/************************************************************************************//** * \file Source/ARMCM33_STM32L5/can.c * \brief Bootloader CAN communication interface source file. * \ingroup Target_ARMCM33_STM32L5 * \internal *---------------------------------------------------------------------------------------- * C O P Y R I G H T *---------------------------------------------------------------------------------------- * Copyright (c) 2021 by Feaser http://www.feaser.com All rights reserved * *---------------------------------------------------------------------------------------- * L I C E N S E *---------------------------------------------------------------------------------------- * This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or * modify it under the terms of the GNU General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any later * version. * * OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You have received a copy of the GNU General Public License along with OpenBLT. It * should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy. * * \endinternal ****************************************************************************************/ /**************************************************************************************** * Include files ****************************************************************************************/ #include "boot.h" /* bootloader generic header */ #if (BOOT_COM_CAN_ENABLE > 0) #include "stm32l5xx.h" /* STM32 CPU and HAL header */ #include "stm32l5xx_ll_rcc.h" /* STM32 LL RCC header */ /**************************************************************************************** * Macro definitions ****************************************************************************************/ /** \brief Timeout for transmitting a CAN message in milliseconds. */ #define CAN_MSG_TX_TIMEOUT_MS (50u) /* map the configured CAN channel index to the STM32's CAN peripheral */ #if (BOOT_COM_CAN_CHANNEL_INDEX == 0) /** \brief Set CAN base address to CAN1. */ #define CAN_CHANNEL FDCAN1 #elif (BOOT_COM_CAN_CHANNEL_INDEX == 1) /** \brief Set CAN base address to CAN2. */ #define CAN_CHANNEL FDCAN2 #endif /**************************************************************************************** * Type definitions ****************************************************************************************/ /** \brief Structure type for grouping CAN bus timing related information. */ typedef struct t_can_bus_timing { blt_int8u tseg1; /**< CAN time segment 1 */ blt_int8u tseg2; /**< CAN time segment 2 */ } tCanBusTiming; /**************************************************************************************** * Local constant declarations ****************************************************************************************/ /** \brief CAN bittiming table for dynamically calculating the bittiming settings. * \details According to the CAN protocol 1 bit-time can be made up of between 8..25 * time quanta (TQ). The total TQ in a bit is SYNC + TSEG1 + TSEG2 with SYNC * always being 1. The sample point is (SYNC + TSEG1) / (SYNC + TSEG1 + SEG2) * * 100%. This array contains possible and valid time quanta configurations with * a sample point between 68..78%. */ static const tCanBusTiming canTiming[] = { /* TQ | TSEG1 | TSEG2 | SP */ /* ------------------------- */ { 5, 2 }, /* 8 | 5 | 2 | 75% */ { 6, 2 }, /* 9 | 6 | 2 | 78% */ { 6, 3 }, /* 10 | 6 | 3 | 70% */ { 7, 3 }, /* 11 | 7 | 3 | 73% */ { 8, 3 }, /* 12 | 8 | 3 | 75% */ { 9, 3 }, /* 13 | 9 | 3 | 77% */ { 9, 4 }, /* 14 | 9 | 4 | 71% */ { 10, 4 }, /* 15 | 10 | 4 | 73% */ { 11, 4 }, /* 16 | 11 | 4 | 75% */ { 12, 4 }, /* 17 | 12 | 4 | 76% */ { 12, 5 }, /* 18 | 12 | 5 | 72% */ { 13, 5 }, /* 19 | 13 | 5 | 74% */ { 14, 5 }, /* 20 | 14 | 5 | 75% */ { 15, 5 }, /* 21 | 15 | 5 | 76% */ { 15, 6 }, /* 22 | 15 | 6 | 73% */ { 16, 6 }, /* 23 | 16 | 6 | 74% */ { 16, 7 }, /* 24 | 16 | 7 | 71% */ { 16, 8 } /* 25 | 16 | 8 | 68% */ }; /**************************************************************************************** * Local data declarations ****************************************************************************************/ /** \brief CAN handle to be used in API calls. */ static FDCAN_HandleTypeDef canHandle; /************************************************************************************//** ** \brief Search algorithm to match the desired baudrate to a possible bus ** timing configuration. ** \param baud The desired baudrate in kbps. Valid values are 10..1000. ** \param prescaler Pointer to where the value for the prescaler will be stored. ** \param tseg1 Pointer to where the value for TSEG2 will