/************************************************************************************//** * \file Source/HCS12/can.c * \brief Bootloader CAN communication interface source file. * \ingroup Target_HCS12 * \internal *---------------------------------------------------------------------------------------- * C O P Y R I G H T *---------------------------------------------------------------------------------------- * Copyright (c) 2013 by Feaser http://www.feaser.com All rights reserved * *---------------------------------------------------------------------------------------- * L I C E N S E *---------------------------------------------------------------------------------------- * This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or * modify it under the terms of the GNU General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any later * version. * * OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You have received a copy of the GNU General Public License along with OpenBLT. It * should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy. * * \endinternal ****************************************************************************************/ /**************************************************************************************** * Include files ****************************************************************************************/ #include "boot.h" /* bootloader generic header */ #if (BOOT_COM_CAN_ENABLE > 0) /**************************************************************************************** * Type definitions ****************************************************************************************/ /** \brief Structure type with the layout of a CAN reception message slot. */ typedef volatile struct { volatile blt_int8u idr[4]; /**< identifier register 0..3 */ volatile blt_int8u dsr[8]; /**< data segment register 0..7 */ volatile blt_int8u dlr; /**< data length register */ volatile blt_int8u dummy; /**< unused */ volatile blt_int16u tstamp; /**< timestamp register */ } tCanRxMsgSlot; /** \brief Structure type with the layout of a CAN transmit message slot. */ typedef volatile struct { volatile blt_int8u idr[4]; /**< identifier register 0..3 */ volatile blt_int8u dsr[8]; /**< data segment register 0..7 */ volatile blt_int8u dlr; /**< data length register */ volatile blt_int8u tbpr; /**< transmit buffer priority register */ volatile blt_int16u tstamp; /**< timestamp register */ } tCanTxMsgSlot; /** \brief Structure type with the layout of the CAN related control registers. */ typedef volatile struct { volatile blt_int8u cctl0; /**< control register 0 */ volatile blt_int8u cctl1; /**< control register 1 */ volatile blt_int8u cbtr0; /**< bus timing register 0 */ volatile blt_int8u cbtr1; /**< bus timing register 1 */ volatile blt_int8u crflg; /**< receiver flag register */ volatile blt_int8u crier; /**< receiver interrupt enable register */ volatile blt_int8u ctflg; /**< transmitter flag register */ volatile blt_int8u ctier; /**< transmitter interrupt enable register */ volatile blt_int8u ctarq; /**< transmitter message abort control */ volatile blt_int8u ctaak; /**< transmitter message abort control */ volatile blt_int8u ctbsel; /**< transmit buffer selection */ volatile blt_int8u cidac; /**< identifier acceptance control register */ volatile blt_int8u dummy1[2]; /**< reserved (2) */ volatile blt_int8u crxerr; /**< receive error counter */ volatile blt_int8u ctxerr; /**< transmit error counter */ volatile blt_int8u cidar0; /**< identifier acceptance register 0 */ volatile blt_int8u cidar1; /**< identifier