/************************************************************************************//** * \file Source/ARMCM0_XMC1/flash.c * \brief Bootloader flash driver source file. * \ingroup Target_ARMCM0_XMC1 * \internal *---------------------------------------------------------------------------------------- * C O P Y R I G H T *---------------------------------------------------------------------------------------- * Copyright (c) 2016 by Feaser http://www.feaser.com All rights reserved * *---------------------------------------------------------------------------------------- * L I C E N S E *---------------------------------------------------------------------------------------- * This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or * modify it under the terms of the GNU General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any later * version. * * OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You have received a copy of the GNU General Public License along with OpenBLT. It * should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy. * * \endinternal ****************************************************************************************/ /**************************************************************************************** * Include files ****************************************************************************************/ #include "boot.h" /* bootloader generic header */ #include "xmc_flash.h" /* Flash driver header */ /**************************************************************************************** * Macro definitions ****************************************************************************************/ /** \brief Value for an invalid flash sector. */ #define FLASH_INVALID_SECTOR (0xff) /** \brief Value for an invalid flash address. */ #define FLASH_INVALID_ADDRESS (0xffffffff) /** \brief Standard size of a flash block for writing. It should be large enough so that * the OpenBLT checksum fits in the first (boot) block). Note that this value * is set to the hardware defined size of a XMC1 flash page. */ #define FLASH_WRITE_BLOCK_SIZE (256) /** \brief Total numbers of sectors in array flashLayout[]. */ #define FLASH_TOTAL_SECTORS (sizeof(flashLayout)/sizeof(flashLayout[0])) /** \brief End address of the bootloader programmable flash. */ #define FLASH_END_ADDRESS (flashLayout[FLASH_TOTAL_SECTORS-1].sector_start + \ flashLayout[FLASH_TOTAL_SECTORS-1].sector_size - 1) /** \brief Offset into the user program's vector table where the checksum is located. * For this target it is set to the end of the vector table. Note that the * value can be overriden in blt_conf.h, because the size of the vector table * could vary. When changing this value, don't forget to update the location * of the checksum in the user program accordingly. Otherwise the checksum * verification will always fail. */ #ifndef BOOT_FLASH_VECTOR_TABLE_CS_OFFSET #define BOOT_FLASH_VECTOR_TABLE_CS_OFFSET (0x01C) #endif /** \brief Maximum time for a sector erase operation as specified by the XCM1xxx data- * sheet with an added 20% margin. */ #define FLASH_ERASE_TIME_MAX_MS (10) /** \brief Maximum time for a page program operation as specified by the XCM1xxx data- * sheet with an added 20% margin. */ #define FLASH_PROGRAM_TIME_MAX_MS (5) /**************************************************************************************** * Plausibility checks ****************************************************************************************/ #if (BOOT_FLASH_VECTOR_TABLE_CS_OFFSET >= FLASH_WRITE_BLOCK_SIZE) #error "BOOT_FLASH_VECTOR_TABLE_CS_OFFSET is set too high. It must be located in the first writable block." #endif #ifndef BOOT_FLASH_CUSTOM_LAYOUT_ENABLE #define BOOT_FLASH_CUSTOM_LAYOUT_ENABLE (0u) #endif /**************************************************************************************** * Type definitions ****************************************************************************************/ /** \brief Flash sector descriptor type. */ typedef struct { blt_addr sector_start; /**< sector start address */ blt_int32u sector_size; /**< sector size in bytes */ blt_int8u sector_num; /**< sector number */ } tFlashSector; /** \brief Structure type for grouping flash block information. * \details Programming is done per block of max FLASH_WRITE_BLOCK_SIZE. for this a * flash block manager is implemented in this driver. this flash block manager * depends on this flash block info structure. It holds the base