);
// Only continue if the allocation was successful.
if (dataPtr != IntPtr.Zero)
{
// Copy the data to unmanaged memory.
Marshal.Copy(data, 0, dataPtr, data.Length);
// Write the data to memory on the target.
result = BltSessionWriteData(address, (UInt32)data.Length, dataPtr);
// Free the unmanaged memory.
Marshal.FreeHGlobal(dataPtr);
}
// Give the result back to the caller.
return result;
}
[DllImport(LIBNAME, CharSet = CharSet.Ansi, CallingConvention = CallingConvention.Cdecl)]
private static extern UInt32 BltSessionReadData(UInt32 address, UInt32 len, IntPtr data);
/// <summary>
/// Requests the target to upload the specified range from memory and store its
/// contents in the specified data buffer.
/// </summary>
/// <remarks>
/// Note that the length of the data array determines how many bytes are read.
/// </remarks>
/// <param name="address">The starting memory address for the read operation.</param>
/// <param name="data">Byte array where the uploaded data should be stored.</param>
/// <returns>RESULT_OK if successful, RESULT_ERROR_xxx otherwise.</returns>
/// <example>
/// <code>
///
/// </code>
/// </example>
public static UInt32 ReadData(UInt32 address, byte[] data)
{
UInt32 result = RESULT_ERROR_GENERIC;
// Determine data size.
Int32 dataSize = Marshal.SizeOf(data[0]) * data.Length;
// Allocate memory on the heap for storing the data in unmanaged memory.
IntPtr dataPtr = Marshal.AllocHGlobal(dataSize);
// Only continue if the allocation was successful.
if (dataPtr != IntPtr.Zero)
{
// Read the data to memory on the target.
result = BltSessionReadData(address, (UInt32)data.Length, dataPtr);
// Copy read data in unmanaged memory back to the data array.
Marshal.Copy(dataPtr, data, 0, dataSize);
// Free the unmanaged memory.
Marshal.FreeHGlobal(dataPtr);
}
// Give the result back to the caller.
return result;
}
}
/// <summary>
/// Wrapper for the firmware module of LibOpenBLT.
/// </summary>
public static class Firmware
{
/// <summary>
/// The S-record parser enables writing and reading firmware data to and from
/// file formatted as Motorola S-record. This is a widely known file format
/// and pretty much all microcontroller compiler toolchains include
/// functionality to output or convert the firmware's data as an S-record.
/// </summary>
public const UInt32 FIRMWARE_PARSER_SRECORD = 0;
[DllImport(LIBNAME, CharSet = CharSet.Ansi, CallingConvention = CallingConvention.Cdecl)]
private static extern void BltFirmwareInit(UInt32 parserType);
/// <summary>
/// Initializes the firmware data module for a specified firmware file parser.
/// </summary>
/// <param name="parserType">
/// The firmware file parser to use in this module. It should be a
/// PARSER_xxx value.
/// </param>
/// <example>
/// <code>
/// OpenBLT.Lib.Firmware.Init(OpenBLT.Lib.Firmware.FIRMWARE_PARSER_SRECORD);
/// </code>
/// </example>
public static void Init(UInt32 parserType)
{
BltFirmwareInit(parserType);
}
[DllImport(LIBNAME, CharSet = CharSet.Ansi, CallingConvention = CallingConvention.Cdecl)]
private static extern void BltFirmwareTerminate();
/// <summary>
/// Terminates the firmware data module. Typically called at the end of the
/// program when the firmware data module is no longer needed.
/// </summary>
/// <example>
/// <code>
/// OpenBLT.Lib.Firmware.Terminate();
/// </code>
/// </example>
public static void Terminate()
{
BltFirmwareTerminate();
}
[DllImport(LIBNAME, CharSet = CharSet.Ansi, CallingConvention = CallingConvention.Cdecl)]
private static extern UInt32 BltFirmwareLoadFromFile(String firmwareFile, UInt32 addressOffset);
/// <summary>
/// Loads firmware data from the specified file using the firmware file parser
/// that was specified during the initialization of this module.
