Refs #369. Added AES256 cryptography utility functions to LibOpenBLT.

git-svn-id: https://svn.code.sf.net/p/openblt/code/trunk@331 5dc33758-31d5-4daf-9ae8-b24bf3d40d73
This commit is contained in:
Frank Voorburg 2017-08-15 13:41:51 +00:00
parent e5e12e3210
commit a671200261
7 changed files with 598 additions and 0 deletions

400
Host/Source/LibOpenBLT/aes256.c Executable file
View File

@ -0,0 +1,400 @@
/*
* Byte-oriented AES-256 implementation.
* All lookup tables replaced with 'on the fly' calculations.
*
* Copyright (c) 2007-2011 Ilya O. Levin, http://www.literatecode.com
* Other contributors: Hal Finney
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <stdint.h> /* for standard integer types */
#include "aes256.h"
#define FD(x) (((x) >> 1) ^ (((x) & 1) ? 0x8d : 0))
#define BACK_TO_TABLES
static uint8_t rj_xtime(uint8_t);
static void aes_subBytes(uint8_t *);
static void aes_subBytes_inv(uint8_t *);
static void aes_addRoundKey(uint8_t *, uint8_t const *);
static void aes_addRoundKey_cpy(uint8_t *, uint8_t const *, uint8_t *);
static void aes_shiftRows(uint8_t *);
static void aes_shiftRows_inv(uint8_t *);
static void aes_mixColumns(uint8_t *);
static void aes_mixColumns_inv(uint8_t *);
static void aes_expandEncKey(uint8_t *, uint8_t *);
static void aes_expandDecKey(uint8_t *, uint8_t *);
#ifndef BACK_TO_TABLES
static uint8_t gf_alog(uint8_t);
static uint8_t gf_log(uint8_t);
static uint8_t gf_mulinv(uint8_t);
static uint8_t rj_sbox(uint8_t);
static uint8_t rj_sbox_inv(uint8_t);
#endif
#ifdef BACK_TO_TABLES
static const uint8_t sbox[256] =
{
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
};
static const uint8_t sboxinv[256] =
{
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38,
0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87,
0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d,
0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2,
0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16,
0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,
0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a,
0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02,
0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea,
0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85,
0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89,
0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20,
0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31,
0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d,
0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0,
0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26,
0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
};
#define rj_sbox(x) sbox[(x)]
#define rj_sbox_inv(x) sboxinv[(x)]
#else /* tableless subroutines */
/* -------------------------------------------------------------------------- */
static uint8_t gf_alog(uint8_t x) // calculate anti-logarithm gen 3
{
uint8_t y = 1, i;
for (i = 0; i < x; i++) y ^= rj_xtime(y);
return y;
} /* gf_alog */
/* -------------------------------------------------------------------------- */
static uint8_t gf_log(uint8_t x) // calculate logarithm gen 3
{
uint8_t y, i = 0;
if (x)
for (i = 1, y = 1; i > 0; i++ )
{
y ^= rj_xtime(y);
if (y == x) break;
}
return i;
} /* gf_log */
/* -------------------------------------------------------------------------- */
static uint8_t gf_mulinv(uint8_t x) // calculate multiplicative inverse