address of * the flash block and the data that should be programmed into the flash * block. The .base_addr must be a multiple of FLASH_WRITE_BLOCK_SIZE. */ typedef struct { blt_addr base_addr; blt_int8u data[FLASH_WRITE_BLOCK_SIZE]; } tFlashBlockInfo; /**************************************************************************************** * Hook functions ****************************************************************************************/ #if (BOOT_FLASH_CRYPTO_HOOKS_ENABLE > 0) extern blt_bool FlashCryptoDecryptDataHook(blt_addr address, blt_int8u * data, blt_int32u size); #endif /**************************************************************************************** * Function prototypes ****************************************************************************************/ static blt_bool FlashInitBlock(tFlashBlockInfo *block, blt_addr address); static tFlashBlockInfo *FlashSwitchBlock(tFlashBlockInfo *block, blt_addr base_addr); static blt_bool FlashAddToBlock(tFlashBlockInfo *block, blt_addr address, blt_int8u *data, blt_int32u len); static blt_bool FlashWriteBlock(tFlashBlockInfo *block); static blt_bool FlashEraseSectors(blt_int8u first_sector, blt_int8u last_sector); static blt_int8u FlashGetSector(blt_addr address); static blt_addr FlashGetSectorBaseAddr(blt_int8u sector); /**************************************************************************************** * Local constant declarations ****************************************************************************************/ /** \brief If desired, it is possible to set BOOT_FLASH_CUSTOM_LAYOUT_ENABLE to > 0 * in blt_conf.h and then implement your own version of the flashLayout[] table * in a source-file with the name flash_layout.c. This way you customize the * flash memory size reserved for the bootloader, without having to modify * the flashLayout[] table in this file directly. This file will then include * flash_layout.c so there is no need to compile it additionally with your * project. */ #if (BOOT_FLASH_CUSTOM_LAYOUT_ENABLE == 0) /** \brief Array wit the layout of the flash memory. * \details Also controls what part of the flash memory is reserved for the bootloader. * If the bootloader size changes, the reserved sectors for the bootloader * might need adjustment to make sure the bootloader doesn't get overwritten. * Note that the table contains uncached addresses, because flash program/ * erase operations need to be performed on uncached addresses. This flash * driver automatically translated cached to uncached addresses, so there * is no need for the user to adjust this when calling this driver's API. */ static const tFlashSector flashLayout[] = { /* the space reserved for the bootloader might need updating after changing the * configuration. enough space should be reserved so that the entire ROM code of * the bootloader fits in it. this is needed to protect the bootloader from being * overwritten during a firmware update. */ /* { 0x10001000, 0x01000, 1}, flash sector 1 - reserved for bootloader */ /* { 0x10002000, 0x01000, 2}, flash sector 2 - reserved for bootloader */ { 0x10003000, 0x01000, 3}, /* flash sector 3 - 4kb */ { 0x10004000, 0x01000, 4}, /* flash sector 4 - 4kb */ { 0x10005000, 0x01000, 5}, /* flash sector 5 - 4kb */ { 0x10006000, 0x01000, 6}, /* flash sector 6 - 4kb */ { 0x10007000, 0x01000, 7}, /* flash sector 7 - 4kb */ { 0x10008000, 0x01000, 8}, /* flash sector 8 - 4kb */ #if (BOOT_NVM_SIZE_KB > 32) { 0x10009000, 0x01000, 9}, /* flash sector 9 - 4kb */ { 0x1000A000, 0x01000, 10}, /* flash sector 10 - 4kb */ { 0x1000B000, 0x01000, 11}, /* flash sector 11 - 4kb */ { 0x1000C000, 0x01000, 12}, /* flash sector 12 - 4kb */ { 0x1000D000, 0x01000, 13}, /* flash sector 13 - 4kb */ { 0x1000E000, 0x01000, 14}, /* flash sector 14 - 4kb */ { 0x1000F000, 0x01000, 15}, /* flash sector 15 - 4kb */ { 0x10010000, 0x01000, 16}, /* flash sector 16 - 4kb */ #endif #if (BOOT_NVM_SIZE_KB > 64) { 0x10011000, 0x01000, 17}, /* flash sector 17 - 4kb */ { 0x10012000, 0x01000, 18}, /* flash sector 18 - 4kb */ { 0x10013000, 0x01000, 19}, /* flash sector 19 - 4kb */ { 0x10014000, 0x01000, 20}, /* flash sector 20 - 4kb */ { 0x10015000, 0x01000, 21}, /* flash sector 21 - 4kb */ { 0x10016000, 0x01000, 22}, /* flash sector 22 - 4kb */ { 0x10017000, 0x01000, 23}, /* flash sector 23 - 4kb */ { 0x10018000, 0x01000, 24}, /* flash sector 24 - 4kb */ { 0x10019000, 0x01000, 25}, /* flash sector 25 - 4kb */ { 0x1001A000, 0x01000, 26}, /* flash sector 