/************************************************************************************//** * \file Source/ARMCM4_STM32L4/flash.c * \brief Bootloader flash driver source file. * \ingroup Target_ARMCM4_STM32L4 * \internal *---------------------------------------------------------------------------------------- * C O P Y R I G H T *---------------------------------------------------------------------------------------- * Copyright (c) 2018 by Feaser http://www.feaser.com All rights reserved * *---------------------------------------------------------------------------------------- * L I C E N S E *---------------------------------------------------------------------------------------- * This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or * modify it under the terms of the GNU General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any later * version. * * OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You have received a copy of the GNU General Public License along with OpenBLT. It * should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy. * * \endinternal ****************************************************************************************/ /**************************************************************************************** * Include files ****************************************************************************************/ #include "boot.h" /* bootloader generic header */ #include "stm32l4xx.h" /* STM32 CPU and HAL header */ /**************************************************************************************** * Macro definitions ****************************************************************************************/ /** \brief Value for an invalid flash address. */ #define FLASH_INVALID_ADDRESS (0xffffffff) /** \brief Standard size of a flash block for writing. */ #define FLASH_WRITE_BLOCK_SIZE (512) /** \brief Standard size of a flash sector for erasing. */ #define FLASH_ERASE_SECTOR_SIZE (2048) /** \brief Total numbers of segments in array flashLayout[]. */ #define FLASH_TOTAL_SEGMENTS (sizeof(flashLayout)/sizeof(flashLayout[0])) /** \brief Index of the last segment in array flashLayout[]. */ #define FLASH_LAST_SEGMENT_IDX (FLASH_TOTAL_SEGMENTS-1) /** \brief Start address of the bootloader programmable flash. */ #define FLASH_START_ADDRESS (flashLayout[0].sector_start) /** \brief End address of the bootloader programmable flash. */ #define FLASH_END_ADDRESS (flashLayout[FLASH_LAST_SEGMENT_IDX].sector_start + \ flashLayout[FLASH_LAST_SEGMENT_IDX].sector_size - 1) /** \brief Offset into the user program's vector table where the checksum is located. * For this target it is set to the end of the vector table. Note that the * value can be overriden in blt_conf.h, because the size of the vector table * could vary. When changing this value, don't forget to update the location * of the checksum in the user program accordingly. Otherwise the checksum * verification will always fail. */ #ifndef BOOT_FLASH_VECTOR_TABLE_CS_OFFSET #define BOOT_FLASH_VECTOR_TABLE_CS_OFFSET (0x188) #endif /**************************************************************************************** * Plausibility checks ****************************************************************************************/ #if (BOOT_FLASH_VECTOR_TABLE_CS_OFFSET >= FLASH_WRITE_BLOCK_SIZE) #error "BOOT_FLASH_VECTOR_TABLE_CS_OFFSET is set too high. It must be located in the first writable block." #endif #ifndef BOOT_FLASH_CUSTOM_LAYOUT_ENABLE #define BOOT_FLASH_CUSTOM_LAYOUT_ENABLE (0u) #endif /**************************************************************************************** * Type definitions ****************************************************************************************/ /** \brief Flash sector descriptor type. */ typedef struct { blt_addr sector_start; /**< sector start address */ blt_int32u sector_size; /**< sector size in bytes */ } tFlashSector; /** \brief Structure type for grouping flash block information. * \details Programming is done per block of max FLASH_WRITE_BLOCK_SIZE. for this a * flash block manager is implemented in this driver. this flash block manager * depends on this flash block info structure. It holds the base address of * the