{
return (x) ? gf_alog(255 - gf_log(x)) : 0;
} /* gf_mulinv */
/* -------------------------------------------------------------------------- */
static uint8_t rj_sbox(uint8_t x)
{
uint8_t y, sb;
sb = y = gf_mulinv(x);
y = (uint8_t)(y << 1) | (y >> 7), sb ^= y;
y = (uint8_t)(y << 1) | (y >> 7), sb ^= y;
y = (uint8_t)(y << 1) | (y >> 7), sb ^= y;
y = (uint8_t)(y << 1) | (y >> 7), sb ^= y;
return (sb ^ 0x63);
} /* rj_sbox */
/* -------------------------------------------------------------------------- */
static uint8_t rj_sbox_inv(uint8_t x)
{
uint8_t y, sb;
y = x ^ 0x63;
sb = y = (uint8_t)(y << 1) | (y >> 7);
y = (uint8_t)(y << 2) | (y >> 6);
sb ^= y;
y = (uint8_t)(y << 3) | (y >> 5);
sb ^= y;
return gf_mulinv(sb);
} /* rj_sbox_inv */
#endif
/* -------------------------------------------------------------------------- */
static uint8_t rj_xtime(uint8_t x)
{
uint8_t y = (uint8_t)(x << 1);
return (x & 0x80) ? (y ^ 0x1b) : y;
} /* rj_xtime */
/* -------------------------------------------------------------------------- */
static void aes_subBytes(uint8_t *buf)
{
register uint8_t i = 16;
while (i--) buf[i] = rj_sbox(buf[i]);
} /* aes_subBytes */
/* -------------------------------------------------------------------------- */
static void aes_subBytes_inv(uint8_t *buf)
{
register uint8_t i = 16;
while (i--) buf[i] = rj_sbox_inv(buf[i]);
} /* aes_subBytes_inv */
/* -------------------------------------------------------------------------- */
static void aes_addRoundKey(uint8_t *buf, uint8_t const *key)
{
register uint8_t i = 16;
while (i--) buf[i] ^= key[i];
} /* aes_addRoundKey */
/* -------------------------------------------------------------------------- */
static void aes_addRoundKey_cpy(uint8_t *buf, uint8_t const *key, uint8_t *cpk)
{
register uint8_t i = 16;
while (i--) buf[i] ^= (cpk[i] = key[i]), cpk[16 + i] = key[16 + i]; /*lint !e687 */
} /* aes_addRoundKey_cpy */
/* -------------------------------------------------------------------------- */
static void aes_shiftRows(uint8_t *buf)
{
register uint8_t i, j; /* to make it potentially parallelable :) */
i = buf[1], buf[1] = buf[5], buf[5] = buf[9], buf[9] = buf[13], buf[13] = i;
i = buf[10], buf[10] = buf[2], buf[2] = i;
j = buf[3], buf[3] = buf[15], buf[15] = buf[11], buf[11] = buf[7], buf[7] = j;
j = buf[14], buf[14] = buf[6], buf[6] = j;
} /* aes_shiftRows */
/* -------------------------------------------------------------------------- */
static void aes_shiftRows_inv(uint8_t *buf)
{
register uint8_t i, j; /* same as above :) */
i = buf[1], buf[1] = buf[13], buf[13] = buf[9], buf[9] = buf[5], buf[5] = i;
i = buf[2], buf[2] = buf[10], buf[10] = i;
j = buf[3], buf[3] = buf[7], buf[7] = buf[11], buf[11] = buf[15], buf[15] = j;
j = buf[6], buf[6] = buf[14], buf[14] = j;
} /* aes_shiftRows_inv */
/* -------------------------------------------------------------------------- */
static void aes_mixColumns(uint8_t *buf)
{
register uint8_t i, a, b, c, d, e;
for (i = 0; i < 16; i += 4)
{
a = buf[i];
b = buf[i + 1];
c = buf[i + 2];
d = buf[i + 3];
e = a ^ b ^ c ^ d;
buf[i] ^= e ^ rj_xtime(a ^ b);
buf[i + 1] ^= e ^ rj_xtime(b ^ c);
buf[i + 2] ^= e ^ rj_xtime(c ^ d);
buf[i + 3] ^= e ^ rj_xtime(d ^ a);
}
} /* aes_mixColumns */
/* -------------------------------------------------------------------------- */
static void aes_mixColumns_inv(uint8_t *buf)
{
register uint8_t i, a, b, c, d, e, x, y, z;