26 - 4kb */ { 0x1001B000, 0x01000, 27}, /* flash sector 27 - 4kb */ { 0x1001C000, 0x01000, 28}, /* flash sector 28 - 4kb */ { 0x1001D000, 0x01000, 29}, /* flash sector 29 - 4kb */ { 0x1001E000, 0x01000, 30}, /* flash sector 30 - 4kb */ { 0x1001F000, 0x01000, 31}, /* flash sector 31 - 4kb */ { 0x10020000, 0x01000, 32}, /* flash sector 32 - 4kb */ #endif #if (BOOT_NVM_SIZE_KB > 128) { 0x10021000, 0x01000, 33}, /* flash sector 33 - 4kb */ { 0x10022000, 0x01000, 34}, /* flash sector 34 - 4kb */ { 0x10023000, 0x01000, 35}, /* flash sector 35 - 4kb */ { 0x10024000, 0x01000, 36}, /* flash sector 36 - 4kb */ { 0x10025000, 0x01000, 37}, /* flash sector 37 - 4kb */ { 0x10026000, 0x01000, 38}, /* flash sector 38 - 4kb */ { 0x10027000, 0x01000, 39}, /* flash sector 39 - 4kb */ { 0x10028000, 0x01000, 40}, /* flash sector 40 - 4kb */ { 0x10029000, 0x01000, 41}, /* flash sector 41 - 4kb */ { 0x1002A000, 0x01000, 42}, /* flash sector 42 - 4kb */ { 0x1002B000, 0x01000, 43}, /* flash sector 43 - 4kb */ { 0x1002C000, 0x01000, 44}, /* flash sector 44 - 4kb */ { 0x1002D000, 0x01000, 45}, /* flash sector 45 - 4kb */ { 0x1002E000, 0x01000, 46}, /* flash sector 46 - 4kb */ { 0x1002F000, 0x01000, 47}, /* flash sector 47 - 4kb */ { 0x10030000, 0x01000, 48}, /* flash sector 48 - 4kb */ { 0x10031000, 0x01000, 49}, /* flash sector 49 - 4kb */ { 0x10032000, 0x01000, 50}, /* flash sector 50 - 4kb */ #endif #if (BOOT_NVM_SIZE_KB > 200) #error "BOOT_NVM_SIZE_KB > 200 is currently not supported." #endif }; #else #include "flash_layout.c" #endif /* BOOT_FLASH_CUSTOM_LAYOUT_ENABLE == 0 */ /**************************************************************************************** * Local data declarations ****************************************************************************************/ /** \brief Local variable with information about the flash block that is currently * being operated on. * \details The smallest amount of flash that can be programmed is * FLASH_WRITE_BLOCK_SIZE. A flash block manager is implemented in this driver * and stores info in this variable. Whenever new data should be flashed, it * is first added to a RAM buffer, which is part of this variable. Whenever * the RAM buffer, which has the size of a flash block, is full or data needs * to be written to a different block, the contents of the RAM buffer are * programmed to flash. The flash block manager requires some software * overhead, yet results is faster flash programming because data is first * harvested, ideally until there is enough to program an entire flash block, * before the flash device is actually operated on. */ static tFlashBlockInfo blockInfo; /** \brief Local variable with information about the flash boot block. * \details The first block of the user program holds the vector table, which on the * STM32 is also the where the checksum is written to. Is it likely that * the vector table is first flashed and then, at the end of the programming * sequence, the checksum. This means that this flash block need to be written * to twice. Normally this is not a problem with flash memory, as long as you * write the same values to those bytes that are not supposed to be changed * and the locations where you do write to are still in the erased 0xFF state. * Unfortunately, writing twice to flash this way, does not work reliably on * all micros. This is why we need to have an extra block, the bootblock, * placed under the management of the block manager. This way is it possible * to implement functionality so that the bootblock is only written to once * at the end of the programming sequence. */ static tFlashBlockInfo bootBlockInfo; /************************************************************************************//** ** \brief Initializes the flash driver. ** \return none. ** ****************************************************************************************/ void FlashInit(void) { /* init the flash block info structs by setting the address to an invalid address */ blockInfo.base_addr = FLASH_INVALID_ADDRESS; bootBlockInfo.base_addr = FLASH_INVALID_ADDRESS; } /*** end of FlashInit ***/ /************************************************************************************//** ** \brief Reinitializes the flash driver. ** \return none. ** ****************************************************************************************/ void FlashReinit(void) { /* init the flash block info structs by setting the address to an invalid address */ blockInfo.base_addr = FLASH_INVALID_ADDRESS; bootBlockInfo.base_addr = FLASH_INVALID_ADDRESS; } /*** end of FlashReinit ***/ /************************************************************************************//** ** \brief Writes the data to flash through a flash block manager. Note that this ** function also checks that no data is programmed outside the flash ** memory region, so the bootloader can never be overwritten. ** \param addr Start address. ** \param len Length in bytes. ** \param data Pointer to the data buffer. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ blt_bool FlashWrite(blt_addr addr, blt_int32u len, blt_int8u *data) { blt_addr base_addr; /* validate the len parameter */ if ((len - 1) > (FLASH_END_ADDRESS - addr)) { return BLT_FALSE; } /* make sure the addresses are within the flash device */ if ((FlashGetSector(addr) == FLASH_INVALID_SECTOR) || \ (FlashGetSector(addr+len-1) == FLASH_INVALID_SECTOR)) { return BLT_FALSE; } /* if this is the bootblock, then let the boot block manager handle it */ base_addr = (addr/FLASH_WRITE_BLOCK_SIZE)*FLASH_WRITE_BLOCK_SIZE; if (base_addr == flashLayout[0].sector_start) { /* let the boot block manager handle it */ return FlashAddToBlock(&bootBlockInfo, addr, data, len); } /* let the block manager handle it */ return FlashAddToBlock(&blockInfo, addr, data, len); } /*** end of FlashWrite ***/ /************************************************************************************//** ** \brief Erases the flash memory. Note that this function also checks that no ** data is erased outside the flash memory region, so the bootloader can ** never be erased. ** \param addr Start address. ** \param len Length in bytes. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ blt_bool FlashErase(blt_addr addr, blt_int32u len) { blt_int8u first_sector; blt_int8u last_sector; /* validate the len parameter */ if ((len - 1) > (FLASH_END_ADDRESS - addr)) { return BLT_FALSE; } /* obtain the first and last sector number */ first_sector = FlashGetSector(addr); last_sector = FlashGetSector(addr+len-1); /* check them */ if ((first_sector == FLASH_INVALID_SECTOR) || (last_sector == FLASH_INVALID_SECTOR)) { return BLT_FALSE; } /* erase the sectors */ return FlashEraseSectors(first_sector, last_sector); } /*** end of FlashErase ***/ /************************************************************************************//** ** \brief Writes a checksum of the user program to non-volatile memory. This is ** performed once the entire user program has been programmed. Through ** the checksum, the bootloader can check if the programming session ** was completed, which indicates that a valid user programming is ** present and can be started. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ blt_bool FlashWriteChecksum(void) { blt_int32u signature_checksum = 0; /* for the XMC1 target we defined the checksum as the Two's complement value of the * sum of the first 6 exception addresses. * * Layout of the vector table: * 0x10001000 Initial stack pointer * 0x10001004 Reset Handler * 0x10001008 Reserved * 0x1000100C Reserved * 0x10001010 CLK_VAL1 * 0x10001014 CLK_VAL2 * * signature_checksum = Two's complement of (SUM(exception address values)) * * the bootloader writes this 32-bit checksum value right after the vector table * of the user program. note that this means one extra dummy entry must be added * at the end of the user program's vector table to reserve storage space for the * checksum. */ /* first check that the bootblock contains valid data. if not, this means the * bootblock is not part of the reprogramming this time and therefore no * new checksum needs to be written */ if (bootBlockInfo.base_addr == FLASH_INVALID_ADDRESS) { return BLT_TRUE; } #if (BOOT_FLASH_CRYPTO_HOOKS_ENABLE > 0) /* perform decryption of the bootblock, before calculating the checksum and writing it * to flash memory. */ if (FlashCryptoDecryptDataHook(bootBlockInfo.base_addr, bootBlockInfo.data, FLASH_WRITE_BLOCK_SIZE) == BLT_FALSE) { return BLT_FALSE; } #endif /* compute the checksum. note that the user program's vectors are not yet written * to flash but are present in the bootblock data structure at this point. */ signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x00])); signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x04])); signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x08])); signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x0C])); signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x10])); signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x14])); signature_checksum = ~signature_checksum; /* one's complement */ signature_checksum += 1; /* two's complement */ /* write the checksum */ return FlashWrite(flashLayout[0].sector_start+BOOT_FLASH_VECTOR_TABLE_CS_OFFSET, sizeof(blt_addr), (blt_int8u *)&signature_checksum); } /*** end of FlashWriteChecksum ***/ /************************************************************************************//** ** \brief Verifies the checksum, which indicates that a valid user program is ** present and can be started. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ blt_bool FlashVerifyChecksum(void) { blt_int32u signature_checksum = 0; /* verify the checksum based on how it was written by CpuWriteChecksum() */ signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start)); signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x04)); signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x08)); signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x0C)); signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x10)); signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x14)); signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+BOOT_FLASH_VECTOR_TABLE_CS_OFFSET)); /* sum should add up to an unsigned 32-bit value of 0 */ if (signature_checksum == 0) { /* checksum okay */ return BLT_TRUE; } /* checksum incorrect */ return BLT_FALSE; } /*** end of FlashVerifyChecksum ***/ /************************************************************************************//** ** \brief Finalizes the flash driver operations. There could still be data in ** the currently active block that needs to be flashed. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ blt_bool FlashDone(void) { /* check if there is still data waiting to be programmed in the boot block */ if (bootBlockInfo.base_addr != FLASH_INVALID_ADDRESS) { if (FlashWriteBlock(&bootBlockInfo) == BLT_FALSE) { return BLT_FALSE; } } /* check if there is still data waiting to be programmed */ if (blockInfo.base_addr != FLASH_INVALID_ADDRESS) { if (FlashWriteBlock(&blockInfo) == BLT_FALSE) { return BLT_FALSE; } } /* still here so all is okay */ return BLT_TRUE; } /*** end of FlashDone ***/ /************************************************************************************//** ** \brief Obtains the base address of the flash memory available to the user program. ** This is basically the first address in the flashLayout table. ** \return Base address. ** ****************************************************************************************/ blt_addr FlashGetUserProgBaseAddress(void) { return flashLayout[0].sector_start; } /*** end of FlashGetUserProgBaseAddress ***/ /************************************************************************************//** ** \brief Copies data currently in flash to the block->data and sets the ** base address. ** \param block Pointer to flash block info structure to operate on. ** \param address Base address of the block data. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ static blt_bool FlashInitBlock(tFlashBlockInfo *block, blt_addr address) { /* check address alignment */ if ((address % FLASH_WRITE_BLOCK_SIZE) != 0) { return BLT_FALSE; } /* make sure that we are initializing a new block and not the same one */ if (block->base_addr == address) { /* block already initialized, so nothing to do */ return BLT_TRUE; } /* set the base address and copies the current data from flash */ block->base_addr = address; CpuMemCopy((blt_addr)block->data, address, FLASH_WRITE_BLOCK_SIZE); return BLT_TRUE; } /*** end of FlashInitBlock ***/ /************************************************************************************//** ** \brief Switches blocks by programming the current one and initializing the ** next. ** \param block Pointer to flash block info structure to operate on. ** \param base_addr Base address of the next block. ** \return The pointer of the block info struct that is no being used, or a NULL ** pointer in case of error. ** ****************************************************************************************/ static tFlashBlockInfo *FlashSwitchBlock(tFlashBlockInfo *block, blt_addr base_addr) { /* check if a switch needs to be made away from the boot block. in this case the boot * block shouldn't be written yet, because this is done at the end of the programming * session by FlashDone(), this is right after the checksum was written. */ if (block == &bootBlockInfo) { /* switch from the boot block to the generic block info structure */ block = &blockInfo; } /* check if a switch back into the bootblock is needed. in this case the generic block * doesn't need to be written here yet. */ else if (base_addr == flashLayout[0].sector_start) { /* switch from the generic block to the boot block info structure */ block = &bootBlockInfo; base_addr = flashLayout[0].sector_start; } else { /* need to switch to a new block, so program the current one and init the next */ if (FlashWriteBlock(block) == BLT_FALSE) { return BLT_NULL; } } /* initialize tne new block when necessary */ if (FlashInitBlock(block, base_addr) == BLT_FALSE) { return BLT_NULL; } /* still here to all is okay */ return block; } /*** end of FlashSwitchBlock ***/ /************************************************************************************//** ** \brief Programming is done per block. This function adds data to the block ** that is currently collecting data to be written to flash. If the ** address is outside of the current block, the current block is written ** to flash an a new block is initialized. ** \param block Pointer to flash block info structure to operate on. ** \param address Flash destination address. ** \param data Pointer to the byte array with data. ** \param len Number of bytes to add to the block. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ static blt_bool FlashAddToBlock(tFlashBlockInfo *block, blt_addr address, blt_int8u *data, blt_int32u len) { blt_addr current_base_addr; blt_int8u *dst; blt_int8u *src; /* determine the current base address */ current_base_addr = (address/FLASH_WRITE_BLOCK_SIZE)*FLASH_WRITE_BLOCK_SIZE; /* make sure the blockInfo is not uninitialized */ if (block->base_addr == FLASH_INVALID_ADDRESS) { /* initialize the blockInfo struct for the current block */ if (FlashInitBlock(block, current_base_addr) == BLT_FALSE) { return BLT_FALSE; } } /* check if the new data fits in the current block */ if (block->base_addr != current_base_addr) { /* need to switch to a new block, so program the current one and init the next */ block = FlashSwitchBlock(block, current_base_addr); if (block == BLT_NULL) { return BLT_FALSE; } } /* add the data to the current block, but check for block overflow */ dst = &(block->data[address - block->base_addr]); src = data; do { /* keep the watchdog happy */ CopService(); /* buffer overflow? */ if ((blt_addr)(dst-&(block->data[0])) >= FLASH_WRITE_BLOCK_SIZE) { /* need to switch to a new block, so program the current one and init the next */ block = FlashSwitchBlock(block, current_base_addr+FLASH_WRITE_BLOCK_SIZE); if (block == BLT_NULL) { return BLT_FALSE; } /* reset destination pointer */ dst = &(block->data[0]); } /* write the data to the buffer */ *dst = *src; /* update pointers */ dst++; src++; /* decrement byte counter */ len--; } while (len > 0); /* still here so all is good */ return BLT_TRUE; } /*** end of FlashAddToBlock ***/ /************************************************************************************//** ** \brief Programs FLASH_WRITE_BLOCK_SIZE bytes to flash from the block->data ** array. ** \param block Pointer to flash block info structure to operate on. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ static blt_bool FlashWriteBlock(tFlashBlockInfo *block) { blt_int32u timeoutTime; blt_int32u byteIdx; /* check that address is actually within flash */ if (FlashGetSector(block->base_addr) == FLASH_INVALID_SECTOR) { return BLT_FALSE; } #if (BOOT_FLASH_CRYPTO_HOOKS_ENABLE > 0) #if (BOOT_NVM_CHECKSUM_HOOKS_ENABLE == 0) /* note that the bootblock is already decrypted in FlashWriteChecksum(), if the * internal checksum mechanism is used. Therefore don't decrypt it again. */ if (block != &bootBlockInfo) #endif { /* perform decryption of the program data before writing it to flash memory. */ if (FlashCryptoDecryptDataHook(block->base_addr, block->data, FLASH_WRITE_BLOCK_SIZE) == BLT_FALSE) { return BLT_FALSE; } } #endif /* clear the previous error states. should always be done before program/erase */ XMC_FLASH_ClearStatus(); /* determine timeout time of the operation */ timeoutTime = TimerGet() + FLASH_PROGRAM_TIME_MAX_MS; /* program the block in one go */ XMC_FLASH_ProgramPage((uint32_t *)block->base_addr, (const uint32_t *)block->data); /* wait for the flash operation to complete */ while (XMC_FLASH_IsBusy() > 0) { /* check for operation timeout */ if (TimerGet() > timeoutTime) { /* timeout