flash block and the data that should be programmed into the flash * block. The .base_addr must be a multiple of FLASH_WRITE_BLOCK_SIZE. */ typedef struct { blt_addr base_addr; blt_int8u data[FLASH_WRITE_BLOCK_SIZE]; } tFlashBlockInfo; /**************************************************************************************** * Hook functions ****************************************************************************************/ #if (BOOT_FLASH_CRYPTO_HOOKS_ENABLE > 0) extern blt_bool FlashCryptoDecryptDataHook(blt_addr address, blt_int8u * data, blt_int32u size); #endif /**************************************************************************************** * Function prototypes ****************************************************************************************/ static blt_bool FlashInitBlock(tFlashBlockInfo *block, blt_addr address); static tFlashBlockInfo *FlashSwitchBlock(tFlashBlockInfo *block, blt_addr base_addr); static blt_bool FlashAddToBlock(tFlashBlockInfo *block, blt_addr address, blt_int8u *data, blt_int32u len); static blt_bool FlashWriteBlock(tFlashBlockInfo *block); static blt_int32u FlashGetPage(blt_addr address); static blt_int32u FlashGetBank(blt_addr address); /**************************************************************************************** * Local constant declarations ****************************************************************************************/ /** \brief If desired, it is possible to set BOOT_FLASH_CUSTOM_LAYOUT_ENABLE to > 0 * in blt_conf.h and then implement your own version of the flashLayout[] table * in a source-file with the name flash_layout.c. This way you customize the * flash memory size reserved for the bootloader, without having to modify * the flashLayout[] table in this file directly. This file will then include * flash_layout.c so there is no need to compile it additionally with your * project. */ #if (BOOT_FLASH_CUSTOM_LAYOUT_ENABLE == 0) /** \brief Array wit the layout of the flash memory. Note that the current flash driver * supports the STM32L4x1, STM32L4x5 and STM32L4x6 derivatives in the STM32L4 * family of microcontrollers. * \details Also controls what part of the flash memory is reserved for the bootloader. * If the bootloader size changes, the reserved sectors for the bootloader * might need adjustment to make sure the bootloader doesn't get overwritten. */ static const tFlashSector flashLayout[] = { /* space is reserved for a bootloader configuration with all supported communication * interfaces enabled. when for example only UART is needed, then the space required * for the bootloader can be made a lot smaller here. */ /* { 0x08000000, 0x00800 }, flash sector 0 - 2kb (reserved for bootloader)*/ /* { 0x08000800, 0x00800 }, flash sector 1 - 2kb (reserved for bootloader)*/ /* { 0x08001000, 0x00800 }, flash sector 2 - 2kb (reserved for bootloader)*/ /* { 0x08001800, 0x00800 }, flash sector 3 - 2kb (reserved for bootloader)*/ /* { 0x08002000, 0x00800 }, flash sector 4 - 2kb (reserved for bootloader)*/ { 0x08002800, 0x00800 }, /* flash sector 5 - 2kb */ { 0x08003000, 0x00800 }, /* flash sector 6 - 2kb */ { 0x08003800, 0x00800 }, /* flash sector 7 - 2kb */ { 0x08004000, 0x00800 }, /* flash sector 8 - 2kb */ { 0x08004800, 0x00800 }, /* flash sector 9 - 2kb */ { 0x08005000, 0x00800 }, /* flash sector 10 - 2kb */ { 0x08005800, 0x00800 }, /* flash sector 11 - 2kb */ { 0x08006000, 0x00800 }, /* flash sector 12 - 2kb */ { 0x08006800, 0x00800 }, /* flash sector 13 - 2kb */ { 0x08007000, 0x00800 }, /* flash sector 14 - 2kb */ { 0x08007800, 0x00800 }, /* flash sector 15 - 2kb */ { 0x08008000, 0x00800 }, /* flash sector 16 - 2kb */ { 0x08008800, 0x00800 }, /* flash sector 17 - 2kb */ { 0x08009000, 0x00800 }, /* flash sector 18 - 2kb */ { 0x08009800, 0x00800 }, /* flash sector 19 - 2kb */ { 0x0800A000, 0x00800 }, /* flash sector 20 - 2kb */ { 0x0800A800, 0x00800 }, /* flash sector 21 - 2kb */ { 0x0800B000, 0x00800 }, /* flash sector 22 - 2kb */ { 0x0800B800, 0x00800 }, /* flash sector 23 - 2kb */ { 0x0800C000, 0x00800 }, /* flash sector 24 - 2kb */ { 0x0800C800, 0x00800 }, /* flash sector 25 - 2kb */ { 0x0800D000, 0x00800 }, /* flash sector 26 - 2kb */ { 0x0800D800, 0x00800 }, /* flash sector 27 - 2kb */ { 0x0800E000, 0x00800 }, /* flash sector 28 - 2kb */ { 0x0800E800, 0x00800 }, /* flash sector 29 - 2kb */ { 0x0800F000, 0x00800 }, /* flash sector 30 - 2kb */ { 0x0800F800, 0x00800 }, /* flash sector 31 - 2kb */ { 0x08010000, 0x08000 }, /* flash sectors 32 to 47 - 32kb */ { 0x08018000, 0x08000 }, /* flash sectors 48 to 63 - 32kb */ { 0x08020000, 0x08000 }, /* flash sectors 64 to 79 - 32kb */ { 0x08028000, 0x08000 }, /* flash sectors 80 to 95 - 32kb */ { 0x08030000, 0x08000 }, /* flash sectors 96 to 111 - 32kb */ { 0x08038000, 0x08000 }, /* flash sectors 112 to 127 - 32kb */ #if (BOOT_NVM_SIZE_KB > 256) { 0x08040000, 0x08000 }, /* flash sectors 128 to 143 - 32kb */ { 0x08048000, 0x08000 }, /* flash sectors 144 to 159 - 32kb */ { 0x08050000, 0x08000 }, /* flash sectors 160 to 175 - 32kb */ { 0x08058000, 0x08000 }, /* flash sectors 176 to 191 - 32kb */ { 0x08060000, 0x08000 }, /* flash sectors 192 to 207 - 32kb */ { 0x08068000, 0x08000 }, /* flash sectors 208 to 223 - 32kb */ { 0x08070000, 0x08000 }, /* flash sectors 224 to 239 - 32kb */ { 0x08078000, 0x08000 }, /* flash sectors 240 to 255 - 32kb */ #endif #if (BOOT_NVM_SIZE_KB > 512) { 0x08080000, 0x08000 }, /* flash sectors 256 to 271 - 32kb */ { 0x08088000, 0x08000 }, /* flash sectors 272 to 287 - 32kb */ { 0x08090000, 0x08000 }, /* flash sectors 288 to 303 - 32kb */ { 0x08098000, 0x08000 }, /* flash sectors 304 to 319 - 32kb */ { 0x080A0000, 0x08000 }, /* flash sectors 320 to 335 - 32kb */ { 0x080A8000, 0x08000 }, /* flash sectors 336 to 351 - 32kb */ { 0x080B0000, 0x08000 }, /* flash sectors 352 to 367 - 32kb */ { 0x080B8000, 0x08000 }, /* flash sectors 368 to 383 - 32kb */ { 0x080C0000, 0x08000 }, /* flash sectors 384 to 399 - 32kb */ { 0x080C8000, 0x08000 }, /* flash sectors 400 to 415 - 32kb */ { 0x080D0000, 0x08000 }, /* flash sectors 416 to 431 - 32kb */ { 0x080D8000, 0x08000 }, /* flash sectors 432 to 447 - 32kb */ { 0x080E0000, 0x08000 }, /* flash sectors 448 to 463 - 32kb */ { 0x080E8000, 0x08000 }, /* flash sectors 464 to 479 - 32kb */ { 0x080F0000, 0x08000 }, /* flash sectors 480 to 495 - 32kb */ { 0x080F8000, 0x08000 }, /* flash sectors 496 to 511 - 32kb */ #endif #if (BOOT_NVM_SIZE_KB > 1024) #error "BOOT_NVM_SIZE_KB > 1024 is currently not supported." #endif }; #else #include "flash_layout.c" #endif /* BOOT_FLASH_CUSTOM_LAYOUT_ENABLE == 0 */ /**************************************************************************************** * Local data declarations ****************************************************************************************/ /** \brief Local variable with information about the flash block that is currently * being operated on. * \details The smallest amount of flash that can be programmed is * FLASH_WRITE_BLOCK_SIZE. A flash block manager is implemented in this driver * and stores info in this variable. Whenever new data should be flashed, it * is first added to a RAM buffer, which is part of this variable. Whenever * the RAM buffer, which has the size of a flash block, is full or data needs * to be written to a different block, the contents of the RAM buffer are * programmed to flash. The flash block manager requires some software * overhead, yet results is faster flash programming because data is first * harvested, ideally until there is enough to program an entire flash block, * before the flash device is actually operated on. */ static tFlashBlockInfo blockInfo; /** \brief Local variable with information about the flash boot block. * \details The first block of the user program holds the vector table, which on the * STM32 is also the where the checksum is written to. Is it likely that * the vector table is first flashed and then, at the end of the programming * sequence, the checksum. This means that this flash block need to be written * to twice. Normally this is not a problem with flash memory, as long as you * write the same values to those bytes that are not supposed to be changed * and the locations where you do write to are still in the erased 0xFF state. * Unfortunately, writing twice to flash this way, does not work reliably on * all micros. This is why we need to have an extra block, the bootblock, * placed under the management of the block manager. This