for (i = 0; i < 16; i += 4)
{
a = buf[i];
b = buf[i + 1];
c = buf[i + 2];
d = buf[i + 3];
e = a ^ b ^ c ^ d;
z = rj_xtime(e);
x = e ^ rj_xtime(rj_xtime(z ^ a ^ c));
y = e ^ rj_xtime(rj_xtime(z ^ b ^ d));
buf[i] ^= x ^ rj_xtime(a ^ b);
buf[i + 1] ^= y ^ rj_xtime(b ^ c);
buf[i + 2] ^= x ^ rj_xtime(c ^ d);
buf[i + 3] ^= y ^ rj_xtime(d ^ a);
}
} /* aes_mixColumns_inv */
/* -------------------------------------------------------------------------- */
static void aes_expandEncKey(uint8_t *k, uint8_t *rc)
{
register uint8_t i;
k[0] ^= rj_sbox(k[29]) ^ (*rc);
k[1] ^= rj_sbox(k[30]);
k[2] ^= rj_sbox(k[31]);
k[3] ^= rj_sbox(k[28]);
*rc = rj_xtime( *rc);
for(i = 4; i < 16; i += 4) k[i] ^= k[i - 4], k[i + 1] ^= k[i - 3],
k[i + 2] ^= k[i - 2], k[i + 3] ^= k[i - 1]; /*lint !e687 */
k[16] ^= rj_sbox(k[12]);
k[17] ^= rj_sbox(k[13]);
k[18] ^= rj_sbox(k[14]);
k[19] ^= rj_sbox(k[15]);
for(i = 20; i < 32; i += 4) k[i] ^= k[i - 4], k[i + 1] ^= k[i - 3],
k[i + 2] ^= k[i - 2], k[i + 3] ^= k[i - 1]; /*lint !e687 */
} /* aes_expandEncKey */
/* -------------------------------------------------------------------------- */
static void aes_expandDecKey(uint8_t *k, uint8_t *rc)
{
uint8_t i;
for(i = 28; i > 16; i -= 4) k[i] ^= k[i - 4], k[i + 1] ^= k[i - 3],
k[i + 2] ^= k[i - 2], k[i + 3] ^= k[i - 1]; /*lint !e687 */
k[16] ^= rj_sbox(k[12]);
k[17] ^= rj_sbox(k[13]);
k[18] ^= rj_sbox(k[14]);
k[19] ^= rj_sbox(k[15]);
for(i = 12; i > 0; i -= 4) k[i] ^= k[i - 4], k[i + 1] ^= k[i - 3],
k[i + 2] ^= k[i - 2], k[i + 3] ^= k[i - 1]; /*lint !e687 */
*rc = FD(*rc);
k[0] ^= rj_sbox(k[29]) ^ (*rc);
k[1] ^= rj_sbox(k[30]);
k[2] ^= rj_sbox(k[31]);
k[3] ^= rj_sbox(k[28]);
} /* aes_expandDecKey */
/* -------------------------------------------------------------------------- */
void aes256_init(aes256_context *ctx, uint8_t const *k)
{
uint8_t rcon = 1;
register uint8_t i;
for (i = 0; i < sizeof(ctx->key); i++) ctx->enckey[i] = ctx->deckey[i] = k[i];
for (i = 8; --i;) aes_expandEncKey(ctx->deckey, &rcon);
} /* aes256_init */
/* -------------------------------------------------------------------------- */
void aes256_done(aes256_context *ctx)
{
register uint8_t i;
for (i = 0; i < sizeof(ctx->key); i++)
ctx->key[i] = ctx->enckey[i] = ctx->deckey[i] = 0;
} /* aes256_done */
/* -------------------------------------------------------------------------- */
void aes256_encrypt_ecb(aes256_context *ctx, uint8_t *buf)
{
uint8_t i, rcon;
aes_addRoundKey_cpy(buf, ctx->enckey, ctx->key);
for(i = 1, rcon = 1; i < 14; ++i)
{
aes_subBytes(buf);
aes_shiftRows(buf);
aes_mixColumns(buf);
if( i & 1 ) aes_addRoundKey( buf, &ctx->key[16]);
else aes_expandEncKey(ctx->key, &rcon), aes_addRoundKey(buf, ctx->key); /*lint !e687 */
}
aes_subBytes(buf);
aes_shiftRows(buf);
aes_expandEncKey(ctx->key, &rcon);
aes_addRoundKey(buf, ctx->key);
} /* aes256_encrypt */
/* -------------------------------------------------------------------------- */
void aes256_decrypt_ecb(aes256_context *ctx, uint8_t *buf)
{
uint8_t i, rcon;
aes_addRoundKey_cpy(buf, ctx->deckey, ctx->key);
aes_shiftRows_inv(buf);
aes_subBytes_inv(buf);
for (i = 14, rcon = 0x80; --i;)
{
if( ( i & 1 ) )
{
aes_expandDecKey(ctx->key, &rcon);
aes_addRoundKey(buf, &ctx->key[16]);
}
else aes_addRoundKey(buf, ctx->key);
aes_mixColumns_inv(buf);
aes_shiftRows_inv(buf);
aes_subBytes_inv(buf);
}
aes_addRoundKey( buf, ctx->key);
} /* aes256_decrypt */