/// </summary>
/// <param name="firmwareFile">Filename of the firmware file to load.</param>
/// <param name="addressOffset">
/// Optional memory address offset to add when loading the firmware data from
/// the file.This is typically only useful when loading firmware data from a
/// binary formatted firmware file.
/// </param>
/// <returns>RESULT_OK if successful, RESULT_ERROR_xxx otherwise.</returns>
/// <example>
/// <code>
/// if (OpenBLT.Lib.Firmware.LoadFromFile("demoprog.srec", 0) != OpenBLT.Lib.RESULT_OK)
/// {
/// Console.WriteLine("Could not load the firmware file.");
/// }
/// </code>
/// </example>
public static UInt32 LoadFromFile(String firmwareFile, UInt32 addressOffset)
{
return BltFirmwareLoadFromFile(firmwareFile, addressOffset);
}
[DllImport(LIBNAME, CharSet = CharSet.Ansi, CallingConvention = CallingConvention.Cdecl)]
private static extern UInt32 BltFirmwareSaveToFile(String firmwareFile);
/// <summary>
/// Writes firmware data to the specified file using the firmware file parser
/// that was specified during the initialization of this module.
/// </summary>
/// <param name="firmwareFile">Filename of the firmware file to write to.</param>
/// <returns>RESULT_OK if successful, RESULT_ERROR_xxx otherwise.</returns>
/// <example>
/// <code>
/// if (OpenBLT.Lib.Firmware.SaveToFile("myfirmware.srec") != OpenBLT.Lib.RESULT_OK)
/// {
/// Console.WriteLine("Could not save the firmware file.");
/// }
/// </code>
/// </example>
public static UInt32 SaveToFile(String firmwareFile)
{
return BltFirmwareSaveToFile(firmwareFile);
}
[DllImport(LIBNAME, CharSet = CharSet.Ansi, CallingConvention = CallingConvention.Cdecl)]
private static extern UInt32 BltFirmwareGetSegmentCount();
/// <summary>
/// Obtains the number of firmware data segments that are currently present
/// in the firmware data module.
/// </summary>
/// <returns>The total number of segments.</returns>
/// <example>
/// <code>
/// UInt32 segmentCount = OpenBLT.Lib.Firmware.GetSegmentCount();
/// Console.WriteLine("Number of segments: {0}", segmentCount);
/// </code>
/// </example>
public static UInt32 GetSegmentCount()
{
return BltFirmwareGetSegmentCount();
}
[DllImport(LIBNAME, CharSet = CharSet.Ansi, CallingConvention = CallingConvention.Cdecl)]
private static extern IntPtr BltFirmwareGetSegment(UInt32 idx, out UInt32 address, out UInt32 len);
/// <summary>
/// Obtains the contents of the firmware data segment that was specified by
/// the index parameter.
/// </summary>
/// <param name="idx">
/// The segment index. It should be a value greater or equal to zero and
/// smaller than the value returned by GetSegmentCount().
/// </param>
/// <returns>Tuple with segment data and base address.</returns>
/// <example>
/// <code>
/// var segment = OpenBLT.Lib.Firmware.GetSegment(0);
/// Console.WriteLine("Base address: {0:X}h", segment.address);
/// Console.WriteLine("Length: {0}", segment.data.Length);
/// Console.WriteLine("First data: {0:X2}h {1:X2}h {2:X2}h", segment.data[0], segment.data[1], segment.data[2]);
/// </code>
/// </example>
public static (byte[] data, UInt32 address) GetSegment(UInt32 idx)
{
byte[] data = new byte[0];
UInt32 address = 0;
UInt32 len;
IntPtr dataPtr;
// Obtain the segment info.
dataPtr = BltFirmwareGetSegment(idx, out address, out len);
// Note that the DLL function returns a 32-bit unsigned. It is subsequently
// used in functions where it is assumed to be 32-bit signed. A segments will
// never be larger than the 32-bit signed maximum value, so that will work
// fine. Still good to double-check though.