way is it possible * to implement functionality so that the bootblock is only written to once * at the end of the programming sequence. */ static tFlashBlockInfo bootBlockInfo; /************************************************************************************//** ** \brief Initializes the flash driver. ** \return none. ** ****************************************************************************************/ void FlashInit(void) { /* init the flash block info structs by setting the address to an invalid address */ blockInfo.base_addr = FLASH_INVALID_ADDRESS; bootBlockInfo.base_addr = FLASH_INVALID_ADDRESS; } /*** end of FlashInit ***/ /************************************************************************************//** ** \brief Reinitializes the flash driver. ** \return none. ** ****************************************************************************************/ void FlashReinit(void) { /* init the flash block info structs by setting the address to an invalid address */ blockInfo.base_addr = FLASH_INVALID_ADDRESS; bootBlockInfo.base_addr = FLASH_INVALID_ADDRESS; } /*** end of FlashReinit ***/ /************************************************************************************//** ** \brief Writes the data to flash through a flash block manager. Note that this ** function also checks that no data is programmed outside the flash ** memory region, so the bootloader can never be overwritten. ** \param addr Start address. ** \param len Length in bytes. ** \param data Pointer to the data buffer. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ blt_bool FlashWrite(blt_addr addr, blt_int32u len, blt_int8u *data) { blt_addr base_addr; /* validate the len parameter */ if ((len - 1) > (FLASH_END_ADDRESS - addr)) { return BLT_FALSE; } /* make sure the addresses are within the flash device */ if ((addr < FLASH_START_ADDRESS) || ((addr+len-1) > FLASH_END_ADDRESS)) { return BLT_FALSE; } /* if this is the bootblock, then let the boot block manager handle it */ base_addr = (addr/FLASH_WRITE_BLOCK_SIZE)*FLASH_WRITE_BLOCK_SIZE; if (base_addr == flashLayout[0].sector_start) { /* let the boot block manager handle it */ return FlashAddToBlock(&bootBlockInfo, addr, data, len); } /* let the block manager handle it */ return FlashAddToBlock(&blockInfo, addr, data, len); } /*** end of FlashWrite ***/ /************************************************************************************//** ** \brief Erases the flash memory. Note that this function also checks that no ** data is erased outside the flash memory region, so the bootloader can ** never be erased. Note that the term sector used by this flash driver is ** equivalent to the term page in the STM32L4x reference manual. ** \param addr Start address. ** \param len Length in bytes. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ blt_bool FlashErase(blt_addr addr, blt_int32u len) { blt_addr erase_base_addr; blt_addr erase_current_addr; blt_int32u total_erase_len; blt_int16u nr_of_erase_sectors; blt_bool result = BLT_TRUE; blt_int16u sector_cnt; blt_int32u dummy; FLASH_EraseInitTypeDef eraseInitStruct; /* validate the len parameter */ if ((len - 1) > (FLASH_END_ADDRESS - addr)) { return BLT_FALSE; } /* determine the base address for the erase operation, by aligning to * FLASH_ERASE_SECTOR_SIZE. */ erase_base_addr = (addr/FLASH_ERASE_SECTOR_SIZE)*FLASH_ERASE_SECTOR_SIZE; /* make sure the addresses are within the flash device */ if ((erase_base_addr < FLASH_START_ADDRESS) || ((addr+len-1) > FLASH_END_ADDRESS)) { return BLT_FALSE; } /* determine number of bytes to erase from base address */ total_erase_len = len + (addr - erase_base_addr); /* determine the number of sectors to erase */ nr_of_erase_sectors = (blt_int16u)(total_erase_len / FLASH_ERASE_SECTOR_SIZE); if ((total_erase_len % FLASH_ERASE_SECTOR_SIZE) > 0) { nr_of_erase_sectors++; } /* unlock access to the flash device */ HAL_FLASH_Unlock(); /* clear OPTVERR bit set on virgin samples */ __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_OPTVERR); /* prepare erase init structure */ eraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES; eraseInitStruct.NbPages = 1; /* erase all sectors one by one */ for (sector_cnt=0; sector_cnt 