39
Host/Source/LibOpenBLT/aes256.h Executable file
View File

@ -0,0 +1,39 @@
/*
* Byte-oriented AES-256 implementation.
* All lookup tables replaced with 'on the fly' calculations.
*
* Copyright (c) 2007-2009 Ilya O. Levin, http://www.literatecode.com
* Other contributors: Hal Finney
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#ifdef __cplusplus
extern "C" {
#endif
typedef struct {
uint8_t key[32];
uint8_t enckey[32];
uint8_t deckey[32];
} aes256_context;
void aes256_init(aes256_context *, uint8_t const * /* key */);
void aes256_done(aes256_context *);
void aes256_encrypt_ecb(aes256_context *, uint8_t * /* plaintext */);
void aes256_decrypt_ecb(aes256_context *, uint8_t * /* cipertext */);
#ifdef __cplusplus
}
#endif

View File

@ -647,6 +647,74 @@ LIBOPENBLT_EXPORT void BltUtilTimeDelayMs(uint16_t delay)
} /*** end of BltUtilTimeDelayMs ***/
/************************************************************************************//**
** \brief Encrypts the len-bytes in the specified data-array, using the specified
** 256-bit (32 bytes) key. The results are written back into the same array.
** \param data Pointer to the byte array with data to encrypt. The encrypted bytes
** are stored in the same array.
** \param len The number of bytes in the data-array to encrypt. It must be a multiple
** of 16, as this is the AES256 minimal block size.
** \param key The 256-bit encryption key as a array of 32 bytes.
** \return BLT_RESULT_OK if successful, BLT_RESULT_ERROR_xxx otherwise.
**
****************************************************************************************/
LIBOPENBLT_EXPORT uint32_t BltUtilCryptoAes256Encrypt(uint8_t * data, uint32_t len,
uint8_t const * key)
{
uint32_t result = BLT_RESULT_ERROR_GENERIC;
/* Check parameters */
assert(data != NULL);
assert(key != NULL);
/* Only continue with valid parameters. Also add a block size check for 'len'. */
if ( (data != NULL) && (key != NULL) && ((len % 16u) == 0) ) /*lint !e774 */
{
/* Pass the request on to the utility module. */
if (UtilCryptoAes256Encrypt(data, len, key))
{
result = BLT_RESULT_OK;
}
}
/* Give the result back to the caller. */
return result;
} /*** end of BltUtilCryptoAes256Encrypt ***/
/************************************************************************************//**
** \brief Decrypts the len-bytes in the specified data-array, using the specified 256-
** bit (32 bytes) key. The results are written back into the same array.
** \param data Pointer to the byte array with data to decrypt. The decrypted bytes
** are stored in the same array.
** \param len The number of bytes in the data-array to decrypt. It must be a multiple
** of 16, as this is the AES256 minimal block size.
** \param key The 256-bit decryption key as a array of 32 bytes.
** \return BLT_RESULT_OK if successful, BLT_RESULT_ERROR_xxx otherwise.
**
****************************************************************************************/
LIBOPENBLT_EXPORT uint32_t BltUtilCryptoAes256Decrypt(uint8_t * data, uint32_t len,
uint8_t const * key)
{
uint32_t result = BLT_RESULT_ERROR_GENERIC;
/* Check parameters */
assert(data != NULL);
assert(key != NULL);
/* Only continue with valid parameters. Also add a block size check for 'len'. */
if ( (data != NULL) && (key != NULL) && ((len % 16u) == 0) ) /*lint !e774 */
{
/* Pass the request on to the utility module. */
if (UtilCryptoAes256Decrypt(data, len, key))
{
result = BLT_RESULT_OK;
}
}
/* Give the result back to the caller. */
return result;
} /*** end of BltUtilCryptoAes256Decrypt ***/
/*********************************** end of openblt.c **********************************/

View File

@ -213,6 +213,10 @@ LIBOPENBLT_EXPORT uint16_t BltUtilCrc16Calculate(uint8_t const * data, uint32_t
LIBOPENBLT_EXPORT uint32_t BltUtilCrc32Calculate(uint8_t const * data, uint32_t len);
LIBOPENBLT_EXPORT uint32_t BltUtilTimeGetSystemTime(void);
LIBOPENBLT_EXPORT void BltUtilTimeDelayMs(uint16_t delay);
LIBOPENBLT_EXPORT uint32_t BltUtilCryptoAes256Encrypt(uint8_t * data, uint32_t len,
uint8_t const * key);
LIBOPENBLT_EXPORT uint32_t BltUtilCryptoAes256Decrypt(uint8_t * data, uint32_t len,
uint8_t const * key);
#ifdef __cplusplus