Debug.Assert(len <= Int32.MaxValue);
// Only continue if the returned data pointer is not a NULL pointer and when
// the segment has a non-zero length.
if ((dataPtr != IntPtr.Zero) && (len > 0) && (len <= Int32.MaxValue))
{
// Resize the array such that it can store all bytes from the segment.
Array.Resize(ref data, (Int32)len);
// Copy the segment data to the resulting data array.
Marshal.Copy(dataPtr, data, 0, (Int32)len);
}
// Give the result back to the caller.
return (data, address);
}
[DllImport(LIBNAME, CharSet = CharSet.Ansi, CallingConvention = CallingConvention.Cdecl)]
private static extern UInt32 BltFirmwareAddData(UInt32 address, UInt32 len, IntPtr data);
/// <summary>
/// Adds data to the segments that are currently present in the firmware data
/// module.If the data overlaps with already existing data, the existing data
/// gets overwritten.The size of a segment is automatically adjusted or a new
/// segment gets created, if necessary.
/// </summary>
/// <param name="address">Base address of the firmware data.</param>
/// <param name="data">Array with data bytes that should be added.</param>
/// <returns>RESULT_OK if successful, RESULT_ERROR_xxx otherwise.</returns>
/// <example>
/// <code>
/// byte[] newData = new byte[] { 0, 1, 2, 3, 4, 5, 6, 7 };
/// OpenBLT.Lib.Firmware.AddData(0x08100000, newData);
/// </code>
/// </example>
public static UInt32 AddData(UInt32 address, byte[] data)
{
UInt32 result = RESULT_ERROR_GENERIC;
// Determine data size.
Int32 dataSize = Marshal.SizeOf(data[0]) * data.Length;
// Allocate memory on the heap for storing the data in unmanaged memory.
IntPtr dataPtr = Marshal.AllocHGlobal(dataSize);
// Only continue if the allocation was successful.
if (dataPtr != IntPtr.Zero)
{
// Copy the data to unmanaged memory.
Marshal.Copy(data, 0, dataPtr, data.Length);
// Add the data to the already loaded firmware data.
result = BltFirmwareAddData(address, (UInt32)data.Length, dataPtr);
// Free the unmanaged memory.
Marshal.FreeHGlobal(dataPtr);
}
// Give the result back to the caller.
return result;
}
[DllImport(LIBNAME, CharSet = CharSet.Ansi, CallingConvention = CallingConvention.Cdecl)]
private static extern UInt32 BltFirmwareRemoveData(UInt32 address, UInt32 len);
/// <summary>
/// Removes data from the segments that are currently present in the firmware
/// data module.The size of a segment is automatically adjusted or removed, if
/// necessary.
/// </summary>
/// <param name="address">Base address of the firmware data.</param>
/// <param name="len">Number of bytes to remove.</param>
/// <returns>RESULT_OK if successful, RESULT_ERROR_xxx otherwise.</returns>
/// <example>
/// <code>
/// OpenBLT.Lib.Firmware.RemoveData(0x08100000, 8);
/// </code>
/// </example>
public static UInt32 RemoveData(UInt32 address, UInt32 len)
{
return BltFirmwareRemoveData(address, len);
}
[DllImport(LIBNAME, CharSet = CharSet.Ansi, CallingConvention = CallingConvention.Cdecl)]
private static extern void BltFirmwareClearData();
/// <summary>
/// Clears all data and segments that are currently present in the firmware
/// data module.
/// </summary>
/// <example>
/// <code>
/// OpenBLT.Lib.Firmware.ClearData();
/// </code>
/// </example>
public static void ClearData()
{
BltFirmwareClearData();
}
}
/// <summary>
/// Wrapper for the utility module of LibOpenBLT.