0) /* perform decryption of the bootblock, before calculating the checksum and writing it * to flash memory. */ if (FlashCryptoDecryptDataHook(bootBlockInfo.base_addr, bootBlockInfo.data, FLASH_WRITE_BLOCK_SIZE) == BLT_FALSE) { return BLT_FALSE; } #endif /* compute the checksum. note that the user program's vectors are not yet written * to flash but are present in the bootblock data structure at this point. */ signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x00])); signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x04])); signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x08])); signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x0C])); signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x10])); signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x14])); signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x18])); signature_checksum = ~signature_checksum; /* one's complement */ signature_checksum += 1; /* two's complement */ /* write the checksum */ return FlashWrite(flashLayout[0].sector_start+BOOT_FLASH_VECTOR_TABLE_CS_OFFSET, sizeof(blt_addr), (blt_int8u *)&signature_checksum); } /*** end of FlashWriteChecksum ***/ /************************************************************************************//** ** \brief Verifies the checksum, which indicates that a valid user program is ** present and can be started. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ blt_bool FlashVerifyChecksum(void) { blt_int32u signature_checksum = 0; /* verify the checksum based on how it was written by CpuWriteChecksum() */ signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start)); signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x04)); signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x08)); signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x0C)); signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x10)); signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x14)); signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x18)); signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+BOOT_FLASH_VECTOR_TABLE_CS_OFFSET)); /* sum should add up to an unsigned 32-bit value of 0 */ if (signature_checksum == 0) { /* checksum okay */ return BLT_TRUE; } /* checksum incorrect */ return BLT_FALSE; } /*** end of FlashVerifyChecksum ***/ /************************************************************************************//** ** \brief Finalizes the flash driver operations. There could still be data in ** the currently active block that needs to be flashed. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ blt_bool FlashDone(void) { /* check if there is still data waiting to be programmed in the boot block */ if (bootBlockInfo.base_addr != FLASH_INVALID_ADDRESS) { if (FlashWriteBlock(&bootBlockInfo) == BLT_FALSE) { return BLT_FALSE; } } /* check if there is still data waiting to be programmed */ if (blockInfo.base_addr != FLASH_INVALID_ADDRESS) { if (FlashWriteBlock(&blockInfo) == BLT_FALSE) { return BLT_FALSE; } } /* still here so all is okay */ return BLT_TRUE; } /*** end of FlashDone ***/ /************************************************************************************//** ** \brief Obtains the base address of the flash memory available to the user program. ** This is basically the first address in the flashLayout table. ** \return Base address. ** ****************************************************************************************/ blt_addr FlashGetUserProgBaseAddress(void) { return flashLayout[0].sector_start; } /*** end of FlashGetUserProgBaseAddress ***/ /************************************************************************************//** ** \brief Copies data currently in flash to the block->data and sets the ** base address. ** \param block Pointer to flash block info structure to operate on. ** \param address Base address of the block data. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ static blt_bool FlashInitBlock(tFlashBlockInfo *block, blt_addr address) { /* check address alignment */ if ((address % FLASH_WRITE_BLOCK_SIZE) != 0) { return BLT_FALSE; } /* make sure that we are initializing a new block and not the same one */ if (block->base_addr == address) { /* block already initialized, so nothing to do */ return BLT_TRUE; } /* set the base address and copies the current data from flash */ block->base_addr = address; CpuMemCopy((blt_addr)block->data, address, FLASH_WRITE_BLOCK_SIZE); return BLT_TRUE; } /*** end of FlashInitBlock ***/ /************************************************************************************//** ** \brief Switches blocks by programming the current one and initializing the ** next. ** \param block Pointer to flash block info structure to operate on. ** \param base_addr Base address of the next block. ** \return The pointer of the block info struct that is no being used, or a NULL ** pointer in case of error. ** ****************************************************************************************/ static tFlashBlockInfo *FlashSwitchBlock(tFlashBlockInfo *block, blt_addr base_addr) { /* check if a switch needs to be made away from the boot block. in this case the boot * block shouldn't be written yet, because this is done at the end of the programming * session by FlashDone(), this is right after the checksum was written. */ if (block == &bootBlockInfo) { /* switch from the boot block to the generic block info structure */ block = &blockInfo; } /* check if a switch back into the bootblock is needed. in this case the generic block * doesn't need to be written here yet. */ else if (base_addr == flashLayout[0].sector_start) { /* switch from the generic block to the boot block info structure */ block = &bootBlockInfo; base_addr = flashLayout[0].sector_start; } else { /* need to switch to a new block, so program the current one and init the next */ if (FlashWriteBlock(block) == BLT_FALSE) { return BLT_NULL; } } /* initialize tne new block when necessary */ if (FlashInitBlock(block, base_addr) == BLT_FALSE) { return BLT_NULL; } /* still here to all is okay */ return block; } /*** end of FlashSwitchBlock ***/ /************************************************************************************//** ** \brief Programming is done per block. This function adds data to the block ** that is currently collecting data to be written to flash. If the ** address is outside of the current block, the current block is written ** to flash an a new block is initialized. ** \param block Pointer to flash block info structure to operate on. ** \param address Flash destination address. ** \param data Pointer to the byte array with data. ** \param len Number of bytes to add to the block. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ static blt_bool FlashAddToBlock(tFlashBlockInfo *block, blt_addr address, blt_int8u *data, blt_int32u len) { blt_addr current_base_addr; blt_int8u *dst; blt_int8u *src; /* determine the current base address */ current_base_addr = (address/FLASH_WRITE_BLOCK_SIZE)*FLASH_WRITE_BLOCK_SIZE; /* make sure the blockInfo is not uninitialized */ if (block->base_addr == FLASH_INVALID_ADDRESS) { /* initialize the blockInfo struct for the current block */ if (FlashInitBlock(block, current_base_addr) == BLT_FALSE) { return BLT_FALSE; } } /* check if the new data fits in the current block */ if (block->base_addr != current_base_addr) { /* need to switch to a new block, so program the current one and init the next */ block = FlashSwitchBlock(block, current_base_addr); if (block == BLT_NULL) { return BLT_FALSE; } } /* add the data to the current block, but check for block overflow */ dst = &(block->data[address - block->base_addr]); src = data; do { /* keep the watchdog happy */ CopService(); /* buffer overflow? */ if ((blt_addr)(dst-&(block->data[0])) >= FLASH_WRITE_BLOCK_SIZE) { /* need to switch to a new block, so program the current one and init the next */ block = FlashSwitchBlock(block, current_base_addr+FLASH_WRITE_BLOCK_SIZE); if (block == BLT_NULL) { return BLT_FALSE; } /* reset destination pointer */ dst = &(block->data[0]); } /* write the data to the buffer */ *dst = *src; /* update pointers */ dst++; src++; /* decrement byte counter */ len--; } while (len > 0); /* still here so all is good */ return BLT_TRUE; } /*** end of FlashAddToBlock ***/ /************************************************************************************//** ** \brief Programs FLASH_WRITE_BLOCK_SIZE bytes to flash from the block->data ** array. ** \param block Pointer to flash block info structure to operate on. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ static blt_bool FlashWriteBlock(tFlashBlockInfo *block) { blt_addr prog_addr; uint64_t prog_data; blt_int32u doubleword_cnt; blt_bool result = BLT_TRUE; #if (BOOT_FLASH_CRYPTO_HOOKS_ENABLE > 0) #if (BOOT_NVM_CHECKSUM_HOOKS_ENABLE == 0) /* note that the bootblock is already decrypted in FlashWriteChecksum(), if the * internal checksum mechanism is used. Therefore don't decrypt it again. */ if (block != &bootBlockInfo) #endif { /* perform decryption of the program data before writing it to flash memory. */ if (FlashCryptoDecryptDataHook(block->base_addr, block->data, FLASH_WRITE_BLOCK_SIZE) == BLT_FALSE) { return BLT_FALSE; } } #endif /* unlock access to the flash device */ HAL_FLASH_Unlock(); /* clear OPTVERR bit set on virgin samples */ __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_OPTVERR); /* program all double words in the block one by one */ for (doubleword_cnt=0; doubleword_cnt<(FLASH_WRITE_BLOCK_SIZE/sizeof(uint64_t)); doubleword_cnt++) { prog_addr = block->base_addr + (doubleword_cnt * sizeof(uint64_t)); prog_data = *(volatile uint64_t *)(&block->data[doubleword_cnt * sizeof(uint64_t)]); /* keep the watchdog happy */ CopService(); /* program the double word */ if (HAL_FLASH_Program(FLASH_TYPEPROGRAM_DOUBLEWORD, prog_addr, prog_data) != HAL_OK) { /* error detected. flag it and stop */ result = BLT_FALSE; break; } /* verify that the written data is actually there */ if (*(volatile uint64_t *)prog_addr != prog_data) { result = BLT_FALSE; break; } } /* lock access to the flash device */ HAL_FLASH_Lock(); /* return the result */ return result; } /*** end of FlashWriteBlock ***/ /************************************************************************************//** ** \brief Gets the page number of the address relative to the bank. ** \param address Address in the flash bank. ** \return The page of the given address: 0..255. ** ****************************************************************************************/ static blt_int32u FlashGetPage(blt_addr address) { blt_int32u page = 0; /* is the address in the first bank? note that this can be either FLASH_BANK_1 or * FLASH_BANK_2, due to the flash swap feature. */ if (address < (FLASH_BASE + FLASH_BANK_SIZE)) { page = (address - FLASH_BASE) / FLASH_PAGE_SIZE; } /* address is in the second bank */ else { page = (address - (FLASH_BASE + FLASH_BANK_SIZE)) / FLASH_PAGE_SIZE; } return page; } /*** end of FlashGetPage ***/ /************************************************************************************//** ** \brief Obtains the bank of the given address. The 1024kb version of the flash ** device contains 2 banks that can be swapped. This feature breaks the link ** between a bank number and flash addresses. This function obtains the ** bank number that is currently at the given address. ** \param address Address in the flash bank. ** \return The flash bank of the given address: FLASH_BANK_1 or FLASH_BANK_2. ** ****************************************************************************************/ static blt_int32u FlashGetBank(blt_addr address) { blt_int32u bank = FLASH_BANK_1; /* multiple banks is only supported on certain STM32L4xx derivatives. */ #if defined (STM32L471xx) || defined (STM32L475xx) || defined (STM32L476xx) || \ defined (STM32L485xx) || defined (STM32L486xx) || defined (STM32L496xx) || \ defined (STM32L4A6xx) || defined (STM32L4R5xx) || defined (STM32L4R7xx) || \ defined (STM32L4R9xx) || defined (STM32L4S5xx) || defined (STM32L4S7xx) || \ defined (STM32L4S9xx) || defined (STM32L4P5xx) /* check flash bank mode selection bit to determine if banks 1 and 2 are swapped */ if (READ_BIT(SYSCFG->MEMRMP, SYSCFG_MEMRMP_FB_MODE) == 0) { /* no bank swap active */ if (address < (FLASH_BASE + FLASH_BANK_SIZE)) { bank = FLASH_BANK_1; } else { bank = FLASH_BANK_2; } } else { /* bank swap active */ if (address < (FLASH_BASE + FLASH_BANK_SIZE)) { bank = FLASH_BANK_2; } else { bank = FLASH_BANK_1; } } #endif return bank; } /*** end of FlashGetBank ***/ /*********************************** end of flash.c ************************************/