View File

@ -162,6 +162,10 @@ function BltUtilCrc32Calculate(data: PByte; len: LongWord): LongWord;
cdecl; external LIBOPENBLT_LIBNAME;
function BltUtilTimeGetSystemTime: LongWord; cdecl; external LIBOPENBLT_LIBNAME;
procedure BltUtilTimeDelayMs(delay: Word); cdecl; external LIBOPENBLT_LIBNAME;
function BltUtilCryptoAes256Encrypt(data: PByte; len: LongWord; key: PByte): LongWord;
cdecl; external LIBOPENBLT_LIBNAME;
function BltUtilCryptoAes256Decrypt(data: PByte; len: LongWord; key: PByte): LongWord;
cdecl; external LIBOPENBLT_LIBNAME;
implementation

View File

@ -35,6 +35,7 @@
#include <stdbool.h> /* for boolean type */
#include <string.h> /* for string library */
#include "util.h" /* Utility module */
#include "aes256.h" /* for AES256 cryptography. */
/****************************************************************************************
@ -252,6 +253,86 @@ bool UtilFileExtractFilename(char const * fullFilename, char * filenameBuffer)
} /*** end of UtilFileExtractFilename ***/
/************************************************************************************//**
** \brief Encrypts the len-bytes in the specified data-array, using the specified
** 256-bit (32 bytes) key. The results are written back into the same array.
** \param data Pointer to the byte array with data to encrypt. The encrypted bytes
** are stored in the same array.
** \param len The number of bytes in the data-array to encrypt. It must be a multiple
** of 16, as this is the AES256 minimal block size.
** \param key The 256-bit encryption key as a array of 32 bytes.
** \return True if successful, false otherwise.
**
****************************************************************************************/
bool UtilCryptoAes256Encrypt(uint8_t * data, uint32_t len, uint8_t const * key)
{
bool result = false;
aes256_context ctx;
/* Check parameters */
assert(data != NULL);
assert(key != NULL);
/* Only continue with valid parameters. Also add a block size check for 'len'. */
if ( (data != NULL) && (key != NULL) && ((len % 16u) == 0) ) /*lint !e774 */
{
/* Init context */
aes256_init(&ctx, key);
/* Encrypt in blocks of 16 bytes. */
for (uint32_t i = 0; i < (len / 16u); i++)
{
aes256_encrypt_ecb(&ctx, &data[i * 16u]);
}
/* Cleanup */
aes256_done(&ctx);
/* Set positive result. */
result = true;
}
/* Give the result back to the caller. */
return result;
} /*** end of UtilCryptoAes256Encrypt ***/
/************************************************************************************//**
** \brief Decrypts the len-bytes in the specified data-array, using the specified 256-
** bit (32 bytes) key. The results are written back into the same array.
** \param data Pointer to the byte array with data to decrypt. The decrypted bytes
** are stored in the same array.
** \param len The number of bytes in the data-array to decrypt. It must be a multiple
** of 16, as this is the AES256 minimal block size.
** \param key The 256-bit decryption key as a array of 32 bytes.
** \return True if successful, false otherwise.
**
****************************************************************************************/
bool UtilCryptoAes256Decrypt(uint8_t * data, uint32_t len, uint8_t const * key)
{
bool result = false;
aes256_context ctx;
/* Check parameters */
assert(data != NULL);
assert(key != NULL);
/* Only continue with valid parameters. Also add a block size check for 'len'. */
if ( (data != NULL) && (key != NULL) && ((len % 16u) == 0) ) /*lint !e774 */
{
/* Init context */
aes256_init(&ctx, key);
/* Decrypt in blocks of 16 bytes. */
for (uint32_t i = 0; i < (len / 16u); i++)
{
aes256_decrypt_ecb(&ctx, &data[i * 16u]);
}
/* Cleanup */
aes256_done(&ctx);
/* Set positive result. */
result = true;
}
/* Give the result back to the caller. */
return result;
} /*** end of UtilCryptoAes256Decrypt ***/
/*********************************** end of util.c *************************************/

View File

@ -53,6 +53,8 @@ void UtilCriticalSectionInit(void);
void UtilCriticalSectionTerminate(void);
void UtilCriticalSectionEnter(void);
void UtilCriticalSectionExit(void);
bool UtilCryptoAes256Encrypt(uint8_t * data, uint32_t len, uint8_t const * key);
bool UtilCryptoAes256Decrypt(uint8_t * data, uint32_t len, uint8_t const * key);
#ifdef __cplusplus