/// </summary>
public static class Util
{
/// <summary>
/// Wrapper for the CRC utilities of LibOpenBLT.
/// </summary>
public static class Crc
{
[DllImport(LIBNAME, CharSet = CharSet.Ansi, CallingConvention = CallingConvention.Cdecl)]
private static extern UInt16 BltUtilCrc16Calculate(IntPtr data, UInt32 len);
/// <summary>
/// Calculates a 16-bit CRC value over the specified data.
/// </summary>
/// <param name="data">Array with bytes over which the CRC16 should be calculated.</param>
/// <returns>The 16-bit CRC value.</returns>
/// <example>
/// <code>
/// byte[] crcData = new byte[] { 0x55, 0xAA, 0x00, 0xFF };
/// UInt16 crc16 = OpenBLT.Lib.Util.Crc.Calculate16(crcData);
/// </code>
/// </example>
public static UInt16 Calculate16(byte[] data)
{
UInt16 result = 0;
// Determine data size.
Int32 dataSize = Marshal.SizeOf(data[0]) * data.Length;
// Allocate memory on the heap for storing the data in unmanaged memory.
IntPtr dataPtr = Marshal.AllocHGlobal(dataSize);
// Only continue if the allocation was successful.
if (dataPtr != IntPtr.Zero)
{
// Copy the data to unmanaged memory.
Marshal.Copy(data, 0, dataPtr, data.Length);
// Calculate the CRC16 over the data.
result = BltUtilCrc16Calculate(dataPtr, (UInt32)data.Length);
// Free the unmanaged memory.
Marshal.FreeHGlobal(dataPtr);
}
// Give the result back to the caller.
return result;
}
[DllImport(LIBNAME, CharSet = CharSet.Ansi, CallingConvention = CallingConvention.Cdecl)]
private static extern UInt32 BltUtilCrc32Calculate(IntPtr data, UInt32 len);
/// <summary>
/// Calculates a 32-bit CRC value over the specified data.
/// </summary>
/// <param name="data">Array with bytes over which the CRC32 should be calculated.</param>
/// <returns>The 32-bit CRC value.</returns>
/// <example>
/// <code>
/// byte[] crcData = new byte[] { 0x55, 0xAA, 0x00, 0xFF };
/// UInt32 crc32 = OpenBLT.Lib.Util.Crc.Calculate32(crcData);
/// </code>
/// </example>
public static UInt32 Calculate32(byte[] data)
{
UInt32 result = 0;
// Determine data size.
Int32 dataSize = Marshal.SizeOf(data[0]) * data.Length;
// Allocate memory on the heap for storing the data in unmanaged memory.
IntPtr dataPtr = Marshal.AllocHGlobal(dataSize);
// Only continue if the allocation was successful.
if (dataPtr != IntPtr.Zero)
{
// Copy the data to unmanaged memory.
Marshal.Copy(data, 0, dataPtr, data.Length);
// Calculate the CRC32 over the data.
result = BltUtilCrc32Calculate(dataPtr, (UInt32)data.Length);
// Free the unmanaged memory.
Marshal.FreeHGlobal(dataPtr);
}
// Give the result back to the caller.
return result;
}
}
/// <summary>
/// Wrapper for the time utilities of LibOpenBLT.
/// </summary>
public static class Time
{
[DllImport(LIBNAME, CharSet = CharSet.Ansi, CallingConvention = CallingConvention.Cdecl)]
private static extern Int32 BltUtilTimeGetSystemTime();
/// <summary>
/// Get the system time in milliseconds.
/// </summary>
/// <returns>
/// Time in milliseconds.