acceptance register 1 */ volatile blt_int8u cidar2; /**< identifier acceptance register 2 */ volatile blt_int8u cidar3; /**< identifier acceptance register 3 */ volatile blt_int8u cidmr0; /**< identifier mask register 0 */ volatile blt_int8u cidmr1; /**< identifier mask register 1 */ volatile blt_int8u cidmr2; /**< identifier mask register 2 */ volatile blt_int8u cidmr3; /**< identifier mask register 3 */ volatile blt_int8u cidar4; /**< identifier acceptance register 4 */ volatile blt_int8u cidar5; /**< identifier acceptance register 5 */ volatile blt_int8u cidar6; /**< identifier acceptance register 6 */ volatile blt_int8u cidar7; /**< identifier acceptance register 7 */ volatile blt_int8u cidmr4; /**< identifier mask register 4 */ volatile blt_int8u cidmr5; /**< identifier mask register 5 */ volatile blt_int8u cidmr6; /**< identifier mask register 6 */ volatile blt_int8u cidmr7; /**< identifier mask register 7 */ volatile tCanRxMsgSlot rxSlot; /**< foreground receive message slot */ volatile tCanTxMsgSlot txSlot; /**< foreground transmit message slot */ } tCanRegs; /** \brief Structure type with the layout of the CAN bus timing registers. */ typedef struct { blt_int8u tseg1; /**< CAN time segment 1 */ blt_int8u tseg2; /**< CAN time segment 2 */ } tCanBusTiming; /**************************************************************************************** * Macro definitions ****************************************************************************************/ /** \brief Timeout for entering/leaving CAN initialization mode in milliseconds. */ #define CAN_INIT_TIMEOUT_MS (250u) /** \brief Timeout for transmitting a CAN message in milliseconds. */ #define CAN_MSG_TX_TIMEOUT_MS (50u) #if (BOOT_COM_CAN_CHANNEL_INDEX == 0) /** \brief Set CAN base address to CAN0. */ #define CAN_REGS_BASE_ADDRESS (0x0140) #elif (BOOT_COM_CAN_CHANNEL_INDEX == 1) /** \brief Set CAN base address to CAN1. */ #define CAN_REGS_BASE_ADDRESS (0x0180) #elif (BOOT_COM_CAN_CHANNEL_INDEX == 2) /** \brief Set CAN base address to CAN2. */ #define CAN_REGS_BASE_ADDRESS (0x01c0) #elif (BOOT_COM_CAN_CHANNEL_INDEX == 3) /** \brief Set CAN base address to CAN3. */ #define CAN_REGS_BASE_ADDRESS (0x0200) #elif (BOOT_COM_CAN_CHANNEL_INDEX == 4) /** \brief Set CAN base address to CAN4. */ #define CAN_REGS_BASE_ADDRESS (0x0280) #endif /** \brief Macro for accessing the CAN related control registers. */ #define CAN ((volatile tCanRegs *)CAN_REGS_BASE_ADDRESS) /** \brief Configures a CAN message id for 29-bit (extended). */ #define EXTIDMASK_BIT (0x80000000) /* macros for conveniently converting standard and extended message identifiers to the * format specified by the MSCAN message slot. */ #define CONVERT_STD_ID_TO_REG0(id) ((blt_int8u)(((blt_int16u)id & 0x07f8) >> 3)) #define CONVERT_STD_ID_TO_REG1(id) ((blt_int8u)(id & 0x07) << 5) #define CONVERT_STD_ID_TO_REG2(id) (0) #define CONVERT_STD_ID_TO_REG3(id) (0) #define CONVERT_EXT_ID_TO_REG0(id) ((blt_int8u)(id >> 21)) #define CONVERT_EXT_ID_TO_REG1(id) ((((blt_int8u)(id >> 15)) & 0x07) | \ (((blt_int8u)(id >> 13)) & 0xe0) | (IDE_BIT)) #define CONVERT_EXT_ID_TO_REG2(id) ((blt_int8u)(((blt_int16u)id & 0x7f80) >> 7)) #define CONVERT_EXT_ID_TO_REG3(id) ((blt_int8u)(id & 0x7f) << 1) /**************************************************************************************** * Register definitions ****************************************************************************************/ /** \brief Initialization mode request bit. */ #define INITRQ_BIT (0x01) /** \brief Initialization mode handshake bit. */ #define INITAK_BIT (0x01) /** \brief CAN controller enable bit. */ #define CANE_BIT (0x80) /** \brief Filter mode bit 0. */ #define IDAM0_BIT (0x10) /** \brief Filter mode bit 1. */ #define IDAM1_BIT (0x20) /** \brief Transmit buffer 0 select bit. */ #define TX0_BIT (0x01) /** \brief Transmit buffer 0 empty bit. */ #define TXE0_BIT (0x01) /** \brief 29-bit extended id bit. */ #define IDE_BIT (0x08) /** \brief Receive buffer full flag bit. */ #define RXF_BIT (0x01) /**************************************************************************************** * Function prototypes ****************************************************************************************/ static blt_bool CanGetSpeedConfig(blt_int16u baud, blt_int8u *btr0, blt_int8u *btr1); /**************************************************************************************** * Local constant declarations ****************************************************************************************/ /** * \brief Array with possible time quanta configurations. * \details According to the CAN protocol 1 bit-time can be made up of between 8..25 * time quanta (TQ). The total TQ in a bit is SYNC + TSEG1 + TSEG2 with SYNC * always being 1. The sample point is (SYNC + TSEG1) / (SYNC + TSEG1 + SEG2) * * 100%. This array contains possible and valid time quanta configurations * with a sample point between 68..78%. */ static const tCanBusTiming canTiming[] = { /* TQ | TSEG1 | TSEG2 | SP */ /* ------------------------- */ { 5, 2 }, /* 8 | 5 | 2 | 75% */ { 6, 2 }, /* 9 | 6 | 2 | 78% */ { 6, 3 }, /* 10 | 6 | 3 | 70% */ { 7, 3 }, /* 11 | 7 | 3 | 73% */ { 8, 3 }, /* 12 | 8 | 3 | 75% */ { 9, 3 }, /* 13 | 9 | 3 | 77% */ { 9, 4 }, /* 14 | 9 | 4 | 71% */ { 10, 4 }, /* 15 | 10 | 4 | 73% */ { 11, 4 }, /* 16 | 11 | 4 | 75% */ { 12, 4 }, /* 17 | 12 | 4 | 76% */ { 12, 5 }, /* 18 | 12 | 5 | 72% */ { 13, 5 }, /* 19 | 13 | 5 | 74% */ { 14, 5 }, /* 20 | 14 | 5 | 75% */ { 15, 5 }, /* 21 | 15 | 5 | 76% */ { 15, 6 }, /* 22 | 15 | 6 | 73% */ { 16, 6 }, /* 23 | 16 | 6 | 74% */ { 16, 7 }, /* 24 | 16 | 7 | 71% */ { 16, 8 } /* 25 | 16 | 8 | 68% */ }; /************************************************************************************//** ** \brief Initializes the CAN controller and synchronizes it to the CAN bus. ** \return none. ** ****************************************************************************************/ void CanInit(void) { blt_int8u btrRegValues[2]; blt_bool result; blt_int32u accept_code; blt_int32u accept_mask; blt_int32u timeout; /* the current implementation supports CAN0..4. throw an assertion error in case a * different CAN channel is configured. */ ASSERT_CT((BOOT_COM_CAN_CHANNEL_INDEX >= 0) && (BOOT_COM_CAN_CHANNEL_INDEX <= 4)); /* enter initialization mode. note that this automatically disables CAN interrupts */ CAN->cctl0 = INITRQ_BIT; /* set timeout time for entering init mode */ timeout = TimerGet() + CAN_INIT_TIMEOUT_MS; /* wait for initialization mode entry handshake from the hardware */ while ((CAN->cctl1 & INITAK_BIT) == 0) { /* keep the watchdog happy */ CopService(); /* break loop upon timeout. this would indicate a hardware failure. */ if (TimerGet() > timeout) { break; } } /* enable the CAN controller, disable wake up and listen modes and set the * crystal oscillator as the clock source. */ CAN->cctl1 = CANE_BIT; /* configure baudrate */ result = CanGetSpeedConfig(BOOT_COM_CAN_BAUDRATE/1000, &btrRegValues[0], &btrRegValues[1]); ASSERT_RT(result == BLT_TRUE); /* configure the baudrate */ CAN->cbtr0 = btrRegValues[0]; CAN->cbtr1 = btrRegValues[1]; /* enable 2 32-bit acceptance filters. both