/************************************************************************************//** * \file Demo\ARMCM3_STM32_Olimex_STM32H103_GCC\Boot\main.c * \brief Bootloader application source file. * \ingroup Boot_ARMCM3_STM32_Olimex_STM32H103_GCC * \internal *---------------------------------------------------------------------------------------- * C O P Y R I G H T *---------------------------------------------------------------------------------------- * Copyright (c) 2012 by Feaser http://www.feaser.com All rights reserved * *---------------------------------------------------------------------------------------- * L I C E N S E *---------------------------------------------------------------------------------------- * This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or * modify it under the terms of the GNU General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any later * version. * * OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You have received a copy of the GNU General Public License along with OpenBLT. It * should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy. * * \endinternal ****************************************************************************************/ /**************************************************************************************** * Include files ****************************************************************************************/ #include "boot.h" /* bootloader generic header */ #include "stm32f10x.h" /* microcontroller registers */ /**************************************************************************************** * Function prototypes ****************************************************************************************/ static void Init(void); /************************************************************************************//** ** \brief This is the entry point for the bootloader application and is called ** by the reset interrupt vector after the C-startup routines executed. ** \return Program return code. ** ****************************************************************************************/ int main(void) { /* initialize the microcontroller */ Init(); /* initialize the bootloader */ BootInit(); /* start the infinite program loop */ while (1) { /* run the bootloader task */ BootTask(); } /* program should never get here */ return 0; } /*** end of main ***/ /************************************************************************************//** ** \brief Initializes the microcontroller. ** \return none. ** ****************************************************************************************/ static void Init(void) { volatile blt_int32u StartUpCounter = 0, HSEStatus = 0; blt_int32u pll_multiplier; /* reset the RCC clock configuration to the default reset state (for debug purpose) */ /* set HSION bit */ RCC->CR |= (blt_int32u)0x00000001; /* reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */ RCC->CFGR &= (blt_int32u)0xF8FF0000; /* reset HSEON, CSSON and PLLON bits */ RCC->CR &= (blt_int32u)0xFEF6FFFF; /* reset HSEBYP bit */ RCC->CR &= (blt_int32u)0xFFFBFFFF; /* reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */ RCC->CFGR &= (blt_int32u)0xFF80FFFF; /* disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000; /* enable HSE */ RCC->CR |= ((blt_int32u)RCC_CR_HSEON); /* wait till HSE is ready and if Time out is reached exit */ do { HSEStatus = RCC->CR & RCC_CR_HSERDY; StartUpCounter++; } while((HSEStatus == 0) && (StartUpCounter != 1500)); /* check if time out was reached */ if ((RCC->CR & RCC_CR_HSERDY) == RESET) { /* cannot continue when HSE is not ready */ ASSERT_RT(BLT_FALSE); } /* enable flash prefetch buffer */ FLASH->ACR |= FLASH_ACR_PRFTBE; /* reset flash wait state configuration to default 0 wait states */ FLASH->ACR &= (blt_int32u)((blt_int32u)~FLASH_ACR_LATENCY); #if (BOOT_CPU_SYSTEM_SPEED_KHZ > 48000) /* configure 2 flash wait states */ FLASH->ACR |= (blt_int32u)FLASH_ACR_LATENCY_2; #elif (BOOT_CPU_SYSTEM_SPEED_KHZ > 24000) /* configure 1 flash wait states */ FLASH->ACR |= (blt_int32u)FLASH_ACR_LATENCY_1; #endif /* HCLK = SYSCLK */ RCC->CFGR |= (blt_int32u)RCC_CFGR_HPRE_DIV1; /* PCLK2 = HCLK/2 */ RCC->CFGR |= (blt_int32u)RCC_CFGR_PPRE2_DIV2; /* PCLK1 = HCLK/2 */ RCC->CFGR |= (blt_int32u)RCC_CFGR_PPRE1_DIV2; /* reset PLL configuration */ RCC->CFGR &= (blt_int32u)((blt_int32u)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE | \ RCC_CFGR_PLLMULL)); /* assert that the pll_multiplier is between 2 and 16 */ ASSERT_CT((BOOT_CPU_SYSTEM_SPEED_KHZ/BOOT_CPU_XTAL_SPEED_KHZ) >= 2); ASSERT_CT((BOOT_CPU_SYSTEM_SPEED_KHZ/BOOT_CPU_XTAL_SPEED_KHZ) <= 16); /* calculate multiplier value */ pll_multiplier = BOOT_CPU_SYSTEM_SPEED_KHZ/BOOT_CPU_XTAL_SPEED_KHZ; /* convert to register value */ pll_multiplier = (blt_int32u)((pll_multiplier - 2) << 18); /* set the PLL multiplier and clock source */ RCC->CFGR |= (blt_int32u)(RCC_CFGR_PLLSRC_HSE | pll_multiplier); /* enable PLL */ RCC->CR |= RCC_CR_PLLON; /* wait till PLL is ready */ while((RCC->CR & RCC_CR_PLLRDY) == 0) { } /* select PLL as system clock source */ RCC->CFGR &= (blt_int32u)((blt_int32u)~(RCC_CFGR_SW)); RCC->CFGR |= (blt_int32u)RCC_CFGR_SW_PLL; /* wait till PLL is used as system clock source */ while ((RCC->CFGR & (blt_int32u)RCC_CFGR_SWS) != (blt_int32u)0x08) { } #if (BOOT_COM_UART_ENABLE > 0) /* enable clock for USART2 peripheral */ RCC->APB1ENR |= (blt_int32u)0x00020000; /* enable clocks for USART2 transmitter and receiver pins (GPIOA and AFIO) */ RCC->APB2ENR |= (blt_int32u)(0x00000004 | 0x00000001); /* configure USART2 Tx (GPIOA2) as alternate function push-pull */ /* first reset the configuration */ GPIOA->CRL &= ~(blt_int32u)((blt_int32u)0xf << 8); /* CNF2[1:0] = %10 and MODE2[1:0] = %11 */ GPIOA->CRL |= (blt_int32u)((blt_int32u)0xb << 8); /* configure USART2 Rx (GPIOA3) as alternate function input floating */ /* first reset the configuration */ GPIOA->CRL &= ~(blt_int32u)((blt_int32u)0xf << 12); /* CNF2[1:0] = %01 and MODE2[1:0] = %00 */ GPIOA->CRL |= (blt_int32u)((blt_int32u)0x4 << 12); #endif #if (BOOT_COM_CAN_ENABLE > 0) /* enable clocks for CAN transmitter and receiver pins (GPIOB and AFIO) */ RCC->APB2ENR |= (blt_int32u)(0x00000008 | 0x00000001); /* configure CAN Rx (GPIOB8) as alternate function input pull-up */ /* first reset the configuration */ GPIOB->CRH &= ~(blt_int32u)((blt_int32u)0xf << 0); /* CNF8[1:0] = %10 and MODE8[1:0] = %00 */ GPIOB->CRH |= (blt_int32u)((blt_int32u)0x8 << 0); /* configure CAN Tx (GPIOB9) as alternate function push-pull */ /* first reset the configuration */ GPIOB->CRH &= ~(blt_int32u)((blt_int32u)0xf << 4); /* CNF9[1:0] = %10 and MODE9[1:0] = %11 */ GPIOB->CRH |= (blt_int32u)((blt_int32u)0xb << 4); /* remap CAN1 pins to PortB */ AFIO->MAPR &= ~(blt_int32u)((blt_int32u)0x3 << 13); AFIO->MAPR |= (blt_int32u)((blt_int32u)0x2 << 13); /* enable clocks for CAN controller peripheral */ RCC->APB1ENR |= (blt_int32u)0x02000000; #endif #if (BOOT_COM_USB_ENABLE > 0) /* divide USB clock by 1.5 to create 48MHz clock */ RCC->CFGR &= ~(blt_int32u)((blt_int32u)0x1 << 22); /* enable the USB clock */ RCC->APB1ENR |= (blt_int32u)0x00800000; #endif } /*** end of Init ***/ /*********************************** end of main.c *************************************/