/// </returns>
/// <example>
/// <code>
/// Console.WriteLine("Current system time: {0}", OpenBLT.Lib.Util.Time.GetSystemTime());
/// </code>
/// </example>
public static Int32 GetSystemTime()
{
return BltUtilTimeGetSystemTime();
}
[DllImport(LIBNAME, CharSet = CharSet.Ansi, CallingConvention = CallingConvention.Cdecl)]
private static extern void BltUtilTimeDelayMs(UInt16 delay);
/// <summary>
/// Performs a delay of the specified amount of milliseconds.
/// </summary>
/// <param name="delay">Delay time in milliseconds.</param>
/// <example>
/// <code>
/// OpenBLT.Lib.Util.Time.DelayMs(1000);
/// </code>
/// </example>
public static void DelayMs(UInt16 delay)
{
BltUtilTimeDelayMs(delay);
}
}
/// <summary>
/// Wrapper for the cryptography utilities of LibOpenBLT.
/// </summary>
public static class Crypto
{
/// <summary>
/// Wrapper for the AES256 cryptography utilities of LibOpenBLT.
/// </summary>
public static class Aes256
{
[DllImport(LIBNAME, CharSet = CharSet.Ansi, CallingConvention = CallingConvention.Cdecl)]
private static extern UInt32 BltUtilCryptoAes256Encrypt(IntPtr data, UInt32 len, IntPtr key);
/// <summary>
/// Encrypts the bytes in the specified data-array, using the specified
/// 256-bit (32 bytes) key.The results are written back into the same array.
/// </summary>
/// <remarks>
/// The number of bytes in the data-array must be a multiple of 16, as this
/// is the AES256 minimal block size.
/// </remarks>
/// <param name="data">
/// Byte array with data to encrypt. The encrypted bytes are stored in the
/// same array.
/// </param>
/// <param name="key">The 256-bit encryption key as a array of 32 bytes.</param>
/// <returns>RESULT_OK if successful, RESULT_ERROR_xxx otherwise.</returns>
/// <example>
/// <code>
/// byte[] cryptoKey = new byte[]
/// {
/// 0x83, 0x23, 0x44, 0x28, 0x47, 0x2B, 0x4B, 0x62,
/// 0x50, 0x65, 0x53, 0x68, 0x56, 0x6D, 0x59, 0x71,
/// 0x33, 0x74, 0x36, 0x77, 0x39, 0x7A, 0x24, 0x43,
/// 0x26, 0x46, 0x29, 0x48, 0x40, 0x4D, 0x69, 0x39
/// };
///
/// byte[] originalData = new byte[]
/// {
/// 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
/// 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
/// 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
/// 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F
/// };
///
/// OpenBLT.Lib.Util.Crypto.Aes256.Encrypt(originalData, cryptoKey);
/// </code>
/// </example>
public static UInt32 Encrypt(byte[] data, byte[] key)
{
UInt32 result = RESULT_ERROR_GENERIC;
// Determine data and key size.
Int32 dataSize = Marshal.SizeOf(data[0]) * data.Length;
Int32 keySize = Marshal.SizeOf(key[0]) * key.Length;
// Only continue if the key has at least 32 bytes (256-bit key).
if (keySize >= 32)
{
// Allocate memory on the heap for storing the data and key in unmanaged memory.
IntPtr dataPtr = Marshal.AllocHGlobal(dataSize);
IntPtr keyPtr = Marshal.AllocHGlobal(keySize);
// Only continue if the allocation was successful.
if ((dataPtr != IntPtr.Zero) && (keyPtr != IntPtr.Zero))
{
// Copy the data and key to unmanaged memory.
Marshal.Copy(data, 0, dataPtr, data.Length);
Marshal.Copy(key, 0, keyPtr, key.Length);
// Encrypt the data using the key. Note that the encrypted data overwrites
// the data in unmanaged memory.
result = BltUtilCryptoAes256Encrypt(dataPtr, (UInt32)dataSize, keyPtr);
// Copy encrypted data in unmanaged memory back to the data array.