will be configured for the same code and * mask. the only difference is that filter 0 will be setup to receive extended 29-bit * identifiers and filter 0 to receive standard 11-bit identifiers. */ CAN->cidac &= ~(IDAM1_BIT | IDAM0_BIT); /* set the acceptance filter code and mask to a value that only BOOT_COM_CAN_RX_MSG_ID * is received. */ accept_code = BOOT_COM_CAN_RX_MSG_ID; accept_mask = 0; /* configure acceptance filter 0 for 29-bit extended identifiers */ CAN->cidar0 = CONVERT_EXT_ID_TO_REG0(accept_code); CAN->cidar1 = CONVERT_EXT_ID_TO_REG1(accept_code); CAN->cidar2 = CONVERT_EXT_ID_TO_REG2(accept_code); CAN->cidar3 = CONVERT_EXT_ID_TO_REG3(accept_code); CAN->cidmr0 = CONVERT_EXT_ID_TO_REG0(accept_mask); CAN->cidmr1 = (CONVERT_EXT_ID_TO_REG1(accept_mask) | 0x10) & ~IDE_BIT; CAN->cidmr2 = CONVERT_EXT_ID_TO_REG2(accept_mask); CAN->cidmr3 = CONVERT_EXT_ID_TO_REG3(accept_mask); /* configure acceptance filter 1 for 11-bit standard identifiers */ CAN->cidar4 = CONVERT_STD_ID_TO_REG0(accept_code); CAN->cidar5 = CONVERT_STD_ID_TO_REG1(accept_code); CAN->cidar6 = CONVERT_STD_ID_TO_REG2(accept_code); CAN->cidar7 = CONVERT_STD_ID_TO_REG3(accept_code); CAN->cidmr4 = CONVERT_STD_ID_TO_REG0(accept_mask); CAN->cidmr5 = CONVERT_STD_ID_TO_REG1(accept_mask) | (0x04 | 0x02 | 0x01); CAN->cidmr6 = CONVERT_STD_ID_TO_REG2(accept_mask); CAN->cidmr7 = CONVERT_STD_ID_TO_REG3(accept_mask); /* leave initialization mode and synchronize to the CAN bus */ CAN->cctl0 &= ~INITRQ_BIT; /* set timeout time for leaving init mode */ timeout = TimerGet() + CAN_INIT_TIMEOUT_MS; /* wait for CAN bus synchronization handshake from the hardware */ while ((CAN->cctl1 & INITAK_BIT) != 0) { /* keep the watchdog happy */ CopService(); /* break loop upon timeout. this would indicate a hardware failure. */ if (TimerGet() > timeout) { break; } } /* bring transmit buffer 0 in the foreground as this is the only one used by this * driver. */ CAN->ctbsel = TX0_BIT; } /*** end of CanInit ***/ /************************************************************************************//** ** \brief Transmits a packet formatted for the communication interface. ** \param data Pointer to byte array with data that it to be transmitted. ** \param len Number of bytes that are to be transmitted. ** \return none. ** ****************************************************************************************/ void CanTransmitPacket(blt_int8u *data, blt_int8u len) { blt_int8u byte_idx; blt_int32u txMsgId; blt_int32u timeout; /* double check that the transmit slot is really available */ ASSERT_RT((CAN->ctflg & TXE0_BIT) != 0); /* is this a message with an 11-bit identifier? */ if ((BOOT_COM_CAN_TX_MSG_ID & EXTIDMASK_BIT) == 0) { /* store the identifier */ txMsgId = BOOT_COM_CAN_TX_MSG_ID; txMsgId &= ~EXTIDMASK_BIT; CAN->txSlot.idr[0] = CONVERT_STD_ID_TO_REG0(txMsgId); CAN->txSlot.idr[1] = CONVERT_STD_ID_TO_REG1(txMsgId); CAN->txSlot.idr[2] = CONVERT_STD_ID_TO_REG2(txMsgId); CAN->txSlot.idr[3] = CONVERT_STD_ID_TO_REG3(txMsgId); } else { /* store the identifier */ txMsgId = BOOT_COM_CAN_TX_MSG_ID; txMsgId &= ~EXTIDMASK_BIT; CAN->txSlot.idr[0] = CONVERT_EXT_ID_TO_REG0(txMsgId); CAN->txSlot.idr[1] = CONVERT_EXT_ID_TO_REG1(txMsgId); CAN->txSlot.idr[2] = CONVERT_EXT_ID_TO_REG2(txMsgId); CAN->txSlot.idr[3] = CONVERT_EXT_ID_TO_REG3(txMsgId); } /* store the data length code */ CAN->txSlot.dlr = len; /* store the message data */ for (byte_idx=0; byte_idxtxSlot.dsr[byte_idx] = data[byte_idx]; } /* start the transmission by clearing the buffer empty flag. must be done * by writing a 1 value. */ CAN->ctflg = TXE0_BIT; /* set timeout time to wait for transmission completion */ timeout = TimerGet() + CAN_MSG_TX_TIMEOUT_MS; /* wait for transmit completion */ while ((CAN->ctflg & TXE0_BIT) == 0) { /* keep the watchdog happy */ CopService(); /* break loop upon timeout. this would indicate a hardware failure or no other * nodes connected to the bus. */ if (TimerGet() > timeout) { break; } } } /*** end of CanTransmitPacket ***/ /************************************************************************************//** ** \brief Receives a communication interface packet if one is present. ** \param data Pointer to byte array where the data is to be stored. ** \param len Pointer where the length of the packet is to be stored. ** \return BLT_TRUE is a packet was received, BLT_FALSE otherwise. ** ****************************************************************************************/ blt_bool CanReceivePacket(blt_int8u *data, blt_int8u *len) { blt_int32u rxMsgId; blt_int8u rxMsgLen; blt_int8u byte_idx; blt_bool result = BLT_FALSE; /* check if a new message was received */ if ((CAN->crflg & RXF_BIT) == RXF_BIT) { /* check IDE-bit to determine if it is a 11-bit or 29-bit identifier */ if ((CAN->rxSlot.idr[1] & IDE_BIT) == 0) { /* 11-bit id */ rxMsgId = (*(blt_int16u *)(&CAN->rxSlot.idr[0])) >> 5; } else { /* 29-bit id */ rxMsgId = (blt_int32u)(((*(blt_int32u *)(&CAN->rxSlot.idr[0])) & 0x0007ffff) >> 1) | (blt_int32u)(((*(blt_int32u *)(&CAN->rxSlot.idr[0])) & 0xffe00000) >> 3); rxMsgId |= EXTIDMASK_BIT; } /* is this the packet identifier? */ if (rxMsgId == BOOT_COM_CAN_RX_MSG_ID) { result = BLT_TRUE; /* store the dlc */ rxMsgLen = CAN->rxSlot.dlr & 0xf; /* copy message data */ for (byte_idx=0; byte_idxrxSlot.dsr[byte_idx]; } *len = rxMsgLen; } /* release the receive object by clearing the rx flag */ CAN->crflg &= RXF_BIT; } return result; } /*** end of CanReceivePacket ***/ /************************************************************************************//** ** \brief Search algorithm to match the desired baudrate to a possible bus timing ** configuration. ** \param baud The desired baudrate in kbps. Valid values are 10..1000. ** \param btr0 Pointer to where the value for register CANxBTR0 will be stored. ** \param btr1 Pointer to where the value for register CANxBTR1 will be stored. ** \return BLT_TRUE if the CAN bustiming register values were found, BLT_FALSE ** otherwise. ** ****************************************************************************************/ static blt_bool CanGetSpeedConfig(blt_int16u baud, blt_int8u *btr0, blt_int8u *btr1) { blt_int8u prescaler; blt_int8u cnt; /* loop through all possible time quanta configurations to find a match */ for (cnt=0; cnt < sizeof(canTiming)/sizeof(canTiming[0]); cnt++) { if ((BOOT_CPU_XTAL_SPEED_KHZ % (baud*(canTiming[cnt].tseg1+canTiming[cnt].tseg2+1))) == 0) { /* compute the prescaler that goes with this TQ configuration */ prescaler = (blt_int8u)(BOOT_CPU_XTAL_SPEED_KHZ/(baud*(canTiming[cnt].tseg1+canTiming[cnt].tseg2+1))); /* make sure the prescaler is valid */ if ((prescaler > 0) && (prescaler <= 64)) { /* store the MSCAN bustiming register values */ *btr0 = prescaler - 1; *btr1 = ((canTiming[cnt].tseg2 - 1) << 4) | (canTiming[cnt].tseg1 - 1); /* found a good bus timing configuration */ return BLT_TRUE; } } /* service the watchdog */ CopService(); } /* could not find a good bus timing configuration */ return BLT_FALSE; } /*** end of CanGetSpeedConfig ***/ #endif /* BOOT_COM_CAN_ENABLE > 0 */ /*********************************** end of can.c **************************************/