be stored. ** \param tseg2 Pointer to where the value for TSEG2 will be stored. ** \return BLT_TRUE if the CAN bustiming register values were found, BLT_FALSE ** otherwise. ** ****************************************************************************************/ static blt_bool CanGetSpeedConfig(blt_int16u baud, blt_int16u *prescaler, blt_int8u *tseg1, blt_int8u *tseg2) { blt_int8u cnt; blt_int32u canClockFreqkHz; /* set the clock source for the CAN peripheral to the PLL */ LL_RCC_SetFDCANClockSource(LL_RCC_FDCAN_CLKSOURCE_PLL); /* obtain the CAN peripheral clock frequency in kHz. it's the PLLQ clock */ canClockFreqkHz = LL_RCC_GetFDCANClockFreq(LL_RCC_FDCAN_CLKSOURCE) / 1000u; /* the CAN peripheral clock should not be higher than 48 MHz. so only continue if * this is the case. when too high, increase the Q divider in the clock configuration * to get to a PLLQ frequency that is below 48 MHz. A multiple of 8 MHz for the * PLLQ frequency gives the best support for most commonly CAN baudrates. */ if (canClockFreqkHz <= 48000u) { /* loop through all possible time quanta configurations to find a match */ for (cnt=0; cnt < sizeof(canTiming)/sizeof(canTiming[0]); cnt++) { if ((canClockFreqkHz % (baud*(canTiming[cnt].tseg1+canTiming[cnt].tseg2+1))) == 0) { /* compute the prescaler that goes with this TQ configuration */ *prescaler = canClockFreqkHz/(baud*(canTiming[cnt].tseg1+canTiming[cnt].tseg2+1)); /* make sure the prescaler is valid */ if ((*prescaler > 0) && (*prescaler <= 512)) { /* store the bustiming configuration */ *tseg1 = canTiming[cnt].tseg1; *tseg2 = canTiming[cnt].tseg2; /* found a good bus timing configuration */ return BLT_TRUE; } } } } /* could not find a good bus timing configuration */ return BLT_FALSE; } /*** end of CanGetSpeedConfig ***/ /************************************************************************************//** ** \brief Initializes the CAN controller and synchronizes it to the CAN bus. ** \return none. ** ****************************************************************************************/ void CanInit(void) { blt_int16u prescaler = 0; blt_int8u tseg1 = 0, tseg2 = 0; blt_int32u rxMsgId = BOOT_COM_CAN_RX_MSG_ID; FDCAN_FilterTypeDef filterConfig; /* the current implementation supports CAN1 and 2. throw an assertion error in case a * different CAN channel is configured. */ ASSERT_CT((BOOT_COM_CAN_CHANNEL_INDEX == 0 || BOOT_COM_CAN_CHANNEL_INDEX == 1)); /* obtain bittiming configuration information. */ if (CanGetSpeedConfig(BOOT_COM_CAN_BAUDRATE/1000, &prescaler, &tseg1, &tseg2) == BLT_FALSE) { /* Incorrect configuration. The specified baudrate is not supported for the given * clock configuration. Verify the following settings in blt_conf.h: * - BOOT_COM_CAN_BAUDRATE * - BOOT_CPU_XTAL_SPEED_KHZ * - BOOT_CPU_SYSTEM_SPEED_KHZ */ ASSERT_RT(BLT_FALSE); } /* set the CAN controller configuration. */ canHandle.Instance = CAN_CHANNEL; canHandle.Init.FrameFormat = FDCAN_FRAME_CLASSIC; canHandle.Init.Mode = FDCAN_MODE_NORMAL; canHandle.Init.AutoRetransmission = ENABLE; canHandle.Init.TransmitPause = DISABLE; canHandle.Init.ProtocolException = DISABLE; canHandle.Init.NominalPrescaler = prescaler; canHandle.Init.NominalSyncJumpWidth = 1; canHandle.Init.NominalTimeSeg1 = tseg1; canHandle.Init.NominalTimeSeg2 = tseg2; /* FD mode is not used by this driver, so the .Init.DataXxx values are don't care. */ canHandle.Init.DataPrescaler = 1; canHandle.Init.DataSyncJumpWidth = 1; canHandle.Init.DataTimeSeg1 = 1; canHandle.Init.DataTimeSeg2 = 1; /* does the message to be received have a standard 11-bit CAN identifier? */ if ((rxMsgId & 0x80000000) == 0) { canHandle.Init.StdFiltersNbr = 1; canHandle.Init.ExtFiltersNbr = 0; } else { canHandle.Init.StdFiltersNbr = 0; canHandle.Init.ExtFiltersNbr = 1; } canHandle.Init.TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION; /* initialize the CAN controller. this only fails if the CAN controller hardware is * faulty. no need to evaluate the return value as there is nothing we can do about * a faulty CAN controller. */ (void)HAL_FDCAN_Init(&canHandle); /* configure the reception filter. note that the implementation of this function * always returns HAL_OK as long as the CAN controller is initialized, so no need to * evaluate the return value. */ if ((rxMsgId & 0x80000000) == 0) { filterConfig.IdType = FDCAN_STANDARD_ID; } else { filterConfig.IdType = FDCAN_EXTENDED_ID; /* negate the ID-type bit */ rxMsgId &= ~0x80000000; } filterConfig.FilterIndex = 0; filterConfig.FilterType = FDCAN_FILTER_DUAL; filterConfig.FilterConfig = FDCAN_FILTER_TO_RXFIFO0; filterConfig.FilterID1 = rxMsgId; filterConfig.FilterID2 = rxMsgId; (void)HAL_FDCAN_ConfigFilter(&canHandle, &filterConfig); /* configure global filter to reject all non-matching frames. */ HAL_FDCAN_ConfigGlobalFilter(&canHandle, FDCAN_REJECT, FDCAN_REJECT, FDCAN_REJECT_REMOTE, FDCAN_REJECT_REMOTE); /* start the CAN peripheral. no need to evaluate the return value as there is nothing * we can do about a faulty CAN controller. */ (void)HAL_FDCAN_Start(&canHandle); } /*** end of CanInit ***/ /************************************************************************************//** ** \brief Transmits a packet formatted for the communication interface. ** \param data Pointer to byte array with data that it to be transmitted. ** \param len Number of bytes that are to be transmitted. ** \return none. ** ****************************************************************************************/ void CanTransmitPacket(blt_int8u *data, blt_int8u len) { blt_int32u txMsgId = BOOT_COM_CAN_TX_MSG_ID; FDCAN_TxHeaderTypeDef txMsgHeader; blt_int32u timeout; HAL_StatusTypeDef status; blt_int32u txMsgBuffer; /* configure the message that should be transmitted. */ if ((txMsgId & 0x80000000) == 0) { /* set the 11-bit CAN identifier. */ txMsgHeader.Identifier = txMsgId; txMsgHeader.IdType = FDCAN_STANDARD_ID; } else { /* negate the ID-type bit. */ txMsgId &= ~0x80000000; /* set the 29-bit CAN identifier. */ txMsgHeader.Identifier = txMsgId; txMsgHeader.IdType = FDCAN_EXTENDED_ID; } txMsgHeader.TxFrameType = FDCAN_DATA_FRAME; txMsgHeader.DataLength = len << 16U; txMsgHeader.ErrorStateIndicator = FDCAN_ESI_ACTIVE; txMsgHeader.BitRateSwitch = FDCAN_BRS_OFF; txMsgHeader.FDFormat = FDCAN_CLASSIC_CAN; txMsgHeader.TxEventFifoControl = FDCAN_NO_TX_EVENTS; txMsgHeader.MessageMarker = 0x52; /* add the message to the transmit FIFO to request its transmission. */ status = HAL_FDCAN_AddMessageToTxFifoQ(&canHandle, &txMsgHeader, data); /* read out which FIFO buffer was used for the last transmit request. */ txMsgBuffer = HAL_FDCAN_GetLatestTxFifoQRequestBuffer(&canHandle); /* only continue with polling for transmit completion if the message transmit request * could be submitted to a valid FIFO buffer. */ if ((status == HAL_OK) && (txMsgBuffer != 0)) { /* determine timeout time for the transmit completion. */ timeout = TimerGet() + CAN_MSG_TX_TIMEOUT_MS; /* poll for completion of the transmit operation. */ while (HAL_FDCAN_IsTxBufferMessagePending(&canHandle, txMsgBuffer) != 0) { /* service the watchdog. */ CopService(); /* break loop upon timeout. this would indicate a hardware failure or no other * nodes connected to the bus. */ if (TimerGet() > timeout) { break; } } } } /*** end of CanTransmitPacket ***/ /************************************************************************************//** ** \brief Receives a communication interface packet if one is present. ** \param data Pointer to byte array where the data is to be stored. ** \param len Pointer where the length of the packet is to be stored. ** \return BLT_TRUE is a packet was received, BLT_FALSE otherwise. ** ****************************************************************************************/ blt_bool CanReceivePacket(blt_int8u *data, blt_int8u *len) { blt_bool result = BLT_FALSE; blt_int32u rxMsgId = BOOT_COM_CAN_RX_MSG_ID; FDCAN_RxHeaderTypeDef rxMsgHeader; HAL_StatusTypeDef rxStatus = HAL_ERROR; /* check if the expected CAN message was received? */ if (HAL_FDCAN_GetRxFifoFillLevel(&canHandle, FDCAN_RX_FIFO0) > 0) { /* attempt to read the newly received CAN message from its buffer. */ rxStatus = HAL_FDCAN_GetRxMessage(&canHandle, FDCAN_RX_FIFO0, &rxMsgHeader, data); } /* only continue processing the CAN message if something was received. */ if (rxStatus == HAL_OK) { /* check if this message has the configured CAN packet identifier. */ if ((rxMsgId & 0x80000000) == 0) { /* was an 11-bit CAN message received that matches? */ if ( (rxMsgHeader.Identifier == rxMsgId) && (rxMsgHeader.IdType == FDCAN_STANDARD_ID) ) { /* set flag that a packet with a matching CAN identifier was received. */ result = BLT_TRUE; } } else { /* negate the ID-type bit. */ rxMsgId &= ~0x80000000; /* was an 29-bit CAN message received that matches? */ if ( (rxMsgHeader.Identifier == rxMsgId) && (rxMsgHeader.IdType == FDCAN_EXTENDED_ID) ) { /* set flag that a packet with a matching CAN identifier was received. */ result = BLT_TRUE; } } /* store the data length. */ if (result == BLT_TRUE) { *len = (blt_int8u)(rxMsgHeader.DataLength >> 16U); } } /* give the result back to the caller. */ return result; } /*** end of CanReceivePacket ***/ #endif /* BOOT_COM_CAN_ENABLE > 0 */ /*********************************** end of can.c **************************************/