Marshal.Copy(dataPtr, data, 0, dataSize);
// Free the unmanaged memory.
Marshal.FreeHGlobal(dataPtr);
Marshal.FreeHGlobal(keyPtr);
}
}
// Give the result back to the caller.
return result;
}
[DllImport(LIBNAME, CharSet = CharSet.Ansi, CallingConvention = CallingConvention.Cdecl)]
private static extern UInt32 BltUtilCryptoAes256Decrypt(IntPtr data, UInt32 len, IntPtr key);
/// <summary>
/// Decrypts the bytes in the specified data-array, using the specified
/// 256-bit (32 bytes) key.The results are written back into the same array.
/// </summary>
/// <remarks>
/// The number of bytes in the data-array must be a multiple of 16, as this
/// is the AES256 minimal block size.
/// </remarks>
/// <param name="data">
/// Byte array with data to decrypt. The decrypted bytes are stored in the
/// same array.
/// </param>
/// <param name="key">The 256-bit decryption key as a array of 32 bytes.</param>
/// <returns>RESULT_OK if successful, RESULT_ERROR_xxx otherwise.</returns>
/// <example>
/// <code>
/// byte[] cryptoKey = new byte[]
/// {
/// 0x83, 0x23, 0x44, 0x28, 0x47, 0x2B, 0x4B, 0x62,
/// 0x50, 0x65, 0x53, 0x68, 0x56, 0x6D, 0x59, 0x71,
/// 0x33, 0x74, 0x36, 0x77, 0x39, 0x7A, 0x24, 0x43,
/// 0x26, 0x46, 0x29, 0x48, 0x40, 0x4D, 0x69, 0x39
/// };
///
/// byte[] encryptedData = new byte[]
/// {
/// 0x43, 0x34, 0xd1, 0x54, 0xa2, 0xf0, 0x48, 0x76,
/// 0x0e, 0x30, 0xf8, 0xa0, 0x92, 0x4f, 0xbc, 0xce,
/// 0x06, 0x9c, 0x29, 0xf7, 0x24, 0x58, 0x79, 0x4e,
/// 0x94, 0xeb, 0xd0, 0x35, 0xfd, 0xae, 0xf9, 0x88
/// };
///
/// OpenBLT.Lib.Util.Crypto.Aes256.Decrypt(encryptedData, cryptoKey);
/// </code>
/// </example>
public static UInt32 Decrypt(byte[] data, byte[] key)
{
UInt32 result = RESULT_ERROR_GENERIC;
// Determine data and key size.
Int32 dataSize = Marshal.SizeOf(data[0]) * data.Length;
Int32 keySize = Marshal.SizeOf(key[0]) * key.Length;
// Only continue if the key has at least 32 bytes (256-bit key).
if (keySize >= 32)
{
// Allocate memory on the heap for storing the data and key in unmanaged memory.
IntPtr dataPtr = Marshal.AllocHGlobal(dataSize);
IntPtr keyPtr = Marshal.AllocHGlobal(keySize);
// Only continue if the allocation was successful.
if ((dataPtr != IntPtr.Zero) && (keyPtr != IntPtr.Zero))
{
// Copy the data and key to unmanaged memory.
Marshal.Copy(data, 0, dataPtr, data.Length);
Marshal.Copy(key, 0, keyPtr, key.Length);
// Decrypt the data using the key. Note that the decrypted data overwrites
// the data in unmanaged memory.
result = BltUtilCryptoAes256Decrypt(dataPtr, (UInt32)dataSize, keyPtr);
// Copy Decrypted data in unmanaged memory back to the data array.
Marshal.Copy(dataPtr, data, 0, dataSize);
// Free the unmanaged memory.
Marshal.FreeHGlobal(dataPtr);
Marshal.FreeHGlobal(keyPtr);
}
}
// Give the result back to the caller.
return result;
}
}
}
}
}
}