occurred. cannot continue */ return BLT_FALSE; } /* keep the watchdog happy */ CopService(); } /* check the result */ if (XMC_FLASH_GetStatus() != XMC_FLASH_STATUS_OK) { /* error occurred during flash erase, abort */ return BLT_FALSE; } /* verify that the data was correctly programmed */ for (byteIdx=0; byteIdx < FLASH_WRITE_BLOCK_SIZE; byteIdx++) { if (*((volatile blt_int8u *)(block->base_addr+byteIdx)) != block->data[byteIdx]) { /* program verification failed. abort */ return BLT_FALSE; } } /* still here so all is okay */ return BLT_TRUE; } /*** end of FlashWriteBlock ***/ /************************************************************************************//** ** \brief Erases the flash sectors from first_sector up until last_sector. ** \param first_sector First flash sector number. ** \param last_sector Last flash sector number. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ static blt_bool FlashEraseSectors(blt_int8u first_sector, blt_int8u last_sector) { blt_int8u sector_cnt; blt_addr sectorBaseAddr; blt_int32u timeoutTime; /* validate the sector numbers */ if (first_sector > last_sector) { return BLT_FALSE; } if ((first_sector < flashLayout[0].sector_num) || \ (last_sector > flashLayout[FLASH_TOTAL_SECTORS-1].sector_num)) { return BLT_FALSE; } /* erase all sectors one by one */ for (sector_cnt=first_sector; sector_cnt<= last_sector; sector_cnt++) { /* keep the watchdog happy */ CopService(); /* submit the sector erase request by specifying its start address */ sectorBaseAddr = FlashGetSectorBaseAddr(sector_cnt); if (sectorBaseAddr == FLASH_INVALID_ADDRESS) { /* not a valid sector address so abort */ return BLT_FALSE; } /* clear the previous error states. should always be done before program/erase */ XMC_FLASH_ClearStatus(); /* determine timeout time of the operation */ timeoutTime = TimerGet() + FLASH_ERASE_TIME_MAX_MS; /* start erase operation */ XMC_FLASH_EraseSector((uint32_t *)sectorBaseAddr); /* wait for the flash operation to complete */ while (XMC_FLASH_IsBusy() > 0) { /* check for operation timeout */ if (TimerGet() > timeoutTime) { /* timeout occurred. cannot continue */ return BLT_FALSE; } /* keep the watchdog happy */ CopService(); } /* check the result */ if (XMC_FLASH_GetStatus() != XMC_FLASH_STATUS_OK) { /* error occurred during flash erase, abort */ return BLT_FALSE; } } /* still here so all went okay */ return BLT_TRUE; } /*** end of FlashEraseSectors ***/ /************************************************************************************//** ** \brief Determines the flash sector the address is in. ** \param address Address in the flash sector. ** \return Flash sector number or FLASH_INVALID_SECTOR. ** ****************************************************************************************/ static blt_int8u FlashGetSector(blt_addr address) { blt_int8u sectorIdx; /* search through the sectors to find the right one */ for (sectorIdx = 0; sectorIdx < FLASH_TOTAL_SECTORS; sectorIdx++) { /* keep the watchdog happy */ CopService(); /* is the address in this sector? */ if ((address >= flashLayout[sectorIdx].sector_start) && \ (address < (flashLayout[sectorIdx].sector_start + \ flashLayout[sectorIdx].sector_size))) { /* return the sector number */ return flashLayout[sectorIdx].sector_num; } } /* still here so no valid sector found */ return FLASH_INVALID_SECTOR; } /*** end of FlashGetSector ***/ /************************************************************************************//** ** \brief Obtains the base address of the specified sector. ** \param sector Sector to get the base address of. ** \return Base Base address of the sector if found, FLASH_INVALID_ADDRESS otherwise. ** ****************************************************************************************/ static blt_addr FlashGetSectorBaseAddr(blt_int8u sector) { blt_int8u sectorIdx; blt_addr baseAddr; /* initialize base address to invalid */ baseAddr = FLASH_INVALID_ADDRESS; /* search through the sectors to find the right one */ for (sectorIdx = 0; sectorIdx < FLASH_TOTAL_SECTORS; sectorIdx++) { /* keep the watchdog happy */ CopService(); /* is this the sector that was specified? */ if (flashLayout[sectorIdx].sector_num == sector) { /* read out its base address and stop the loop */ baseAddr = flashLayout[sectorIdx].sector_start; break; } } /* return the results */ return baseAddr; } /*** end of FlashGetSectorBaseAddr ***/ /*********************************** end of flash.c ************************************/